John David Woods - Bibliography

1	1963a	Vibrating capillary droplet generator J.Sci.Instruments 40, 247-249 (with B.J.Mason & O.Jayaratne)
2	1964a	Experimental determination of collection efficiencies for small droplets in air. <i>Q.J.roy.Met.Soc.</i> 90 , 373 (with B.J.Mason)
3	1965a	The wake capture of water droplets in airQ.J.Roy Met.Soc. 91, 35(with B.J.Mason)
4	1965b	Effect of electric charges upon collision between equal-sized water drops in air <i>Q.J.Roy.Met.Soc</i> 91 , 353-355
5	1966	Observations of the behaviour of the thermocline and transient stratifications in the sea made visible by dye markers <i>Underwater Association report</i> 1 , 31 (with G.G.Fosberry)
6	1967a	The structure of the thermocline Underwater association report 2, 5 (with G.G.Fosberry)
7	1967b	Micro-turbulence on the surface of sheltered water Weather 22 510
8	1968a	An investigation of some physical processes associated with the vertical flow of heat through the upper ocean <i>Met Mag</i> 97 , 65
9	1968b	On the formation of certain billow clouds <i>Q.J.Roy.Meteorological Society</i> 94 , 209
10	1968c	CAT under water Weather 23, 6
11*	1968d	Wave-induced shear instability in the summer thermocline <i>J.Fluid Mech.</i> 32 , 791
12	1968e	Micro-oceanographical studies in the summer thermocline around Malta <i>Met Research Committee paper</i> 241 , 32pp
12 13	1968e 1969a	
		Malta <i>Met Research Committee paper</i> 241 , 32pp Diurnal behaviour in the summer thermocline off Malta
13	1969a	 Malta Met Research Committee paper 241, 32pp Diurnal behaviour in the summer thermocline off Malta Deutsch hydrographisches Z. 21, 106 The slippery seas of Acapulco
13 14	1969a 1969b	MaltaMet Research Committee paper241, 32ppDiurnal behaviour in the summer thermocline off MaltaDeutsch hydrographisches Z.21, 106The slippery seas of AcapulcoNew scientist 134-6(with D.Houghton)Note of the use of automatic flash in underwater photography
13 14 15	1969a 1969b 1969c	 Malta Met Research Committee paper 241, 32pp Diurnal behaviour in the summer thermocline off Malta Deutsch hydrographisches Z. 21, 106 The slippery seas of Acapulco New scientist 134-6 (with D.Houghton) Note of the use of automatic flash in underwater photography Underwater association report 3, 41 On designing a probe to measure ocean microstructure
13 14 15 16	1969a 1969b 1969c 1969d	 Malta Met Research Committee paper 241, 32pp Diurnal behaviour in the summer thermocline off Malta Deutsch hydrographisches Z. 2l, 106 The slippery seas of Acapulco New scientist 134-6 (with D.Houghton) Note of the use of automatic flash in underwater photography Underwater association report 3, 41 On designing a probe to measure ocean microstructure Underwater J. 1, 6 On Richardson's number as a criterion for laminar-turbulent-laminar

20	1969h	An introduction to turbulence in stratified flow Proc first Liège Ocean Hydrodynamics Colloquium
21	1970a	Measurement of thermocline fronts from the air Underwater J. 2, 90 (with N.R.Watson)
22	1970b	Temperature microstructure in a freshwater thermocline <i>Nature</i> 226 , 832 (with J.Simpson)
23	1970c	Coalescence in a turbulent cloud Met Research Committee 280, 38pp
24	1970d	Billow turbulence and ocean microstructure Proc Joint Oceanographic Assembly, Tokyo ICSU
25	1971a	Thermocline fronts as a factor in sonar range prediction <i>Unpublished note</i> (classified)
26	1971b	Underwater Science Oxford University Press (Edited with J.N.Lythgoe)
27	1971b	Micro-oceanography Ch. 9 in <i>Underwater Science</i> , Oxford University Press
28	1971c	Billow turbulence and ocean microstructure Deep-Sea Research 19, 87-121 (with R.L.Wiley)
29*	1971d	Coalescence in a turbulent cloud <i>Quart.J.Roy.Met.Soc.</i> 98 , 135-149 (with P.Goldsmith)
30	1972	The structure of fronts in the seasonal thermocline Saclantcen, La Spezia (classified)
31	1973a	Coalescence in a weakly turbulent cloud <i>Q.J.Roy.Met.Soc</i> 99 , 758-763 (with H.Tennekes)
32	1973b	Space-time characteristics of turbulence in the seasonal thermocline <i>Mem.Soc Roy Sci Liège</i> 6 Ser. 6 109-130
33	1973c	Remote sensing of the ocean <i>Boundary-Layer Meteorology</i> 5 201-209 (with W.Munk)
34	1974a	The local distribution in Fourier space-time of variability associated with turbulence in the seasonal thermocline <i>Mem.Soc.Roy.Sci.Liège</i> , 7 (6), 171-189
35	1974b	Diffusion due to vertical circulation at fronts in the seasonal thermocline <i>La Houille Blanche</i> 7 , 589-598
36	1976a	Geophysical turbulence and buoyant flows In <i>Turbulence</i> (ed by P.Bradshaw) pp 171-192 Springer-Verlag, Berlin (with P.Bradshaw)
37	1976b	Underwater Research Academic Press (Edited with E.Drew & J.N.Lythgoe)
38	1977a	Turbulence as a factor in sound scattering Oceanic sound scattering prediction Plenum 129-145

39	1977b	Parameterization of unresolved motions In <i>Modelling and prediction of the upper layers of the ocean</i> (Ed: E.B.Kraus) Pergamon, Oxford
40	1977c	Information theory related to experiments in the upper ocean In <i>Modelling and prediction of the upper layers of the ocean</i> E.Kraus (ed) Pergamon, Oxford
41	1977d	Exploring the ocean's fourth dimension Inaugural lecture, University of Southampton
42	1977e	Vertical circulation at fronts in the upper ocean Deep-sea research, 25 (suppl.), 253-275 (with M.Briscoe & R.L.Wiley)
43	1978a	Physical oceanography In <i>Advances in Oceanography</i> Plenum Press 289-295
44*	1978b	Analysis of mesoscale thermoclinicity with an example from the tropical thermocline during GATE <i>Deep-Sea Res.</i> 26 , 85-96 (with P.J.Minnett)
45	1978	Modelling ocean transport in studies of climate response to pollution In <i>Man's impact on climate</i> , Elsevier 99-107
46*	1980a	Redistribution of scalars during upper ocean frontogenesis <i>Q.J.Roy.Met.Soc.</i> 106 , 293-311 (with M.K.MacVean)
47	1980b	Diurnal and seasonal variation of convection in the wind-mixed layer of the ocean <i>Q.J.Roy.Met. Soc</i> 106 , 379-394
48	1980c	Do waves limit turbulent diffusion in the ocean? <i>Nature</i> 288 , 219-224
49	1980d	Generation of thermohaline finestructure at fronts <i>Ocean modelling</i> 32 , 1-4
50	1981a	The GATE Lagrangian Batfish Experiment - Data report in 13 parts Berichte aus dem Institut fuer Meereskunde an der Universitaet-Kiel, 89 , Vols 1-12
51	1981b	The memory of the ocean In <i>Climate variation and variability</i> , (Ed: A.Berger) Reidel 63-83
52	1982a	Climatology of the upper boundary layer of the ocean In Large scale oceanographic measurements in the WCRP WCRP publications Series, 1 , 147-179
53*	1982b	Diurnal variation and primary production in the ocean – preliminary results of a Lagrangian ensemble model. <i>J.Plankton Res.</i> 4 , 735-756 (with R.Onken)
54	1982c	CTD measurements made from FS Poseidon during JASIN 1978 IfM Kiel Berichte 97, 180 pp (with P.J.Minnett)
55	1983	Satellite monitoring of the ocean for global climate <i>Phil.Trans.Roy.Soc.,London</i> A 309 , 337-359

56	1984a	The warm water sphere of the North East Atlantic <i>IfM Kiel Berichte</i> 128 (second edition 1987)
57	1984b	Isopycnic atlas of seasonal variability in the North Atlantic <i>IfM Kiel Berichte</i> 132 , 173pp (with J.Bauer)
58*	1984c	Solar heating of the oceans - diurnal, seasonal and meridional variationQ.J.Roy.Met.Soc 110, 633-656(with W.Barkmann & A.Horch)
59	1984d	The upper ocean and air-sea interaction in global climate In <i>The Global Climate</i> (Ed. J.T.Houghton) 141-187, Cambridge University Press
60	1984e	Mixed layer and Ekman current response to solar heating In M.Toba & H.Mitsuyasu (eds) <i>The ocean surface</i> D.Reidel, Dordrecht (with W.Barkmann & V.Strass)
61	1984f	Die Erwaermungen des Ozeans hervorgerufen durch solare Strahlungsenergie <i>IfM Kiel Berichte</i> 120 (with A.Horch)
62	1985a	Northeast Atlantic summer 1981 (Sea Rover data report No.1)IfMKiel Berichte 143, 155 pp(with J.Bauer, J.Fisher &H.Leach)H.Leach
63*	1985b	The physics of thermocline ventilation In <i>Coupled Ocean-Atmosphere Models</i> 543-590 (J.C.J.Nihoul, Ed) Elsevier
64*	1985c	The World Ocean Circulation Experiment <i>Nature</i> 314 , 501-511
65	1985d	Residence time of water masses in regions of the ocean <i>Nature</i> 314 , 578-9
66	1985e	The GATE Lagrangian batfish experimentDeep-Sea Res 32, 575-597(with P.J.Minnett)
67*	1986a	A Lagrangian mixed layer model of Atlantic 18 degree water formation <i>Nature</i> 319 , 574-576 (with W.Barkmann)
68	1986b	The response of the upper ocean to solar heating: I The mixed layerQ.J.Roy Met Soc 112, 1-27(with W.Barkmann)
69*	1986c	Thermohaline intrusions created isopycnically at oceanic fronts are inclined to isopycnals <i>Nature</i> 322 , 446-449 (with R.Onken & J.Fischer)
70	1986d	The response of the upper ocean to solar heating: II The wind driven current <i>Q.J.Roy Met Soc</i> 112 , 27-42 (with V.Strass)
71	1987a	Northeast Atlantic summer 1983 (Sea Rover data report No 2) <i>IfM</i> <i>Kiel Berichte</i> 175 (with H.Leach, N.Didden, V.Fiekas & A.Horch)
72	1987b	On statistics of upper ocean variables measured by depth-cycling towed instruments <i>Deep-Sea Research</i> 34 , 1579-1592 (with C.L.Tang)

73	1987c	Isopycnic potential vorticity atlas of the North Atlantic Ocean <i>IfM</i> <i>Kiel berichte</i> 165 , 108 pp (with D.Stammer)
74	1988a	Horizontal and seasonal variation of density and chlorophyll profiles between the Azores and Greenland In <i>Towards a theory on biological- physical interactions in the world ocean</i> (Ed B.Rothschild) Kluwer, 113-136 (with V.Strass)
75	1988b	Lagrangian simulation of primary production in the physical environment - the deep chlorophyll maximum and nutricline In <i>Towards a theory on biological-physical interactions in the world</i> <i>ocean</i> (Ed. B.Rothschild), 51-70 (with U.Wolf)
76	1988c	Mesoscale upwelling and primary production In <i>Towards a theory on biological-physical inter-actions in the world</i> <i>ocean</i> (Ed. B.Rothschild), 7-38
77*	1988d	A two-dimensional model of mesoscale frontogenesis in the ocean <i>Q.J.Roy.Met.Soc.</i> 114 , 347-371 (with R.Bleck & R.Onken)
78*	1989a	A synoptic map of isopycnic potential vorticity in the seasonal thermocline <i>J.Physical Oceanography</i> 19 , 520-531 (with J.Fischer & H.Leach)
79	1989b	Space-time characteristics of unstable mesoscale fronts <i>Q.J.Roy.Meteor.Soc</i> 115 , 347-371
80	1990a	Thermohaline finestructure and its relation to frontogenesis dynamics <i>J.Physical Oceanography</i> 20 , 1371-1394 (with R.Onken & J.Fischer)
81	1990b	Time-dependent greenhouse-gas-induced climate change In <i>Climate</i> <i>Change: the IPCC Scientific assessment</i> (Ed.J.Houghton <i>et al</i>), Ch.6, 173-194, CUP.(Lead author with K.Bryan & F.Bretherton)
82	1990c	The plankton multiplier - greenhouse feedback in global warming <i>Royal Comm. for Pollution of the Environment</i> (unpublished report), 25pp
83	1992	Science of the Seas The World in 1993 London, The Economist
84*	1991a	New production in summer revealed by the meridional slope of the deep chlorophyll maximum <i>Deep-Sea Res.</i> 38 , 35-56 (with V.Strass)
85	1991b	The summertime variation of heat and fresh water contents between the Azores and Greenland <i>Q.J.roy.Meteor.Soc.</i> 117 , 1081-1104 (with J.Bauer & H.Leach)
86	1991c	Oceanography on a global scale: the new challenge <i>Phys.Ed</i> 26 , 159-163, 168.
87	1991d	Global Ocean Observing and Climate Forecasting Science in Parliament 48 (3), 4-10
88	1992a	On the seasonal development of mesoscale variability: the influence of the seasonal pycnocline formation <i>Deep-Sea Research</i> 39 , 1627-1639 [with V.Strass & H.leach]

89	1992b	Monitoring the ocean In (Ed. B.Cartledge) <i>Monitoring the</i> <i>environment</i> Oxford University Press 123-156
90	1992d	An experimental workbench for plankton ecology simulation <i>Proc.</i> <i>Conf on second generation CASE tools, Systematica, Bournmouth,</i> 15pp
91	1993a	The case for GOOS (The Global Ocean Observing System) InterGovernmental Oceanographic Commission IOC /INF-915, Paris
92*	1993b	The plankton multiplier: positive feedback in the greenhouse <i>J.Plankton Res.</i> 15 , 1053 – 1074 (with W.Barkmann)
93*	1993c	Diatom demography in winter, simulated by the Lagrangian Ensemble method <i>Fisheries Oceanography</i> $2, 202 - 222$ (with W.Barkmann)
94	1993d	Fluctuations; a task package for the physicists In G.T.Evans & M.J.R.Fasham (eds.) <i>Towards a model of</i> <i>Biogeochemical Processes</i> Springer-VerlagBerlin pp.47-70 (with V.Garcon, H.Baumert & W.Schrimpf)
95	1994a	Net primary production, respiration and stratification in the ocean In: O.M.Johanessen, R.D.Muench & J.E.Overland (eds) <i>The Polar</i> <i>Oceans and their role in shaping global climate</i> American Geophysical Union series. 85 , 247-254 (with T.Platt, S.Sathyendrnath & W.Barkmann)
96	1994b	Simulating plankton ecosystems by the Lagrangian Ensemble method. <u>Philosophical Transactions of the Royal Society of London series B</u> 343: 27- 31. (with W.Barkmann)
97	1994c	Mesoscale instability and upwelling. Observations at the North Atlantic Intergyre Front <i>J,Physical Oceanography</i> 24 , 1750-1758 (with V.Fiekas, H.Leach, & K.J.Mirbach)
98	1994d	The Global Ocean Observing System. <i>J.Marine Policy</i> 18 , (6), 445-452
99	1995a	Modelling oligotrophic zooplankton production: seasonal oligotrophy off the Azores <i>ICES J.Marine Science</i> 52 , 723-734 (withW.Barkmann)
100	1995b	Ocean forecasting and the Global Ocean Observing System In: <i>The Oceans and the Poles</i> (Ed. G.Hempel) Gustav Fischer Verlag, Stuttgart pp.65-74
101*	1996a C	On using a Lagrangian model to calibrate primary production determined from <i>in vitro</i> incubation measurements <i>J.Plankton Res.</i> 18 , 767-788 (with W.Barkmann)
102	1996b	<i>The EuroGOOS Strategy</i> EuroGOOS Publication 1 , Southampton Oceanography Centre, 132pp (with H.Dahlin, L.Droppert, M.Glass, S.Vallerga, N.C.Flemming)

103 1996c Compendium of Sea-Rover sections in the North Atlantic 1981-87 D.Hydrographisches Z. (Sonderheft) (with H.Leach, N.Didden, J.Diemer, D.Stammer & V.Strass) **104** 1997a *The EuroGOOS Plan* EuroGOOS Publication **3**, Southampton Oceanography Centre, 32pp (with H.Dahlin, L.Droppert, M.Glass, S.Vallerga, N.C.Flemming) 105 1997b Contributions to Operational Oceanography Ed:Stel et al. Amsterdam, Elsevier "The EuroGOOS Conference" pages xi-xii (a) (b) "The EuroGOOS Strategy" 19-35 "GOOS concepts" (c) 697-701 "Round Table Discussion" 715-731 (d) "Closure" 736 (e) **Observations for Ocean Forecasting** 106 1998a J.Soc.Underwater Technology 23. 3-5 107 1998b Assessment of underwater irradiance models using BOFS data. Proc International Ocean Optics Conference, Hawaii. [with C.-C. Liu] Parallel simulation of plankton ecology. Proc. Modelling & Simulation 108 1998c International Conference, Philadephia, IASTED. [with S.Al-Battran & A. J. Field] **109*** 1999a Optical model for use in oceanic ecosystem models Applied Optics 38, 4475-84 [with C.-C.Liu & C.D.Mobley] 110 1999b Understanding the ecology of plankton European review 7, 371-384 111 2000a Virtual Ecology In B.J.Mason (Ed.) Highlights in Environmental Research 1-18, London, IC Press 112 2000b The Challenger Legacy: the next twenty years. In: M.Deacon, A. Rice and C. Summerhayes (Eds.) Understanding the Ocean: A Century of Ocean Exploration. London, Routledge: 272-281. **113*** 2001 Laminar flow in the Ekman layer In: R.Pearce (Ed.) Meteorology at the Millennium, Academic Press, pp. 220-232 Springer-Verlag 472pp **114** 2002a *Ocean forecasting* [Edited with N.Pinardi] 115* 2002b Primitive equation modelling of plankton ecosystems. In: Pinardi & Woods (Eds.) Ocean forecasting Springer-Verlag, 377-472. Container World: Global Agent-Based Modelling of the Container **116** 2002c Transport Business Proc. 4th Workshop on Agent-Based Simulation. April 28-30 2003, Montpellier. SCS Europe BVBA [with J Carter, T Field, J Polak, D Song, J Zhang]. **117*** 2004a Prediction of ocean colour: Monte Carlo simulation in a virtual ecosystem based on the Lagrangian ensemble method Int.J.Remote Sensing 25, 921-936 [with C.-C. Liu]

118	2004b	Agent based modelling of business decision making in the
		international container transport market Transportation Research
		<i>Record</i> (in press)
		[with J.Polak & J. Carter]

- **119** 2004c On cost-efficiency of the global container shipping network *Maritime Policy & Management* **32** (1), 15-30. [with D.Song, J.Zhang, J.N.Carter, A.Field, J.Polak, P.Sinha-Ray]
- **120** 2004d Deriving four parameters from patchy observations of ocean colour for testing a plankton ecosystem model *Deep Sea Res. II.*, **51** (10-11): 1053-1062 [with C.-C. Liu]
- 121* 2005a Stability and predictability of a Virtual Plankton Ecosystem created by an individual-based model. *Progress in Oceanography* 67, 43-83 [with A.Perilli & W.Barkmann]
- **122*** 2005b The Lagrangian Ensemble metamodel for simulating plankton ecosystems *Progress in Oceanography* 67, 84-159
- **123** 2005c Phytoplankton co-existence: results of an individual-based simulation model *Ecological modelling* 198, 1-20 [with Enrique Nogueira]