Margarita Salas - Publications #


1. E. Viñuela, M. Salas and A. Sols (1963). Glucokinase and hexokinase in liver in relation to glycogen synthesis. J. Biol. Chem., 238, 1175-1177.

2. M. Salas, E. Viñuela and A. Sols (1963). Insulin-dependent synthesis of liver glucokinase in the rat. J. Biol. Chem., 238, 3535-3538.

3. E. Viñuela, M.L. Salas, M. Salas and A. Sols (1964). Two interconvertible forms of yeast phosphofructokinase with different sensitivity to end-product inhibition. Biochem. Biophys. Res. Commun., 15, 243-249.

4. M. Salas, E. Viñuela, J. Salas and A. Sols (1964). Muscle fructose-1, 6-diphosphatase. Biochem. Biophys. Res. Commun., 17, 150-155.

5. A. Sols, M. Salas and E. Viñuela (1964). Induced biosynthesis of liver glucokinase. Advances in Enzyme Regulation (G. Weber, ed.), vol. II, Pergamon Press, Oxford, pp. 177-188.

6. M. Salas, E. Viñuela and A. Sols (1965). Spontaneous and enzymatically catalyzed anomerization of glucose-6-P and anomeric specificity of related enzymes. J. Biol. Chem., 240, 561-568.

7. J. Salas, M. Salas, E. Viñuela and A. Sols (1965). Glucokinase of rabbit liver: purification and properties. J. Biol. Chem., 240, 1014-1018.

8. M.L. Salas, E. Viñuela, M. Salas and A. Sols (1965). Citrate inhibition of phosphofructokinase and the Pasteur effect. Biochem. Biophys. Res. Commun., 19, 371-376.

9. M. Salas, M.A. Smith, W.M. Stanely,Jr., A.J. Wahba and S. Ochoa (1965). Direction of reading of the genetic message. J. Biol. Chem., 240, 3988-3995.

10. M.A. Smith, M. Salas, W.M. Stanley,Jr., A.J. Wahba and S. Ochoa (1966). Direction of reading of the genetic message. II. Proc. Natl. Acad. Sci. USA, 55, 141-147.

11. W.M. Stanley,Jr., M. Salas, A.J. Wahba and S. Ochoa (1966). Translation of the genetic message. I. Factors involved in the initia¬tion of protein synthesis. Proc. Natl. Acad. Sci. USA, 56, 290-295.

12. M.A. Smith, M. Salas, W.M. Stanley,Jr., A.J. Wahba and S. Ochoa (1966). Effect of polyadenylic acid chain length on the size distribution of lysine peptides. Acta Biochimica Polonica, 13, 361-365.

13. M.A. Smith, M. Salas, M.B. Hille, W.M. Stanley,Jr., A.J. Wahba and S. Ochoa (1966). Studies on the translation of the genetic message with synthetic polynucleotides. Genetic Elements, pp. 251-261.

14. A.J. Wahba, M. Salas and W.M. Stanley,Jr. (1966). Studies on the translation of oligonucleotide messengers of specified base sequence. Cold Spring Harbor Symposia on Quantitative Biology, 31, 103-111.

15. M. Salas, M.B. Hille, J.A. Last, A.J. Wahba and S. Ochoa (1967). Translation of the genetic message. II. Effect of initiation factors on the binding of formyl-methionyl-tRNA to ribosomes. Proc. Natl. Acad. Sci. USA, 57, 387-394.

16. E. Viñuela, M. Salas and S. Ochoa (1967). Translation of the genetic message. III. Formylmethionine as initiator of proteins programed by polycistronic messenger RNA. Proc. Natl. Acad. Sci. USA, 57, 729-734.

17. J.A. Last, W.M. Stanley,Jr., M. Salas, M.B. Hille, A.J. Wahba and S. Ochoa (1967). Translation of the genetic message. IV. UAA as a chain termination codon. Proc. Natl. Acad. Sci. USA, 57, 1062-1067.

18. M. Salas, M.J. Miller, A.J. Wahba and S. Ochoa (1967). Translation of the genetic message. V. Effect of Mg++ and formylation of methionine on protein synthesis. Proc. Natl. Acad. Sci., USA 57, 1865-1869.

19. E. Viñuela, E. Méndez, A. Talavera, J. Ortín and M. Salas (1970). Structural components of bacteriophage phi29. FEBS Symposium, vol. 21, pp. 195-202.

20. E. Viñuela, E. Méndez, A. Talavera, J. Ortín and M. Salas (1970). Structural components of bacteriophage phi29 of B. subtilis in "Biosynthesis of macromolecules" (S. Ochoa, C.F. Heredia, D. Nachmansohn and C. Asensio, eds.), pp. 195. London, Academic Press. Bacillus subtilis

21. J. Avila, J.M. Hermoso, E. Viñuela and M. Salas (1970). Subunit composition of B. subtilis RNA polymerase. Nature, 226, 1244-1245.

22. E. Méndez, G. Ramírez, M. Salas and E. Viñuela (1971). Structural proteins of bacteriophage phi29. Virology, 45, 567-576.

23. A. Talavera, F. Jiménez, M. Salas and E. Viñuela (1971). Temperature sensitive mutants of bacteriophage phi29. Virology, 46, 586-595.

24. J. Avila, J.M. Hermoso, E. Viñuela and M. Salas (1971). Purification and properties of DNA-dependent RNA polymerase from Bacillus subtilis vegetative cells. Eur. J. Biochem., 21, 526-535.

25. J. Ortín, E. Viñuela, M. Salas and C. Vásquez (1971). DNA-protein complex in circular DNA from phage phi29. Nature New Biology, 234, 275-277.

26. G. Ramírez, E. Méndez, M. Salas and E. Viñuela (1972). Head-neck connecting protein in phage phi29. Virology, 48, 263-265.

27. Talavera, F. Jiménez, M. Salas and E. Viñuela (1972). Mapping of temperature sensitive mutants of bacteriophage phi29. Molec. Gen. Genetics, 115, 31-35.

28. J.M. Hermoso, J. Avila, F. Jiménez and M. Salas (1972). RNA poly–merase from Bacillus amyloliquefaciens. Biochim. Biophys. Acta, 277, 280-283.

29. A. Talavera, M. Salas and E. Viñuela (1972). Temperature-sensitive mutants affected in DNA synthesis in phage phi29 of Bacillus subtilis. Eur. J. Biochem., 31, 367-371.

30. M. Salas, C. Vásquez, E. Méndez and E. Viñuela (1972). Head fibers of bacteriophage phi29. Virology, 50, 180-188.

31. N.R. de Martínez, M.C. García, M. Salas and J.L.R.-Candela (1973). Proteins with insulin-like activity isolated from oyster (Ostrea edulis L) hepatopancreas. Gen.Comp. Endocrinol., 20, 305-311.

32. J.L. Carrascosa, E. Viñuela and M. Salas (1973). Proteins induced in Bacillus subtilis infected with bacteriophage phi29. Virology, 56, 291-299.

33. V. Rubio, M. Salas, E. Viñuela, P. Usobiaga, J.L. Saiz and J.F. Llopis (1974). Biophysical properties of bacteriophage phi29. Virology, 57, 112-121.

34. J.L. Carrascosa, A. Camacho, E. Viñuela and M. Salas (1974). A precursor of the neck appendage of Bacillus subtilis phage phi29. FEBS Lett., 44, 317-321.

35. A. Camacho, F. Moreno, J.L. Carrascosa, E. Viñuela and M. Salas (1974). A supressor of non sense mutations in Bacillus subtilis. Eur. J. Biochem., 47, 199-205.

36. F. Moreno, A. Camacho, E. Viñuela and M. Salas (1974). Suppressor-sensitive mutants of phage phi29. Virology, 62, 1-16.

37. F. Jiménez, J. Avila, E. Viñuela and M. Salas (1974). Initiation of the transcription of phi29 DNA by Bacillus subtilis RNA polymerase. Biochim. Biophys. Acta, 349, 320-327.

38. J.L. Carrascosa, F. Jiménez, E. Viñuela and M. Salas (1975). In vitro synthesis of phi29-specific early proteins directed by phage DNA. Eur. J. Biochem., 44, 375-381.

39. A. Camacho, J.L. Carrascosa, E. Viñuela and M. Salas (1975). Discrepancy in the mobility of a protein of phage phi29 in different SDS-polyacrylamide gel systems. Anal. Biochem., 69, 395-400.

40. R.P. Mellado, E. Viñuela and M. Salas (1976). Isolation of a strong suppressor of nonsense mutations in Bacillus subtilis. Eur. J. Biochem., 65, 213-223.

41. E. Viñuela, A. Camacho, F. Jiménez, J.L. Carrascosa, G. Ramírez and M. Salas (1976). Structure and assembly of phage phi29. Proc. Trans. R. Soc. London B., 276, 29-35.

42. R.P. Mellado, F. Moreno, E. Viñuela, M. Salas, B.E. Reilly and D.L. Anderson (1976). Genetic analysis of bacteriophage phi29 of Bacillus subtilis: Integration and mapping of reference mutants of two collections. J. Virol., 19, 495-500.

43. M.R. Inciarte, J.M. Lázaro, M. Salas and E. Viñuela (1976). Physical map of bacteriophage phi29. Virology, 74, 314-323.

44. J.L. Carrascosa, A. Camacho, F. Moreno, F. Jiménez, R.P. Mellado, E. Viñuela and M. Salas (1976). Bacillus subtilis phage phi29: Characterization of gene products and functions. Eur. J. Biochem., 66, 229-241.

45. M.R. Inciarte, E. Viñuela and M. Salas (1976). Transcription in vitro of phi29 DNA and EcoRI fragments by Bacillus subtilis RNA polymerase. Eur. J. Biochem., 71, 77-83.

46. E. Viñuela and M. Salas (1976). Bacteriophage phi29. In Reflections on Biochemistry. A. Kornberg, B.L. Horecker, L. Cornudella and J. Oró, eds. Pergamon Press, pp. 293-300.

47. E. Viñuela y M. Salas (1976). Bacteriófago phi29. En Avances de la Bioquímica. Salvat Editores, S.A., pp. 423-434.

48. A. Camacho, F. Jiménez, J. de la Torre, J.L. Carrascosa, R.P. Mellado, C. Vásquez, E. Viñuela and M. Salas (1977). Assembly of B. subtilis phage phi29. I. Mutants in the cistrons coding for the structural proteins. Eur. J. Biochem., 73, 39-55.

49. F. Jiménez, A. Camacho, J. de la Torre, E. Viñuela and M. Salas (1977). Assembly of Bacillus subtilis phage phi29. II. Mutants in the cistrons coding for the nonstructural proteins. Eur. J. Biochem., 73, 57-72.

50. M. Salas, J.L. Carrascosa, F. Jiménez, A. Camacho y F. Moreno (1977). Regulación de la expresión del DNA de virus bacterianos. En "Genética Microbiana". Editorial Alhambra, S.A. Madrid, pp. 1-34.

51. R.P. Mellado, E. Méndez, E. Viñuela and M. Salas (1978). Genetic order of the two major head proteins of bacteriophage phi29 of Bacillus subtilis. J. Virol., 34, 378-382.

52. M. Salas, R.P. Mellado, E. Viñuela and J.M. Sogo (1978). Characterization of a protein covalently linked to the 5' termini of the DNA of Bacillus subtilis phage phi29. J. Mol. Biol., 119, 269-291.

53. J.M. Sogo, M.R. Inciarte, J. Corral, E. Viñuela and M. Salas (1979). RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage phi29. J. Mol. Biol., 127, 411-436.

54. A. Camacho, F. Jiménez, E. Viñuela and M. Salas (1979). Order of assembly of the lower collar and the tail proteins of Bacillus subtilis phage phi29. J. Virol., 29, 540-545.

55. J.M. Sogo, P. Rodeño, Th. Koller, E. Viñuela and M. Salas (1979). Comparison of the A-T rich regions and the Bacillus subtilis RNA poly¬merase binding sites in phage phi29 DNA. Nucl. Acids Res., 7, 107-120.

56. M. Salas and E. Viñuela (1980). Proteins covalently linked to the viral nucleic acids. Trends Biochem. Sci. July, 191-193.

57. M.R. Inciarte, M. Salas and J.M. Sogo (1980). The structure of replicating DNA molecules of Bacillus subtilis phage phi29. J. Virol., 34, 187-190.

58. R.P. Mellado, M.A. Peñalva, M.R. Inciarte and M. Salas (1980). The protein covalently linked to the 5' termini of the DNA of Bacillus subtilis phage phi29 is involved in the initiation of DNA replication. Virology, 104, 84-96.

59. J.M. Hermoso and M. Salas (1980). Protein p3 is linked to the DNA of phage phi29 through a phosphoester bond between serine and 5' dAMP. Proc. Natl. Acad. Sci. USA, 77, 6425-6428.

60. J.A. García and M. Salas (1980). Bacteriophage phi29 infection of Bacillus subtilis minicells. Mol. Gen. Genet., 180, 539-545.

61. M. Salas, J.A. García, M.A. Peñalva, R.P. Mellado, J.M. Hermoso, C. Escarmís, M.R. Inciarte and J.M. Sogo (1980). Protein covalently linked to the 5' termini of phi29 DNA and its possible role as primer in the initiation of DNA replication. In "Mechanistic studies of DNA replication and genetic recombination". ICN-UCLA Symposia on Molecular and Cellular Biology, vol. XIX, pp. 257-266, eds. B. Alberts and C. Fred Fox. Academic Press, New York.

62. C. Escarmís and M. Salas (1981). Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage phi29. Proc. Natl. Acad. Sci. USA, 78, 1446-1450.

63. N. Villanueva and M. Salas (1981). Adsorption of bacteriophage phi29 to Bacillus subtilis through the neck appendages of the viral particle. J. Virol., 38, 15-19.

64. S. Krawiec, F. Jiménez, J.A. García, N. Villanueva, J.M. Sogo and M. Salas (1981). The orderly in vitro emergence of DNA from bacteriophage phi29 particles. Virology, 111, 440-454.

65. N. Villanueva, J.M. Lázaro and M. Salas (1981). Purification, properties and assembly of the neck-appendage protein of the Bacillus subtilis phage phi29. Eur. J. Biochem. 117, 499-505.

66. J.L Carrascosa, E. Méndez, J. Corral, V. Rubio, G. Ramírez, M. Salas and E. Viñuela (1981). Structural organization of Bacillus subtilis phage phi29. A model. Virology, 111, 401-413.

67. M. Salas, M.A. Peñalva, J.A. García, J.M. Hermoso and J.M. Sogo (1981). Priming of phage phi29 replication by protein p3, covalently linked to the 5' ends of the DNA. In "Structure and DNA-protein interactions of replication origins". ICN-UCLA Symposia on Molecular and Cellular Biology, vol. XXI, eds. D.S. Ray and C. F. Fox. Academic Press, New York, pp. 437-453.

68. J.M. Sogo, J.A. García, M.A. Peñalva and M. Salas (1982). Structure of protein-containing replicative intermediates of Bacillus subtilis phage phi29 DNA. Virology, 116, 1-18.

69. J.L. Carrascosa, J.A. García and M. Salas (1982). A protein similar to E. coli Gro EL is present in B. subtilis. J. Mol. Biol., 158, 731-737.

70. M.A. Peñalva and M. Salas (1982). Initiation of phage phi29 DNA replication in vitro: Formation of a covalent complex between the terminal protein, p3, and 5'-dAMP. Proc. Natl. Acad. Sci. USA, 79, 5522-5526.

71. R.P. Mellado and M. Salas (1982). High level synthesis in Escherichia coli of the Bacillus subtilis phage phi29 proteins p3 and p4 under the control of phage lambda PL promoter. Nucl. Acids Res., 10, 5773-5784.

72. C. Escarmís and M. Salas (1982). Nucleotide sequence of the genes 3 and 4 of bacteriophage phi29. Nucl. Acids Res., 10, 5785-5798.

73. J.A. García, R. Pastrana, I. Prieto and M. Salas (1983). Cloning and expression in Escherichia coli of the gene coding for the protein linked to the ends of Bacillus subtilis phage phi29 DNA. Gene, 21, 65-76.

74. J.A. García, J.L. Carrascosa and M. Salas (1983). Assembly of the tail protein of the Bacillus subtilis phage phi29. Virology, 125, 18-30.

75. L. Blanco, J.A. García, M.A. Peñalva and M. Salas (1983). Factors involved in the initiation of phage phi29 DNA replication in vitro: requirement of the gene 2 product for the formation of the protein p3-dAMP complex. Nucl. Acids Res., 11, 1309-1323.

76. M. Salas, J.A. García, M.A. Peñalva, L. Blanco, I. Prieto, R.P. Mellado, J.M. Lázaro, R. Pastrana, C. Escarmís and J.M. Hermoso (1983). Requirements for the initiation of phage phi29 DNA replication in vitro primed by the terminal protein. Ed. N.R. Cozzarelli. In "Mechanisms of DNA replication and recombination". ICN-UCLA Symposia on Molecular and Cellular Biology, vol. x, pp. 203-223. Alan R. Liss Inc., New York.

77. R.P. Mellado and M. Salas (1983). Initiation of phage phi29 DNA replication by the terminal protein modified at the carboxyl end. Nucl. Acids Res., 11, 7397-7407.

78. M. Salas (1983). A new mechanism for the initiation of replication of phi29 and adenovirus DNA: priming by the terminal protein. Curr. Top. Microbiol. Immunol., 109, 89-106.

79. Escarmís, A. Gómez, E. García, C. Ronda, R. López and M. Salas (1984). Nucleotide sequence at the termini of the DNA of Streptococcus pneumoniae phage Cp-1. Virology, 133, 166-171.

80. C. Ibáñez, J.A. García, J.L. Carrascosa and M. Salas (1984). Overproduction and purification of the connector protein of Bacillus subtilis phage phi29. Nucl. Acids Res., 12, 2351-2365.

81. J.M. Sogo, M. Lozano and M. Salas (1984). In vitro transcription of the Bacillus subtilis phage phi29 DNA by Bacillus subtilis and Escherichia coli RNA polymerases. Nucl. Acids Res. 12, 1943-1960.

82. J.A. García, M.A. Peñalva, L.Blanco and M. Salas (1984). Template requirements for initiation of phage phi29 DNA replication in vitro. Proc. Natl. Acad. Sci. USA, 81, 80-84.

83. M. Salas, R,P. Mellado, J.M. Lázaro and J.M. Sogo (1984). In vitro transcription of bacteriophage phi29 DNA. Proceedings in the Syntro Conference on Genetics and Biotechnology of Bacilli (A.T. Ganesan and J.A. Hoch, eds.), pp. 195-208, Academic Press, New York.

84. M. Salas, L. Blanco, I. Prieto, J.A. García, R.P. Mellado, J.M. Lázaro and J.M. Hermoso (1984). In vitro replication of bacteriophage phi29. Proteins involved in DNA replication (U. Hübscher and S. Spadari, eds.), pp. 35-44, Plenum Press, New York.

85. I. Prieto, J.M. Lázaro, J.A. García, J.M. Hermoso and M. Salas (1984). Purification in a functional form of the terminal protein of Bacillus subtilis phage phi29. Proc. Natl. Acad. Sci. USA, 81, 1639-1643.

86. L. Blanco, J.A. García and M. Salas (1984). Cloning and expression of gene 2, required for the protein-primed initiation of the Bacillus subtilis phage phi29 DNA replication. Gene, 29, 33-40.

87. L. Blanco and M. Salas (1984). Characterization and purification of a phage phi29 coded DNA polymerase required for the initiation of replication. Proc. Natl. Acad. Sci. USA, 81, 5325-5329.

88. J.A. García, E. Méndez and M. Salas (1984). Cloning, nucleotide sequence and high level expression of the gene coding for the connector protein of Bacillus subtilis phage phi29. Gene, 30, 87-98.

89. L. Blanco, J.A. García, J.M. Lázaro and M. Salas (1984). Overproduction and purification of the gene 2 product involved in the initiation of phage phi29 replication. Proteins involved in DNA replication. (U. Hübscher and S. Spadari, eds.), pp. 193-197, Plenum Press, New York.

90. C. Escarmís, J.M. Sogo, J.A. García and M. Salas (1984). Structure of bacteriophage phi29 DNA. Folia Biologica (Praha), pp. 45-51.

91. M. Salas (1985). Replicación del DNA del bacteriófago phi29. En Genética Molecular. Fundación Instituto de Ciencias del Hombre, pp. 269-279.

92. R. Pastrana, J.M. Lázaro, L. Blanco, J.A. García, E. Méndez and M. Salas (1985). Overproduction and purification of protein p6 of Bacillus subtilis phage phi29: role in the initiation of DNA replication. Nucl. Acids Res., 13, 3083-3100.

93. L. Blanco and M. Salas (1985). Characterization of a 3'→ 5' exonuclease activity in the phage phi29-encoded DNA polymerase. Nucl. Acids Res., 13, 1239-1249.

94. C. Escarmís, P. García, E. Méndez, R. López, M. Salas and E. García (1985). Inverted terminal repeats and terminal proteins of the genomes of pneumococcal phages. Gene, 36, 341-348.

95. M. Salas (1985). Iniciación de la replicación del DNA del bacteriófago phi29. En Bioquímica y Biología Molecular. Salvat Editores, S.A. pp. 448-452. 96. M. Salas (1985). Historia de la biosíntesis de las proteínas. En Historia de la Bioquímica, pp. 143-155. 97. L. Blanco and M. Salas (1985). Replication of phi29 DNA with purified terminal protein and DNA polymerase: synthesis of full-length phi29 DNA. Proc. Natl. Acad. Sci. USA, 82, 6404-6408.

98. R.P. Mellado, J.L. Carrascosa and M. Salas (1985). Control of the late transcription of the B. subtilis phage phi29 DNA. In Sequence Specifi¬city in Transcription and Translation. UCLA Symposia on Molecular Biology. New Series, vol. XXX (R. Calendar and L. Gold, eds.), pp. 65-74, Alan R. Liss, New York.

99. M. Salas, I. Barthelemy and R.P. Mellado (1986). Characterization and sequence of in vivo phi29 promoters by S1 mapping. In Bacillus Molecular Genetics and Biotechnology Applications (A.T. Ganesan and J.A. Hoch, eds.), Academic Press, 395-409.

100. J.M. Hermoso, E. Méndez, F. Soriano and M. Salas (1985). Location of the serine residue involved in the linkage between the terminal protein and the DNA of phage phi29. Nucl. Acids Res., 13, 7715-7728.

101. M. Salas (1986). Proteins covalently linked to nucleic acids. Microbiología, 2, 5-9.

102. P. García, J.M. Hermoso, J.A. García, E. García, R. López and M. Salas (1986). Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP. J. Virol., 58, 31-35.

103. J. Gutiérrez, J.A. García, L. Blanco and M. Salas (1986). Cloning and template activity of the origins of replication of phage phi29 DNA. Gene, 43, 1-11.

104. A. Zaballos, M. Salas and R.P. Mellado (1986). Initiation of phage phi29 DNA replication by deletion mutants at the carboxyl end of the terminal protein. Gene, 43, 103-110.

105. R.P. Mellado, I. Barthelemy and M. Salas (1986). In vivo transcription of bacteriophage phi29 DNA. Early and late promoter sequences. J. Mol. Biol., 191, 191-197.

106. L. Blanco and M. Salas (1986). Effect of aphidicolin and nucleotide analogs on the phage phi29 DNA polymerase. Virology, 153, 179-187.

107. L. Blanco, J. Gutiérrez, J.M. Lázaro, A. Bernad and M. Salas (1986). Replication of phage phi29 DNA in vitro: role of the viral protein p6 in initiation and elongation. Nucleic Acids Res., 14, 4923-4937.

108. R.P. Mellado, I. Barthelemy and M. Salas (1986). In vitro transcription of bacteriophage phi29 DNA. Correlation between in vitro and in vivo promoters. Nucl. Acids Res., 14, 4731-4741.

109. L. Herranz, M. Salas and J.L. Carrascosa (1986). Interaction of the bacteriophage phi29 connector protein with the viral DNA. Virology, 155, 289-292.

110. J. Gutiérrez, J. Vinós, I. Prieto, E. Méndez, J.M. Hermoso and M. Salas (1986). Signals in the phi29 DNA-terminal protein template for the initiation of phage phi29 DNA replication. Virology, 155, 474-483.

111. I. Barthelemy, M. Salas and R.P. Mellado (1986). In vivo transcription ob bacteriophage phi29 DNA: Transcription initiation sites. J. Virol., 60, 874-879.

112. D. Pulido, A. Jiménez, M. Salas and R.P. Mellado (1986). Bacillus subtilis phage phi29 main promoters are efficiently recognized in vivo by the Streptomyces lividans RNA polymerase. Gene, 49, 377-382.

113. M. Salas (1986). Aportaciones de los virus bacterianos a la biología molecular. En Perspectivas Biológicas. El Futuro de la Microbiología. Fundación Ramón Areces. Ediciones Universidad de Salamanca, pp. 39-49.

114. M. Salas, I. Prieto, J. Gutiérrez, L. Blanco, A. Zaballos, J.M. Lázaro, G. Martín, A. Bernad, C. Garmendia, R.P. Mellado, C. Escarmís and J.M. Hermoso (1987). Replication of phage phi29 DNA primed by the terminal protein. In Mechanisms of DNA Replication and Recombination. UCLA Symposia on Molecular and Cellular Biology, New Series, vol. 47 (T. Kelly and R. McMacken, eds.), Alan R. Liss, Inc., New York, pp. 215-225.

115. M. Salas (1988). Ingeniería Genética en la Biología de los Microorganismos. En Nuevas Tendencias en Ingeniería Genética. CSIC, pp. 109-126.

116. I. Barthelemy, M. Salas and R.P. Mellado (1987). In vivo transcription of bacteriophage phi29 DNA. Transcription termination. J. Virol., 61, 1751-1755.

117. D. Pulido, A. Jiménez, M. Salas and R.P. Mellado (1987). A Bacillus subtilis phage phi29 transcription terminator is efficiently recognized in Streptomyces lividans. Gene, 56, 277-282.

118. A. Zaballos, M. Salas and R.P. Mellado (1987). A set of expression plasmids for the synthesis of fused and unfused polypeptides in Escherichia coli. Gene, 58, 67-76.

119. I. Barthelemy, J.M. Lázaro, E. Méndez, R.P. Mellado and M. Salas (1987). Purification in an active form of the phage phi29 protein p4 that controls the viral late transcription. Nucl. Acids Res., 15, 7781-7793.

120. A. Bernad, A. Zaballos, M. Salas and L. Blanco (1987). Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J., 12, 4219-4225.

121. L. Blanco, I. Prieto, J. Gutiérrez, A. Bernad, J.M. Lázaro, J.M. Hermoso and M. Salas (1987). Effect of NH4+ ions on phi29 DNA-protein p3 replication: Formation of a complex between the terminal protein and the DNA polymerase. J. Virol., 61, 3983-3991.

122. M. Salas (1988). Initiation of DNA replication by primer proteins: bacteriophage phi29 and its relatives. Curr. Top. Microbiol. Immunol., 136, 72-88.

123. M. Salas (1988). Phages with protein attached to the DNA ends. In The Bacteriophages (R. Calendar, ed.), Plenum Publishing Corporation, vol. I, pp. 169-191.

124. L. Blanco, A. Bernad and M. Salas (1988). Processive DNA synthesis in vitro by the phi29 DNA polymerase. Structural and functional comparison with other DNA polymerases. In DNA Replication and Mutagenesis, R.E. Moses and W. Summers, eds., pp. 122-129.

125. I. Barthelemy, R.P. Mellado and M. Salas (1988). Symmetrical transcription in bacteriophage phi29 DNA. Biochimie, 70, 605-609.

126. A. Zaballos, R.P. Mellado and M. Salas (1988). Initiation of phage phi29 DNA replication by mutants with deletions at the amino end of the terminal protein. Gene, 63, 113-121.

127. I. Prieto, M. Serrano, J.M. Lázaro, M. Salas and J.M. Hermoso (1988). Interaction of the bacteriophage phi29 protein p6 with double-stranded DNA. Proc. Natl. Acad. Sci. USA, 85, 314-318.

128. G. Martín and M. Salas (1988). Characterization and cloning of gene 5 of Bacillus subtilis phage phi29. Gene, 67, 193-201.

129. C. Garmendia, M. Salas and J.M. Hermoso (1988). Site-directed mutagenesis of bacteriophage phi29 terminal protein: isolation and characterization of a Ser232→thr mutant in the linking site. Nucl. Acids Res., 16, 5727-5740.

130. J. Gutiérrez, C. Garmendia and M. Salas (1988). Characterization of the origins of replication of bacteriophage phi29 DNA. Nucl. Acids Res., 16, 5895-5914.

131. L. Blanco, A. Bernad and M. Salas (1988). Transition from initiation to elongation in the protein-primed phi29 DNA replication. Salt-dependent stimulation by the viral protein p6. J. Virol., 62, 4167-4172.

132. M. Salas, G. Martín, A. Bernad, C. Garmendia, J.M. Lázaro, A. Zaballos, M. Serrano, M.J. Otero, J. Gutiérrez, E. Parés, M.A. Blasco, R.P. Mellado, J.M. Hermoso and L. Blanco (1988). Protein-primed replication of bacteriophage phi29 DNA. Biochim. Biophys. Acta, 951, 419-424.

133. M. Salas, A. Bernad, A. Zaballos, J. Gutiérrez, M. Serrano, G. Martín, M.J. Otero, J.M. Lázaro, C. Garmendia, I. Prieto, E. Parés, M.A. Blasco, C. Escarmís, R.P. Mellado, J.M. Hermoso and L. Blanco (1989). Protein-primed replication of bacteriophage phi29 DNA. Highlights Modern Biochem. vol. 1, pp. 647-656.

134. I. Barthelemy, R.P. Mellado and M. Salas (1989). In vitro transcription of bacteriophage phi29 DNA: Inhibition of early promoters by the viral replication protein p6. J. Virol., 63, 460-462.

135. C. Escarmís, D. Guirao and M. Salas (1989). Replication of recombinant phi29 DNA molecules in Bacillus subtilis protoplasts. Virology, 169, 152-160.

136. I. Barthelemy and M. Salas (1989). Characterization of a new prokaryotic transcriptional activator and its DNA recognition site. J. Mol. Biol., 208, 225-232.

137. L. Blanco, A. Bernad, J.M. Lázaro, G. Martín, C. Garmendia and M. Salas (1989). Highly efficient DNA synthesis by the phage phi29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem., 264, 8935-8940.

138. M. Serrano, J. Gutiérrez, I. Prieto, J.M. Hermoso and M. Salas (1989). Signals at the bacteriophage phi29 DNA replication origins required for protein p6 binding and activity. EMBO J., 8, 1879-1885.

139. G. Martín, J.M. Lázaro, E. Méndez and M. Salas (1989). Characterization of the phage phi29 protein p5 as a single-stranded DNA binding protein. Function in phi29 DNA-protein p3 replication. Nucl. Acids Res., 17, 3663-3672.

140. M.J. Otero and M. Salas (1989). Regions at the carboxyl end of bacteriophage phi29 protein p6 required for DNA binding and activity in phi29 DNA replication. Nucl. Acids Res., 17, 4567-4577.

141. A. Bernad, L. Blanco, J.M. Lázaro, G. Martín and M. Salas (1989). A conserved 3'→ 5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59, 219-228.

142. A. Zaballos, J.M. Lázaro, E. Méndez, R.P. Mellado and M. Salas (1989). Effects of internal deletions on the priming activity of the phage phi29 terminal protein. Gene, 83, 187-195.

143. I. Prieto, E. Méndez and M. Salas (1989). Characterization, overproduction and purification of the product of gene 1 of Bacillus subtilis phage phi29. Gene, 77, 195-204.

144. A. Zaballos and M. Salas (1989). Functional domains in the bacteriophage phi29 terminal protein for interaction with the phi29 DNA polymerase and with DNA. Nucl. Acids Res., 17, 10353-10366.

145. M. Salas, A. Bernad, A. Zaballos, G. Martín, M.J. Otero, C. Garmendia, M. Serrano, M.A. Blasco, J.M. Lázaro, E. Parés, J.M. Hermoso and L. Blanco (1990). Structure and function of the bacteriophage phi29 replication proteins. Molecular Mechanisms on Molecular and Cellular Biology, vol. 127, Ed. C. Richardson and R. Lehman, Alan R. Liss, New York, N.Y., 277-288.

146. C. Garmendia, J.M. Hermoso and M. Salas (1990). Functional domain in the phage phi29 terminal protein for priming activity. Gene 88, 73-79.

147. F. Rojo, A. Zaballos and M. Salas (1990). Bend induced by the phage phi29 transcriptional activator in the viral late promoter is required for activation. J. Mol. Biol., 211, 713-725.

148. M. Serrano, M. Salas and J.M. Hermoso (1990). A novel nucleoprotein complex at a replication origin. Science, 248, 1012-1016.

149. A. Bernad, J.M. Lázaro, M. Salas and L. Blanco (1990). The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in a-like DNA polymerases is required by phage phi29 DNA polymerase for protein-primed initiation and polymerization. Proc. Natl. Acad. Sci. USA, 87, 4610-4614.

150. M.A. Blasco, L. Blanco, E. Parés, M. Salas and A. Bernad (1990). Structural and functional analysis of temperature-sensitive mutants of the phage phi29 DNA polymerase. Nucl. Acids Res., 18, 4763-4770.

151. A. Bernad, L. Blanco and M. Salas (1990). Site-directed mutagenesis of the YCDTDS amino acid motif of the phi29 DNA polymerase. Gene 94, 45-51.

152. M.J. Otero, J.M. Lázaro and M. Salas (1990). Deletions at the N terminus of bacteriophage phi29 protein p6: DNA binding and activity in phi29 DNA replication. Gene, 95, 25-30.

153. F. Rojo and M. Salas (1990). Short N-terminal deletions in the phage phi29 transcriptional activator protein impair its DNA-binding ability. Gene, 96, 75-81.

154. T.M. Pakula, J. Caldentey, M. Serrano, C. Gutiérrez, J.M. Hermoso, M. Salas and D.H. Bamford (1990). Characterization of a DNA binding protein of bacteriophage PRD1 involved in DNA replication. Nucl. Acids Res., 18, 6553-6557.

155. M. Salas (1990). Proteínas unidas covalentemente a los extremos de ácidos nucleicos lineales. Función en la iniciación de la replicación. Microbiología 1990. pp. 25-30.

156. M. Salas (1991). Protein-priming of DNA replication. Annu. Rev. Biochem., 60, 39-71.

157. C. Gutiérrez, G. Martín, J. M. Sogo and M. Salas (1991).Mechanism of stimulation of DNA replication by bacteriophage phi29 SSB protein p5. J. Biol. Chem. 266, 2104-2111.

158. M.A. Blasco, A. Bernad, L. Blanco and M. Salas (1991).Characterization and mapping of the pyrophosphorolytic activity of the phage phi29 DNA polymerase. J. Biol. Chem., 266, 7904-7909.

159. L. Blanco, A. Bernad, M.A. Blasco and M. Salas (1991). A general structure for DNA -dependent DNA polymerases. Gene. 100, 27-38.

160. L. Blanco, A. Bernad and M. Salas (1991). MIP1 DNA polymerase of S. cerevisiae: structural similarity with the E. coli DNA polymerase I-type enzymes. Nucleic Acids. Res. 19, 955.

161. B. Nuez, F. Rojo, I. Barthelemy and M. Salas (1991). Identification of the sequences recognized by phage phi29 transcriptional activator: possible interaction between the activator and the RNA polymerase. Nucleic Acids Res., 19, 2337-2342.

162. M. Serrano, I. Barthelemy and M. Salas (1991). Transcription activation at a distance by phage phi29 protein p4. J. Mol. Biol., 219, 403-414.

163. F. Rojo, I. Barthelemy, B. Nuez, M. Serrano and M. Salas (1991). Transcription regulation in Bacillus subtilis phage phi29. Research in Microbiology. 142, 771-777.

164. F. Rojo and M. Salas (1991). A DNA curvature can substitute phage phi29 regulatory protein p4 when acting as a transcriptional repressor. EMBO J., 10, 3429-3438.

165. C. Gutiérrez, J. M. Sogo and M. Salas (1991). Analysis of replicative intermediates produced during bacteriophage phi29 DNA replication in vitro. J. Mol. Biol., 222, 983-994.

166. L. Blanco, A. Bernad, J.A. Esteban and M. Salas (1992). DNA-independent deoxynucleotidylation of the phi29 terminal protein by the phi29 DNA polymerase. J. Biol. Chem,. 267, 1225-1230.

167. C. Garmendia, A. Bernad, J.A. Esteban, L. Blanco and M. Salas (1992). The bacteriophage phi29 DNA polymerase, a proofreading enzyme. J. Biol. Chem., 267, 2594-2599.

168. J.A. Esteban, A. Bernad, M. Salas and L. Blanco (1992). Metal activation of synthetic and degradative activities of phi29 DNA polymerase, a model enzyme for protein-primed DNA replication. Biochemistry., 31, 350-359.

169. L. Blanco, A. Bernad and M. Salas (1992). Evidence favouring the hypothesis of a conserved 3'-5' exonuclease active site in DNA-dependent DNA polymerases. Gene, 112, 139-144.

170. M. Salas, M. Serrano, C. Gutiérrez, J.A. Esteban, M. A. Blasco, A. Bernad, J. Méndez, J.M. Lázaro, C. Garmendia, R. Freire, J.M. Sogo, J.M. Hermoso and L. Blanco (1992). Protein-primed replication of bacteriophage phi29 DNA. In: DNA Replication: The Regulatory Mechanisms. Eds. P. Hugues, E. Fanning and M. Kohiyama. Springer-Verlag, pp. 295-306.

171. L.E. Donate, J.M. Valpuesta, A. Rocher, E. Mendez, F. Rojo, M. Salas and J.L. Carrascosa (1992). Role of the amino-terminal domain of bacteriophage phi29 connector in DNA binding and packaging. J. Biol. Chem., 267, 10919-10924.

172. M.A. Blasco, J.M. Lázaro, A. Bernad, L. Blanco and M. Salas (1992). phi29 DNA polymerase active site: mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding. J. Biol. Chem., 267, 19427-19434.

173. J. Méndez, L. Blanco, J.A. Esteban, A. Bernad and M. Salas (1992). Initiation of phi29 DNA replication occurs at the second 3' nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc. Natl. Acad Sci. USA, 89, 9579-9583.

174. J. Caldentey, L. Blanco, H. Savilahti, D.H. Bamford and M. Salas (1992). In vitro replication of bacteriophage PRD1 DNA. Metal activation of protein-primed initiation and DNA elongation. Nucl. Acids. Res., 20, 3971-3976.

175. J.A. Esteban, M. Salas and L. Blanco (1992). Activation of S1 nuclease at neutral pH. Nucl. Acids Res. 20, 4932.

176. B. Nuez, F. Rojo and M. Salas (1992). Phage phi29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts. Proc. Natl. Acad Sci. USA, 89, 11401-11405.

177. M.S. Soengas, J.A. Esteban, J.M. Lázaro, A. Bernad, M.A. Blasco, M. Salas and L. Blanco (1992). Site-directed mutagenesis at the Exo III motif of phi29 DNA polymerase. Overlapping structural domains for the 3'→5' exonuclease and strand-displacement activities. EMBO J., 11, 4227-4237.

178. M.A. Blasco, J.A. Esteban, J. Méndez, L. Blanco and M. Salas (1992). Structural and functional studies on phi29 DNA polymerase. Chromosoma, 102, 32-38.

179. M. Salas, J. Mendez, J.A. Esteban, A. Bernad, M.S. Soengas, J.M. Lázaro, M.A. Blasco and L. Blanco (1992). Protein-primed replication of bacteriophage phi29 DNA. In Mosbach Colloquium. DNA Replication and the Cell Cycle. Springer-Verlag., vol. 43, pp. 27-32.

180. J.A. Esteban, M. Salas and L. Blanco (1993). Fidelity of phi29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem., 268, 2719-2726.

181. M. Serrano, C. Gutiérrez, M. Salas and J.M. Hermoso (1993). Superhelical path of the DNA in the nucleoprotein complex that activates the initiation of phage phi29 DNA replication. J. Mol. Biol., 230, 248-259.

182. F. Rojo, B. Nuez, M. Mencía and M. Salas (1993). The main early and late promoters of Bacillus subtilis phage phi29 form unstable open complexes with sA-RNA polymerase that are stabilized by DNA supercoiling. Nucl. Acids. Res., 21, 935-940.

183. M. Salas, J. Méndez, J.A. Esteban, M. Serrano, C. Gutierrez, J.M. Hermoso, A. Bravo, M.S. Soengas, J.M. Lázaro, M.A. Blasco, R. Freire, A. Bernad, J.M. Sogo and L. Blanco (1993). Terminal protein priming of DNA replication: bacteriophage phi29 as a model system. In Virus Strategies, Molecular Biology and Pathogenesis, edited by W. Doerfler and P. Böhm, Verlag Chemie, pp 3-19.

184. M. Salas and F. Rojo (1993). Replication and transcription of bacteriophage phi29 DNA. In Bacillus subtilis, the Model Gram-Positive Bacterium: Physiology, Biochemistry and Molecular Genetics, edited by A.L. Sonenshein, J.A. Hoch and R. Losick, American Society for Microbiology, pp. 843-857.

185. M. Serrano, M. Salas and J.M. Hermoso (1993). Multimeric complexes formed by DNA-binding proteins of low sequence-specificity. TIBS, 18, 202-206. 186. M.A. Blasco, J.M. Lázaro, L. Blanco and M. Salas (1993) phi29 DNA polymerase active site. The conserved amino acid motif "Kx3NSxYG" is involved in template-primer binding and dNTP selection. J. Biol. Chem., 268, 16763-16770.

187. T.M. Pakula, J. Caldentey, C. Gutiérrez, V.M. Olkkonen, M. Salas and D.H. Bamford (1993) Overproduction, purification and characterization of DNA binding protein p19 of bacteriophage PRD1. Gene, 126, 99-104.

188. B. Nuez and M. Salas (1993) Bacteriophage Nf DNA region controlling late transcription: structural and functional homology with bacteriophage phi29. Nucl. Acids Res., 21, 2861-2865.

189. J. Caldentey, L. Blanco, D.H. Bamford and M. Salas (1993) In vitro replication of bacteriophage PRD1 DNA. Characterization of the protein-primed initiation site. Nucl. Acids Res., 21, 3725-3730.

190. M.A. Blasco, J.M. Lázaro, L. Blanco and M. Salas (1993) phi29 DNA polymerase active site. Residue Asp249 of conserved amino acid motif Dx2SLYP is critical for synthetic activities. J. Biol. Chem., 268, 24106-24113.

191. M. Mencía, M. Salas and F. Rojo (1993) Residues of the Bacillus subtilis phage phi29 transcriptional activator required both to interact with RNA polymerase and to activate transcription. J. Mol. Biol., 233, 695-704.

192. M. Salas (1994). Bacteriophage phi29 of Bacillus subtilis. In: Encyclopaedia of Virology. R.G. Webster and A. Granoff (eds.). Saunders Scientific Publications, pp 980-989.

193. C. Gutiérrez, R. Freire, M. Salas and J.M. Hermoso (1994) Assembly of phage phi29 genome with viral protein p6 into a compact complex. EMBO J., 13, 269-276.

194. M.S. Soengas, J.A. Esteban, M. Salas and C. Gutiérrez (1994) Complex formation between phage phi29 single-stranded DNA binding protein and DNA. J. Mol. Biol., 239, 213-226.

195. J.M. Hermoso, R. Freire, A. Bravo, C. Gutiérrez, M. Serrano and M. Salas (1994) DNA structure in the nucleoprotein complex that activates replication of phage phi29. Biophys. Chem., 50, 183-189.

196. B. Nuez, F. Rojo and M. Salas (1994) Requirement for an A-tract structure at the binding sites of phage phi29 transcriptional activator. J. Mol. Biol., 237, 175-181.

197. R. Freire, M. Salas and J.M. Hermoso (1994) A new protein domain for binding to DNA through the minor groove. EMBO J., 13, 4353-4360.

198. M. Salas (1994) La creación del Centro de Biología Molecular "Severo Ochoa". Arbor, Julio, pp 81-86.

199. M. Serrano, C. Gutiérrez, R. Freire, A. Bravo, M. Salas and J.M. Hermoso (1994) Phage phi29 protein p6: a viral histone-like protein. Biochimie, 76, 981-991.

200. A. Bravo, J.M. Hermoso and M. Salas (1994) A genetic approach to identify functional amino acids in protein p6 of Bacillus subtilis phage phi29. Mol. Gen. Genet., 245, 529-536.

201. A. Bravo, J.M. Hermoso and M. Salas (1994) In vivo functional relationships among terminal proteins of Bacillus subtilis phi29-related phages. Gene, 148, 107-112.

202. L. Blanco, J.M. Lázaro, M. de Vega, A. Bonnin and M. Salas (1994) Terminal protein-primed DNA amplification. Proc. Natl. Acad. Sci. USA, 91, 12198-12202.

203. J. Méndez, L. Blanco, J.M. Lázaro and M. Salas (1994) Primer-terminus stabilization at the phi29 DNA polymerase active site: mutational analysis of conserved motif Tx2GR. J. Biol. Chem., 269, 30030-30038.

204. J.A. Esteban, M.S. Soengas, M. Salas and L. Blanco (1994) 3'→5' exonuclease active site of phi29 DNA polymerase. Evidence favoring a metal-ion-assisted reaction mechanism. J. Biol. Chem., 269, 31946-31954.

205. M.A. Blasco, J. Méndez, J.M. Lázaro, L.Blanco and M. Salas (1995) Primer-terminus stabilizatión at the phi29 DNA polymerase active site: mutational analysis of conserved motif KxY. J. Biol. Chem., 270, 2735-2740.

206. M. Monsalve, M. Mencía, F. Rojo and M. Salas (1995) Transcription regulation in Bacillus subtilis phage phi29: expression of the viral promoters throughout the infection cycle. Virology, 207, 23-31. 207. J.M Lázaro, L. Blanco and M. Salas (1995) Purification of bacteriophage phi29 DNA polymerase. Methods Enzymol., 262, 42-49.

208. L. Blanco and M. Salas (1995) Mutational analysis of bacteriophage phi29 DNA polymerase. Methods Enzymol., 262, 283-294.

209. F. Rojo and M. Salas (1995) Transcription Regulators: Protein-DNA Complexes and Regulatory Mechanisms. In Microbial Gene Techniques. Methods in Molecular Genetics, K.W. Adolph, ed. pp. 421-438.

210. L. Blanco and M. Salas (1995) Bacteriophage phi29 DNA polymerase. Nucleic Acids and Molecular Biology, vol 9, F. Eckstein and D.M.J. Lilley, eds. pp. 328-341.

211. M. Salas, R. Freire, M.S. Soengas, J.A. Esteban, J. Méndez, A. Bravo, M. Serrano, M.A. Blasco, J.M. Lázaro, L. Blanco, C. Gutiérrez and J.M. Hermoso (1995) Protein-nucleic acid interactions in bacteriophage phi29 DNA replication. FEMS Microbiol. Rev., 17, 73-82.

212. M. Salas (1995). Bacteriófago phi29, modelo de investigación en Genética Molecular. En Microbiología y Genética Molecular. Sociedad Española de Microbiología, vol. 2, J. Casadesús (ed.) pp. 597-612.

213. M.S. Soengas, C. Gutiérrez and M. Salas (1995). Helix-destabilizing activity of phi29 single-stranded DNA binding protein: Effect on the elongation rate during strand displacement DNA replication. J. Mol. Biol. 253, 517-529.

214. J. Saturno, L. Blanco, M. Salas and J.A. Esteban (1995). A novel kinetic analysis to calculate nucleotide affinity of proofreading DNA polymerases. Application to phi29 DNA polymerase fidelity mutants. J. Biol. Chem. 270, 1-9.

215. M. Monsalve, M. Mencía, F. Rojo and M. Salas (1996). Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with the RNA polymerase. EMBO J. 15, 101-109.

216. M. de Vega, J.M. Lázaro, M. Salas and L. Blanco (1996). Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. EMBO J., 15, 1182-1192.

217. L. Blanco and M. Salas (1996). Relating structure to function in phi29 DNA polymerase. J. Biol. Chem. 271, 8509-8512.

218. M. Mencía, M. Monsalve, M. Salas and F. Rojo (1996). Transcriptional activator of phage phi29 late promoter: mapping of residues involved in interaction with RNA polymerase and in DNA bending. Mol. Microbiol. 20, 273-282.

219. A.C. Martín, L. Blanco, P. García, M. Salas and J. Méndez (1996). Protein-primed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3' nucleotide of the linear template: a stepwise sliding-back mechanism. J. Mol. Biol. 260, 369-377.

220. M. Mencía, M. Monsalve, F. Rojo and M. Salas (1996). Transcription activation by phage phi29 protein p4 is mediated by interaction with the α subunit of Bacillus subtilis RNA polymerase. Proc. Natl. Acad. Sci. USA, 93, 6616-6620.

221. V. Truniger, J.M. Lázaro, M. Salas and L. Blanco (1996). A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. EMBO J., 15, 3430-3441.

222. M. Salas, J.T. Miller, J. Leis and M.L. DePamphilis (1996). Mechanisms for priming DNA synthesis. In DNA Replication in Eukaryotic Cells. M. DePamphilis, ed. Cold Spring Harbor Press, pp. 131-176.

223. M. Monsalve, M. Mencía, M. Salas and F. Rojo (1996). Protein p4 represses phage phi29 A2c promoter by interacting with the α subunit of Bacillus subtilis RNA polymerase. Proc. Natl. Acad. Sci. USA, 93, 8913-8919.

224. B. Illana, L. Blanco and M. Salas (1996). Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication. J. Mol. Biol. 264, 453-464.

225. R. Freire, M. Serrano, M. Salas and J.M. Hermoso (1996). Activation of replication origins in phi29-related phages requires the recognition of initiation proteins to specific nucleoprotein complexes. J. Biol. Chem., 271, 31000-31007.

226. M. S. Soengas, C.R. Mateo, M. Salas, A.U. Acuña and C. Gutiérrez (1997). Structural features of phi29 single-stranded DNA binding protein. I. Environment of tyrosines in terms of complex formation with DNA. J. Biol. Chem. 272, 295-302.

227. M. S. Soengas, C.R. Mateo, G. Rivas, M. Salas, A.U. Acuña and C. Gutiérrez (1997). Structural features of phi29 single-stranded DNA binding protein. II. Global conformation of phi29 SSB and the effects of complex formation on the protein and the ssDNA. J. Biol. Chem 272, 303-310.

228. J. Méndez, L. Blanco and M. Salas (1997). Protein-primed DNA replication: A transition between two modes of priming by a unique DNA polymerase. EMBO J., 16, 2519-2527.

229. J. A. Esteban, L. Blanco, L. Villar and M. Salas (1997). In vitro evolution of terminal protein-containing genomes. Proc. Natl. Acad. Sci. USA, 94, 2921-2926.

230. A. Bravo and M. Salas (1997). Initiation of bacteriophage phi29 DNA replication in vivo: Assembly of a membrane-associated multiprotein complex. J. Mol. Biol. 269, 102-112.

231. J. Saturno, J.M. Lázaro, F.J. Esteban, L. Blanco and M. Salas (1997). phi29 DNA polymerase residue Lys 383, invariant at motif B of DNA dependent polymerases, is involved in dNTP binding. J. Mol. Biol. 269, 313-325.

232. A.J. King, W.R. Teertstra, L. Blanco, M. Salas, and P. van der Vliet (1997). Processive proofreading by the adenovirus DNA polymerase. Association with the priming protein reduces exonucleolytic degradation. Nucl. Acids Res., 25, 1745-1752.

233. M. de Vega, T. Ilyina, J.M. Lázaro, M. Salas and L. Blanco (1997). An invariant lysine residue is involved in catalysis at the 3'-5' exonuclease active site of eukaryotic-type DNA polymerases. J. Mol. Biol., 270, 65-78.

234. A.M. Abril, M. Salas, J.M. Andreu, J.M. Hermoso and G. Rivas (1997). Phage phi29 protein p6 is in a monomer-dimer equilibrium that shifts to higher association states at the millimolar concentrations found in vivo. Biochemistry, 36, 11901-11908.

235. M. Elías-Arnanz and M. Salas (1997). Bacteriophage phi29 DNA replication arrest caused by codirectional and head-on collisions with the transcription machinery. EMBO J., 16, 5775-5783.

236. M. Monsalve, B. Calles, M. Mencía, M. Salas and F. Rojo (1997) Transcription activation or repression by phage phi29 protein p4 dependson the strength of the RNA polymerase-promoter interactions. Molecular Cell, 1, 1-9.

237. M. Mencía, M. Monsalve, F. Rojo and M. Salas (1998). Substitution of the C-terminal domain of the Escherichia coli RNA polymerase α subunit by that from Bacillus subtilis makes the enzyme responsible to a B. subtilis transcriptional activator. J. Mol. Biol., 275, 177-185.

238. V. Truniger, J.M. Lázaro, M. Salas and L. Blanco (1998) phi29 DNA polymerase requires the N-terminal domain to bind terminal protein and DNA primer substrates. J. Mol. Biol. 278, 741-755.

239. M. de Vega, J.M. Lázaro, M. Salas and L. Blanco (1998) Mutational analysis of phi29 DNA polymerase residues acting as ssDNA ligands for 3'-5' exonucleolysis. J. Mol. Biol., 279, 807-822.

240. F. Rojo, M. Mencía, M. Monsalve and M. Salas (1998) Transcription activation and repression by interaction of a regulator with the α subunit of RNA polymerase: the model of phage phi29 protein p4. Progress Nucleic Acids Res. Mol. Biol., 60, 29-46.

241. B. Illana, A. Zaballos, L. Blanco and M. Salas (1998) The "RGD" sequence in phage phi29 terminal protein is required for interaction with phi29 DNA polymerase. Virology, 248, 12-19.

242. P. Crucitti, J.M. Lázaro, V. Benes and M. Salas (1998) Bacteriophage phi29 early protein p17 is conditionally required for the first rounds of viral DNA replication. Gene, 223, 135-142.

243. V. Murthy, W. Meijer, L. Blanco and M. Salas (1998) DNA polymerase template switching at specific sites on the phi29 genome causes the in vivo accumulation of subgenomic phi29 DNA molecules. Mol. Microbiol., 29, 787-798.

244. M. de Vega, L. Blanco and M. Salas (1998) phi29 DNA polymerase residue Ser122, a ssDNA ligand for 3'-5' exonucleolysis, is required to interact with the terminal protein. J. Biol. Chem., 273, 28966-28977.

245. M. Monsalve, B. Calles, M. Mencía, F. Rojo and M. Salas (1998) Binding of phage phi29 protein p4 to the early A2c promoter: recruitment of a repressor by the RNA polymerase. J. Mol. Biol., 283, 559-569.

246. A. Rowe-Magnus, M. Mencía, F. Rojo, M. Salas and G.B. Spiegelman (1998) Transcription activation of the Bacillus subtilis spoIIG promoter by the response regulator SpoOA is independent of the C-terminal domain of the RNA polymerase alpha subunit. J. Bacteriol., 180, 4760-4763.

247. J. Saturno, J.M. Lázaro, L. Blanco and M. Salas (1998) Role of the first aspartate of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis. J. Mol. Biol., 283, 633-642.

248. A. Bravo and M. Salas (1998) Polymerization of bacteriophage phi29 replication protein p1 into protofilament sheets. EMBO J., 17, 6096-6105.

249. M. Salas (1998) Control mechanisms of bacteriophage phi29 DNA expression. Internatl. Microbiol. 1, 307-310.

250 M. Salas (1999) Bacillus phage phi29. In: Encyclopedia of Virology, second edition. R.G. Webster and A. Granoff (eds.). Saunders Scientific Publications, Vol. 1 pp. 119-130.

251. V. Truniger, L. Blanco and M. Salas (1999) Role of the "YxGG/A" motif of phi29 DNA polymerase in protein-primed replication. J.Mol.Biol., 286, 57-69.

252. A. Camacho and M. Salas (1999) Effect of mutations in the "Extended -10" motif of three Bacillus subtilis σA-RNA polymerase-dependent promoters. J. Mol. Biol. 286, 683-693.

253. B. Illana, J.M. Lázaro, C. Gutiérrez, W.J.J. Meijer, L. Blanco and M. Salas (1999) Phage phi29 terminal protein residues Asn80 and Tyr82 are recognition elements of the replication origins. J. Biol. Chem. 274, 15073-15079.

254. A. Bonnin, J.M. Lázaro, L. Blanco and M. Salas (1999) A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase. J.Mol.Biol. 290, 241-251.

255. J.A. Horcajadas, M. Monsalve, F. Rojo and M. Salas (1999) The switch from early to late transcription in phage GA-1: characterization of the regulatory protein p4G. J.Mol.Biol. 290, 917-928.

256. M. de Vega, L. Blanco and M. Salas (1999) Processive proofreading and spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase. J. Mol. Biol. 292, 39-51.

257. A.M. Abril, S. Marco, J.L. Carrascosa, M. Salas and J.M. Hermoso (1999) Oligomeric structures of the phage phi29 histone-like protein p6. J. Mol.Biol. 292, 581-588.

258. M. Salas (1999) Mechanisms of initiation of linear DNA replication in prokaryotes. Genet. Eng. 21, 159, 159-171.

259. M. Elías-Arnanz and M. Salas (1999) Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation. EMBO J. 18, 5675-5682.

260. M. Elías-Arnanz and M. Salas (1999) Functional interactions between a phage histone-like protein and a transcriptional factor in regulation of phi29 early-late transcriptional switch. Genes Dev.13, 2502-2513.

261. V. Truniger, L. Blanco and M. Salas (2000) Analysis of phi29 DNA polymerase by partial protelysis: Binding of terminal protein in the double-stranded DNA channel. J. Mol. Biol. 295, 441-453.

262. I. Gascón, C. Gutiérrez and M. Salas (2000) Structural and functional comparative study of the complexes formed by viral phi29, Nf and GA-1 SSB proteins with DNA. J. Mol. Biol. 296, 989-999.

263. I. Gascón, J.M. Lázaro and M. Salas (2000) Differential functional characterization of viral phi29, Nf and GA-1 SSB proteins.Nucl. Acids Res, 28, 2034-2042.

264. V. González-Huici, J.M. Lázaro, M. Salas and J.M. Hermoso (2000) Specific recognition of parental terminal protein by DNA polymerase for initiation of protein-primed DNA replication. J. Biol.Chem. 275, 14678-14683.

265. A.M. Abril, Salas and J.M. Hermoso (2000) Identification of residues within two regions involved in self-association of viral histone-like protein p6 from phage phi29. J.Biol. Chem.275, 26404-26410.

266. W. Meijer, P.J. Lewis, J. Errington and M. Salas (2000) Dynamic relocalization of phage phi29 DNA during replication and the role of the viral protein p16.7. EMBO J. 19, 4182-4190.

267. A. Bravo, B. Illana and M. Salas (2000) Compartmentalization of phage phi29 DNA replication: Interaction between the primer terminal protein and the membrane-associated protein p1. EMBO J. 19, 5575-5584.

268. E. Dufour, J. Méndez, J.M. Lázaro, M. de Vega, L. Blanco and M. Salas (2000) An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. J.Mol.Biol. 304, 289-300.

269. M. de Vega, J.M. Lázaro and M. Salas (2000) Phage phi29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3'-5' exonuclease active site. J.Mol.Biol. 304, 1-10.

270. V. González-Huici, M. Salas and J.M. Hermoso (2000) Sequence requirements for protein-primed initiation and elongation of phage phi29 DNA replication. J.Biol.Chem. 275, 40547-40553.

271. A. Camacho and M. Salas (2000) Pleitropic effect of protein p6 on the viral cycle of bacteriophage phi29. J. Bacteriol. 182, 6927-6932.

272. A. Serna-Rico, B. Illana, M. Salas and W.J.J. Meijer. (2000) The putative coiled coil domain of the phi29 terminal protein is a major determinant involved in recognition of the origin of replication. J. Biol. Chem. 275, .40529-40538.

273. W. Meijer, A. Serna-Rico and M. Salas (2001) Characterization of the bacteriophage phi29-encoded protein p16.7: a membrane protein involved in phage DNA replication. Mol. Microbiol. 39, 731-746.

274. B. Calles, M. Monsalve, F. Rojo and M. Salas (2001) The C-terminal domain of the RNA polymerase alpha subunit plays a role in the stability of open complexes formed at the phage phi29 late A3 promoter. J.Mol.Biol. 307, 487-497.

275. W. Meijer, J.A. Horcajadas and M. Salas (2001) The phi29-family of phages. Microb.Mol.Biol.Rev. 65, 261-287.

276. A. Bravo, G. Serrano-Heras and M. Salas (2001) A single amino acid substitution within a coiled-coil motif changes the assembly of a 53-amino-acid protein from two-dimensional sheets to filamentous structures. J.Biol.Chem. 276, 21250-21256.

277. A.B. Brenkman, M.R. Heideman, V. Truniger, M. Salas and P.C. van der Vliet (2001) The "YXGG/A" motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation. J.Biol.Chem. 276, 29846-29853.

278. A. Camacho and M. Salas (2001) Repression of bacteriophage phi29 early promoter C2 by the viral protein p6 is due to the impairment of the closed complex. J.Biol.Chem. 276, 28927-28932.

279. A. Camacho and M. Salas (2001) Mechanism for the switch of phi29 DNA early to late transcription by regulatory protein p4 and histone-like protein p6. EMBO J. 20, 6060-6070.

280. J.A. Horcajadas, W.J.J. Meijer, F. Rojo and M. Salas (2001) Analysis of early promoters of the Bacillus bacteriophage GA-1 J.Bacteriol. 183, 6965-6970.

281. M. Salas (2002) Genus phi29-like viruses (Podoviridae). The Springer Index of Viruses. Springer-Verlag. Pp. 798-803.

282. A. Serna-Rico, M. Salas and W.J.J. Meijer (2002) The Bacillus subtilis phage phi29 protein p16.7, involved in phi29 DNA replication, is a membrane-localizaed single-stranded DNA-binding protein. J.Biol.Chem. 277, 6733-6742.

283. V. Truniger, J.M. Lázaro, L. Blanco and M. Salas (2002) A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the template strand during initiation of phi29 DNA replication. J.Mol.Biol. 318, 83-96.

284. V. Truniger, J.M. Lázaro, F.J. Esteban, L. Blanco and M. Salas (2002) A positively charged residue in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucl.Acids.Res. 30, 1483-1492.

285. R. Eisenbrandt, M. Salas and M. de Vega (2002) phi29 DNA polymerase residues Tyr59, His61 and Phe69 of the highly conserved ExoII motif, are essential for interaction with the terminal protein. Nucl.Acids.Res. 30,1379-1386.

286. I. Gascón, J.L. Carrascosa, L. Villar, J.M. Lázaro and M. Salas (2002) Importance of the N-terminal region of the phage GA-1 SSB for its self-interaction ability and functionality. J.Biol.Chem. 277, 22534-22540.

287. A.M. Abril, M. Salas and J.M. Hermoso (2002) The in vivo function of phage phi29 nucleoid-associated protein p6 requires formation of dimers. Gene 296, 187-194.

288. B. Calles, M. Salas and F. Rojo (2002) The phi29 transcriptional regulator contacts the nucleoid protein p6 to organize a repression complex. EMBO J. 21, 6185-6194.

289. P. Crucitti, A. Abril and M. Salas (2003) Bacteriophage phi29 early protein p17: self-association and hetero-association with the viral histone-like protein p6. J. Biol. Chem., 278, 4906-4911.

290. I. Rodríguez, J.M. Lázaro, M. Salas and M. de Vega (2003) phi29 DNA polymerase residue Phe128 of the highly conserved (S/T) Lx2h motif is required for a stable and functional interaction with the terminal protein. J. Mol Biol., 325, 85-97.

291. A. Serna-Rico, D. Muñoz-Espín, L. Villar, M. Salas and W.J.J. Meijer (2003) The integral membrane protein p16.7 organizes in vivo phi29 DNA replication through interaction with both the terminal protein and ssDNA. EMBO J. 22, 2297-2306.

292. E. Dufour, I. Rodríguez, J.M. Lázaro, L. Blanco, M. de Vega and M. Salas (2003) A conserved insertion in protein-primed DNA polymerases is involved in primer-terminus stabilization. J. Mol. Biol. 331, 781-794.

293. V. Truniger, J.M. Lázaro, M. de Vega, L. Blanco and M. Salas (2003) phi29 DNA polymerase residue Leu384, highly conserved in motifB of eukaryotic type DNA replicases, is involved in nucleotide insertion fidelity. J. Biol. Chem. 278, 33482-33491.

294. H. Westers, R. Dorenbos, J. Maarten van Dijl, J. Kabel, T. Flanagan, K.M. Devine, F. Jude, S.J. Séror, A.C. Beekman, E. Darmon, C. Eschevins, A. de Jong, S. Bron, O.P. Kuipers, A.M. Albertini, H. Antelmann, M. Hecker, N. Zamboni, U. Sauer, C. Bruand, D.S. Ehrlich, J.C. Alonso, M. Salas, and W.J. Quax (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 20, 2076-2090.

295. G. Serrano-Heras, M. Salas and A. Bravo (2003) In vivo assembly of phage phi29 replication protein p1 into membrane-associated multimeric structures. J.Biol.Chem., 278,. 40771-40777.

296. V. Truniger, J. M. Lázaro and M. Salas. (2004). Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are involved in stabilisation of the incoming nucleotide. J.Mol.Biol. 335, 481-494.

297. A. Camacho and M. Salas. (2004). Molecular interplay between RNA polymerase and two transcriptional regulators in promoter switch. J.Mol.Biol. 336, 357-368.

298. K.A. Susanna, A.F. van der Werff, C.D. den Hengst, B. Calles, M. Salas, G. Venema, L.W. Hamoen and O.P.Kuipers1, (2004). Mechanism of transcription activation at the comG promoter by the Competence Transcription Factor ComK of Bacillus subtilis. J. Bacteriol. 186, 1120-1128.

299. V. Truniger, J. M. Lázaro and M. Salas. (2004). Function of the C-terminus of phi29 DNA polymerase in DNA and TP binding. Nucl. Acids Res. 32, 361-370.

300. I. Rodríguez, J.M. Lázaro, M. Salas and M. de Vega (2004). phi29 DNA polymerase-terminal protein interaction. Involvement of residues specifically conserved among protein-primed DNA polymerase. J. Mol. Biol. 337, 829-841.

301. W.J.J. Meijer and M. Salas (2004). Relevance of UP elements for three strong Bacillus subtilis phage phi29 promoters. Nucl. Acids Res. 32, 1166-1176.

302. V. González-Huíci, M. Salas and J.M. Hermoso (2004). The push-pull mechanism of bacteriophage phi29 DNA injection. Mol. Microbiol. 52, 529-540.

303. V. González-Huíci, M. Salas and J.M. Hermoso (2004). Genome wide, supercoiling-dependent, in vivo binding of a viral protein involved in DNA replication and transcriptional control. Nucl.Acids Res. 32, 2306-2314.

304. M. Salas, M. de Vega, J.M. Lázaro and L. Blanco (2004). phi29 DNA polymerase, a potent amplification enzyme. In DNA AMPLIFICATION Current Technologies and Applications. Eds. Demidov and Broude. Horizon Bioscience. pp. 21-34.

305. V. González-Huíci, M. Alcorlo, M. Salas and J.M. Hermoso (2004). Binding of phage phi29 architectural protein p6 to the viral genome. Evidence for topological restriction of the phage linear DNA. Nucl.Acids Res. 32, 3493-3502.

306. J.J. López-Rubio, S. Padmanabhan, J.M. Lázaro, M. Salas, F.J. Murillo, and M. Elías-Arnanz (2004) Operator design and mechanism for CarA repressor-mediated downregulation of the photo-inducible carB operon in Myxococcus xanthus. J. Biol.Chem. 279, 28945-28953.

307. V. González-Huíci, M. Salas and J.M. Hermoso (2004). Bacteriophage phi29 protein p6: an architectural protein involved in genome organization, replication and control of transcription. J. Mol. Recognit. 17, 390-396.

308. S. Kamtekar, A. Berman , J. Wang, J.M. Lazaro, M. de Vega, L. Blanco, M. Salas and T. A. Steitz. (2004). Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Mol. Cell 16, 609-618.

309. D. Muñoz-Espín, M. Mateu, L. Villar, M. Salas and W.J.J. Meijer. (2004). Phage phi29 DNA-replication organizer membrane protein p16.7 contains a coiled-coil and a dimeric, homeodomain-related, functional domain. J. Biol. Chem. 279, 50437-50445.

310. V. González-Huíci, M. Alcorlo, M. Salas and J.M. Hermoso (2004). Phage phi29 proteins p1 and p17 are required for efficient binding of architectural protein p6 to viral DNA in vivo. J. Bacteriol. 186, 8401-8406.

311. A. Bravo, G. Serrano-Heras and M. Salas. (2005). Compartimentalization of prokaryotic DNA replication. FEMS Microbiol. Rev. 29, 25-47.

312. V. Truniger, A. Bonnin, J.M. Lázaro, M de Vega and M. Salas (2005). Involvement of the “linker” region between the exonuclease and polymerization domains of phi29 DNA polymerase in DNA and TP binding. Gene 348, 89-99.

313. I. Rodríguez, J.M. Lázaro, L. Blanco, S. Kamtekar, A.J. Berman, J. Wang, T.A. Steitz, M. Salas and M. de Vega (2005). A specific subdomain in φ29 DNA polymerase confers both processivity and strand displacement capacity. Proc.Natl.Acad.Sci.USA 102, 6407-6412.

314. M. Salas (2005). Phage phi29 and its relatives. In The Bacteriophages. II Edition. (R. Calendar, ed.), Oxford University Press. pp. 313-328.

315. L. Pérez-Lago, M. Salas and A. Camacho (2005) A precise DNA bend angle is essential for the function of the phage phi29 transcriptional regulator. Nucl.Acids Res. 33, 126-134.

316. J.L. Asensio, A. Albert, D. Muñoz-Espín, C. González, J. Hermoso, L. Villar, J.Jiménez-Barbero, M. Salas and W.J.J. Meijer (2005). Structure of the functional domain of phi29 replication organizer: insights into oligomerization and DNA binding. J. Biol. Chem. 280, 20730-20739.

317. G. Serrano-Heras, M. Salas and A. Bravo. (2005). A new plasmid vector for regulated gene expression in Bacillus subtilis. PLASMID. 54, 278-282.

318. L. Pérez-Lago, M. Salas and A. Camacho (2005). Homologies and divergences in the transcription regulatory system of two related Bacillus subtilis phages. J. Bacteriol. 187, 6403-6409.

319. W.J.J. Meijer, V. Castilla-Llorente, L. Villar, H. Murray, J. Errington, and M. Salas (2005). Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29. EMBO J. 24, 3647-3657.

320. A. Albert, D. Muñoz-Espín, M. Jiménez, J.L. Asensio, J.A. Hermoso, M. Salas and W.J.J. Meijer (2005). Structural basis for membrane anchorage of viral phi29 DNA during replication. J. Biol. Chem. 280, 42486-42488.

321. M. Salas and M. de Vega (2006). Bacteriophage protein-primed DNA replication. In “Recent Advances in DNA Virus Replication” by Research Signpost Transworld Research Network. Ed. Kathleen L. Hefferon. 259-288.

322. G. Serrano-Heras, M. Salas and A. Bravo. (2006). A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing viral DNA. J.Biol.Chem. 281, 7068-7074.

323. S. Kamtekar, A.J. Berman, J. Wang, J.M. Lázaro, M. de Vega, L. Blanco, M. Salas and T.A. Steitz. (2006). The phi29 DNA polymerase: protein-primed structure suggests a model for the initiation to elongation transition. EMBO J. 25, 1335-1343.

324. V. González-Huíci, M. Salas and J.M. Hermoso. (2006). Requeriment for Bacillus subtilis bacteriophage phi29 DNA ejection. Gene. 374, 19-25.

325. D. Badía, A. Camacho, L. Pérez-Lago, C. Escandón, M. Salas and M. Coll. (2006). The structure of phi29 transcription regulator p4-DNA complex reveals a novel DNA binding motif. Mol. Cell. 22, 73-81.

326. M. Salas (2006). How I became a Biochemist. IUBMB Life. 58, 445-447.

327. P. Pérez-Arnaiz, J.M. Lázaro, M. Salas and M. de Vega. (2006). Involvement of phi29 DNA polymerase thumb subdomain in the proper coordination of synthesis and degradation during DNA replication. Nucleic. Acids Res. 34, 3107-3115.

328. V. Castilla-Llorente, D. Muñoz-Espín, L. Villar, M. Salas and W.J.J. Meijer. (2006). SpoOA, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication. EMBO J. 25, 3890-3899.

329. E. Longás and M. de Vega, J.M. Lázaro and M. Salas (2006) Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity. Nucl. Acids Res. 34, 6051-6053.

330. W. J.J. Meijer, D. Muñoz-Espín, V. Castilla-Llorente and M. Salas. (2007) Phage phi29: membrane-associated DNA replication and mechanism of alternative infection strategy. In Bacteriophage: Genetics and Molecular Biology. Ed. Stephen McGrath. Horizon Scientific Press. pp 273-305.

331. M. Salas. (2007) 40 years with bacteriophage phi29. Annu. Rev. Microbiol.61, 1-22.

332. D. Muñoz-Espín, M.A. Fuertes, M. Jiménez, L. Villar, C. Alonso, G. Rivas, M. Salas and W.J.J. Meijer. (2007) Structural and functional analysis of phi29 p16.7C dimerization mutants: identification of a novel aromatic-cage dimerization motif. J. Biol.Chem. 282, 16521-16531.

333. J. Mendieta, L. Pérez-Lago, M. Salas and A. Camacho. (2007) DNA sequence-specific recognition by a transcriptional regulator through indirected readout of A-tracts. Nucl.Acids Res. 35, 3252-3261.

334. M. Alcorlo, V. González-Huíci, J.M. Hermoso, W.J.J. Meijer and M. Salas. (2007) The phage phi29 membrane protein p16.7, involved in DNA replication, is required for efficient ejection of the viral genome. J. Bacteriol. 189, 5542-5549.

335. A.J. Berman, S. Kamtekar, J.L. Goodman, J.M. Lázaro, M. de Vega, L. Blanco, M. Salas, T.A. Steitz (2007) Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. EMBO J. 26, 3494-3505.

336. M. de Vega and M. Salas (2007) A highly conserved Tyrosine residue of family B DNA polymerases contributes to dictate translesion synthesis past 8-oxo-7, 8-dihydro-2’-deoxyguanosine. Nucl. Acids Res. 35, 5096-5107.

337. G. Serrano-Heras, J. Ruiz-Masó, G. del Solar, M. Espinosa, A. Bravo and M. Salas (2007). Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA-glycosylase. Nucl. Acids Res. 35, 5393-5401.

338. M. Alcorlo, M. Salas and J.M. Hermoso (2007) In vivo DNA binding of bacteriophage GA-1 protein p6. J. Bacteriol. 189, 8024-8033.

339. P. Pérez-Arnaiz, E. Longás, J.M. Lázaro, M. Salas and M. de Vega (2007) Involvement of phage phi29 DNA polymerase and terminal protein subdomains in conferring specificity during initiation of protein-primed DNA replication. Nucl.Acid Res. 35, 7061-7063.

340. M. Salas, L. Blanco, J.M. Lázaro and M. de Vega (2008) My favorite enzyme: the bacteriophage phi29 DNA polymerase. IUBMB Life. 60, 82-85.

341. M. Salas and M. de Vega (2008) Replication of bacterial viruses. In Encyclopedia of Virology Third Edition, 5 vols. (B.W.J. Mahy and M.H.V. Van Regenmortel, Editors). Oxford: Elsevier Vol. 4, pp. 399-406.

342. G. Lahoud, V. Timoshchuk, A. Lebedev, M. de Vega, M. Salas, K. Aarar, Y-M, Hou and H. Gamper. (2008). Enzymatic synthesis of structure-free DNA with pseudo-complementary properties. Nucl. Acids Res. 36, 3409-3419.

343. V. Castilla-Llorente, M. Salas and Meijer, W.J.J. (2008) kinC/D-mediated heterogeneous expression of spo0A during logarithmical growth in Bacillus subtilis is responsible for partial suppression of phi29 development. Mol. Microbiol. 68, 1406-1417.

344. B. Baños, J.M. Lázaro, L. Villar, M. Salas and de Vega M. (2008). Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase. Nucl. Acids Res. 36, 5736-5749.

345. G. Serrano-Heras, A. Bravo and M. Salas. (2008). Phage phi29 protein p56 prevents viral DNA replication impairment caused by uracil excision activity of uracil-DNA glycosylase. Proc.Natl.Acad. Sci.USA. 105, 19044-19049.

346. E. Longás, L. Villar, J.M. Lázaro, M. de Vega and M. Salas. (2008). Phage phi29 and Nf terminal protein-priming specifies the internal template nucleotide to initiate DNA replication. Proc.Natl.Acad.Sci.USA. 105, 18290-18295.

347. B. Baños, J.M. Lázaro, L. Villar, M. Salas and de Vega M. (2008). Characterization of a Bacillus subtilis 64-kDa DNA Polymerase X Potentially Involved in DNA Repair. J. Mol. Biol. 384, 1019-1028.

348. M. Alcorlo, M. Jiménez, A. Ortega, J.M. Hermoso, M. Salas, A.P. Minton and G. Rivas. (2009) Analytical ultracentrifugation studies of phage phi29 DNA protein p6 binding to DNA. J.Mol.Biol. 385, 1616-1629.

349. I. Rodríguez, J.M. Lázaro, M. Salas and M. de Vega (2009). Involvement of the TPR2 subdomain movement in the activities of phi29 DNA polymerase. Nucl. Acids Res. 37, 193-203.

350. V. Castilla-Llorente, M. Salas and W.J.J. Meijer. (2009). Different responses to Spo0A-mediated suppression of the related Bacillus subtilis phages Nf and phi29. Environm. Microbiol. 11, 1137-1149.

351. V. Castilla, W.J.J. Meijer and M. Salas (2009). Differential Spo0A-mediated effects on transcription and replication of the relateds Bacillus subtilis phages Nf and phi29 explain their different behaviours in vivo. Nucl.Acids Res. 37, 4955-4964.

352. M. de Vega and M. Salas (2009) Bacteriophage phi29 DNA polymerase: An outstanding replicase. IN: Bacterial DNA, DNA polymerase and DNA helicases (Nova Science Publishers Inc.). Chapter 11, pp. 329-351. Kundsen, W.D. and Bruns, S.S. (eds.)

353. D. Muñoz-Espín, R. Daniel, Y. Kawai, R. Carballido-López, V. Castilla-Llorente1, J. Errington, W. J.J. Meijer and M. Salas (2009). The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proc.Natl.Acad.Sci.USA. 106, 13347-13352.

354. P. Pérez-Arnaiz, J.M. Lázaro, M. Salas and M. de Vega (2009). Functional importance of bacteriophage 29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3’-5’ exonuclease active site. J. Mol. Biol. 391, 797-807.

355. B. Ibarra, Y.R. Chemla, S. Plyasunov, S.B. Smith, J.M. Lázaro, M. Salas and Bustamante C. (2009). Proofreading dynamics of a processive DNA polymerase. EMBO J., 28, 2794-2802.

356. M. Salas (2009). A passion for research. Cell Mol. Life Sci. 66, 3827-3830.

357. P. Gutiérrez del Arroyo, M. Vélez, O. Piétrement, M. Salas, JL. Carrascosa and A. Camacho (2009). A nucleoprotein-hairpin in transcription regulation. J. Struct. Biol. 168, 444-451.

358. M. Salas and A. Camacho. (2010). DNA bending and looping in the transcripcional control of Bacteriophage phi29. FEMS Mircrobiol.Rev. 34, 828-841.

359. D. Muñóz-Espín, I. Holguera, D. Ballesteros-Plaza, R. Carballid-López and M. Salas (2010). Viral terminal proteína directs early organization of phage DNA replication at the bacterial nucleoid. Proc.Natl.Acad.Sci.USA. 107, 16548-16553.

360. P. Pérez-Arnáiz, J.M. Lázaro, M. Salas and M. de Vega (2010). phi29 DNA polymerase active site: role of residue Val250 as metal-dNTP complex ligand and in protein-primed initiation. J.Mol.Biol. 395, 223-233.

361. M. de Vega, J.M. Lázaro, M. Mencía, L. Blanco and M. Salas. (2010). Improvement of phi29 DNA polymerase amplification performance by fusion f DNA binding motifs. Proc.Natl.Acad.Sci.USA. 107, 16506-16511.

362. M. Salas. Severo Ochoa. The 2nd edition, Brenner’s Online Encyclopedia of Genetics. Eds. by Drs. Stanley Maloy and Kelly Hughes. In press.

363. B. Baños, L. Villar, M. Salas and M. de Vega. (2010). Intrinsic AP endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise and further repair abasic sites. Proc.Natl.Acad.Sci.USA. 107, 19219-19224.

364. A. Camacho and M. Salas. (2010). Molecular interactions and protein-induced DNA hairpin in the transcriptional control of bacteriophage phi29 DNA. Int.J.Mol.Sci. 11, 5129-5142.
Imprint Privacy policy « This page (revision-8) was last changed on Wednesday, 16. March 2011, 09:30 by Kaiser Dana
  • operated by