Patrick Cordier - Selected Publications#

The numbers refer to the full publication list.

Stress-induced amorphization is shown in [197] to be responsible for grain boundary sliding in olivine underhigh stresses. [203] promotes the idea that this is a deformation mechanism to be considered in minerals

203. H. Idrissi, P. Carrez, P. Cordier (2022) On amorphization as a deformation mechanism under high stresses. Current Opinion in Solid State & Materials Science. 26(1), 100976. (IF 11.354)

197. V. Samae, P. Cordier, S. Demouchy, C. Bollinger, J. Gasc, S. Koizumi, A. Mussi, D. Schryvers & H. Idrissi (2021) Stress-induced amorphization triggers deformation in the lithospheric mantle. Nature 591, 82–86. (IF: 54.637)

Nanomechanical testing is applied to antigorite in [192] to evidence grain boundary sliding and to amorphous olivine in [202]

202. P. Baral, A. Orekhov, R. Dohmen, M. Coulombier, J.-P. Raskin, P. Cordier H. Idrissi & T. Pardoen (2021) Rheological properties of amorphous olivine thin films measured by nanoindentation. Acta Materialia, 219, 117257, (IF 8.203)

192. H. Idrissi, V. Samaee, G. Lumbeeck, T. van der Werf, T. Pardoen, D. Schryvers & P. Cordier (2020) In Situ Quantitative Tensile Testing of Antigorite in a Transmission Electron Microscope. Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018383. (IF 3.848)

The first evolution with time of an electron tomography of dislocations is presented in [201]

201. A. Mussi, P. Carrez, K. Gouriet, B. Hue & P. Cordier (2021) 4D Electron Tomography of Dislocations Undergoing Electron Irradiation. Comptes Rendus Physique “Plasticity and Solid State Physics”. 22 (S3), 67-81, (IF 3.769)

Dislocation dynamics modelling is applied to olivine to unify empirical flow laws

179 K. Gouriet, P. Cordier, F. Garel, C. Thoraval, S. Demouchy, A. Tommasi & P. Carrez (2019) Dislocation dynamics modelling of the power-law breakdown in olivine single crystals: Toward a unified creep law for the upper mantle. Earth and Planetary Science Letters, 506, 282-291. (IF 5.255)

Following extensive modelling of mantle minerals at the atomic scale we propose a new deformation mechanism for planetary interiors: pure climb creep [163] which is applied to bridgmanite [182] and transition zone minerals [193]. This mechanism accounts well for the morphology of mantle plumes [171]

163 F. Boioli, P. Carrez, P. Cordier, B. Devincre, K. Gouriet, P. Hirel, A. Kraych & S. Ritterbex (2017) Pure climb creep mechanism drives flow in the Earth’s lower mantle. Science Advances, 3, e1601958, doi: 10.1126/sciadv.1601958 (IF 14.136)

182. R. Reali, J. van Orman, J. Pigott, J.M. Jackson, F. Boioli, P. Carrez & P. Cordier (2019) The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. Scientific Reports, 9, 2053. (IF: 5.133)

171 A. Davaille, Ph. Carrez & P. Cordier (2018) Fat plumes may reflect the complex rheology of the lower mantle. Geophysical Research Letters, 45, 1349–1354. (IF 5.265)

193. S. Ritterbex, Ph. Carrez & P. Cordier (2020) Deformation across the mantle transition zone: A theoretical mineral physics view. Earth and Planetary Science Letters, 547, 116438. (IF 5.255)

Imprint Privacy policy « This page (revision-5) was last changed on Monday, 20. June 2022, 14:31 by System
  • operated by