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Abstract

Gr. Moisil worked in numerous areas, including mathematical
logic. My work in the late 50’s and early 60’s dealt with many-valued
logic, and I corresponded with Moisil about problems in this area. I
also met him personally at two conferences in August 1962. Besides
telling something about these events, this note contains a brief de-
scription about Moisil’s contributions to many-valued logic, as well as
those parts of my work in this area that were influenced by Moisil.

1 Introduction

I became interested in many-valued logic during my studies at the University
of California, Berkeley, 1956-57. In a many-valued system of logic the prin-
ciple “every proposition is either true or false” is not valid. Instead of two
truth-values T (truth) and F (falsity), there are three or more truth-values.
Further details, such as the interpretation of the additional truth-values, are
fixed in each particular system of many-valued logic. Although there were
many forerunners of many-valued logic (see, for instance, [11]), the actual
discovery of the field is usually credited to the work of ÃLukasiewicz and Post
about 1920.

Of course, everything boils down to the principle of every proposition
being either true or false, also called the law of the excluded middle. Aristotle
was certainly familiar with this law and, therefore, many-valued logics are
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often referred to as non-Aristotelian. However, he did not accept the law
without reservations because it is not applicable to propositions referring
to future contingent events. Chrysippus, a founder of the Stoic school, is
usually considered to be the actual inventor of this law. This leads to the
term non-Chrysippian logics, important in our discussions below.

Grigore Constantin Moisil published more than 40 papers about many-
valued logics and related areas. He used the term non-Chrysippian, some-
times also non-classical logics. The oldest of his papers in this area date to
early 40’s (see [5]), while he published also much later the collections [7, 8].
Especially the collection [8] is very comprehensive.

I became first aware of Moisil and his work in many-valued logic through
reviews published in Mathematical Reviews. The libraries, especially in
Berkeley but also in Turku, had at least some of his Romanian papers. After
writing to him, I got an answer which lead to a couple of more letters.

Already before the correspondence, I was impressed by the broad scope of
Moisil’s publications. He had worked in differential equations, for instance,
first order partial differential equations of Vecua. He had papers in number
theory, Galois theory, representation theory of abelian groups, as well as
in singular Riemann spaces, especially geodetics in such spaces, theory of
elasticity and electronic circuit theory. Later on I learned that his doctoral
work with Volterra was some kind of a precursor of functional analysis.

My own main work in many-valued logic dealt with functional complete-
ness and Sheffer functions, [10, 12, 13, 14]. (See also [3] for interconnections
to other areas.) With Moisil I discussed matters considered in [11]: history
and generalizations of truth-functions to the many-valued case.

Moisil drew my attention to the work of N.A. Vasiliev published around
1910 but fairly unknown. The work comes close to a modern conception of a
many-valued logic. Vasiliev has in his logic three forms of judgment: simple
affirmation S is P, simple negation S is non-P, and the combination of the
two (indifferent judgment) S is simultaneously P and non-P. The law of the
excluded fourth is valid. Vasiliev constructs a consistent system on the basis
of these suppositions. It is emphasized that the theory is directed against
conceiving the law of the excluded middle in too general a fashion.

Moisil’s approach was very broad, often algebraic, [6]. He was also in-
terested in interconnections between many-valued and intuitionistic logic, as
well as in Gödel’s “Königsberg papers”, for instance, [2].

Some of the aspects discussed with Moisil concerning generalizations of
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truth-functions will be presented below in Section 4. The next section, Sec-
tion 2, deals with two conferences that took place in August 1962. These
were the only occasions I met Moisil personally. Both in our correspondence
and personal meetings Moisil was very friendly and encouraging. I did not
have any long discussion with him, he was very busy meeting with other peo-
ple. This was very understandable because almost all famous logicians were
present. Certainly there was never such a concentration of great logicians in
Finland as in August 1962.

Section 3 is based mainly on [4] and deals some of the work of Moisil on
many-valued logics.

2 Conferences in August 1962

The International Congress of Mathematicians, the big ICM, took place in
Stockholm in August 1962. As customary, there were plenary lectures, in-
vited lectures in various sections, and brief presentations in sections. Logic
and foundations of mathematics were dealt with in the congress section 1.
All of the following remarks deal with this section.

Alonzo Church gave a plenary lecture, and Dana Scott an invited one.
Besides Moisil and myself, brief presentations were given, for instance, by
Boone, Davis, van Dalen, Ginsburg, Kalmar, Malts̆ev, Nerode, Sacks, Schoen-
field, Skolem, Smullyan, Tarski and Turquette.

There was no refereeing for the brief presentations, and the time allowed
for everybody was only some fifteen minutes. Still quite a group of famous
people gave presentations! This, I think, indicates that there were very few
conferences those days. Another indication of this state of affairs is that all
the famous people came to the satellite conference in Helsinki, even if they
had no formal duties there.

The inevitable conclusion is that there were too few conferences at the
time when Moisil was active, whereas nowadays there are perhaps too many.

The talks by me and Moisil were in different sessions of section 1. I
attended all sessions, so I was present in Moisil’s talk. But I do not remember
whether he was present in my talk; the only questions posed to me came from
R.L. Goodstein. There is no record of Moisil’s talk in the booklet of brief
presentations but the title was “La logique à trois valeurs et ses applications”.

The chairmen of the sessions were famous people. My chairman was
Abraham Frænkel, Moisil’s S.C. Kleene. The latter was very formal in his
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wordings. He just announced the person and the title of the talk. After the
talk he would only say: “Mr. Moisil’s paper is open for discussion.” As far as
I remember, there was no discussion. I was certainly too shy to initiate any.
It was a nice interplay between languages: Kleene made the announcements
in English, and Moisil gave his talk in French. There was no interpretation.
But some of the Russian talks were translated into English. I still remember
one correction Tarski made to a translation. When the translator said “a
bounded number of quantifiers”, Tarski corrected “a bounded number of
changes of quantifiers”.

The second conference where I met Moisil was the Colloquium on Modal
and Many-Valued Logics held in Helsinki on 23–26 August, 1962. It took
place under the auspices of the Division of Logic, Methodology and Phi-
losophy of Science of the International Union of History and Philosophy of
Science (DLMPS/IUHPS, there were jokes about the length of this abbrevi-
ation!). The timing made it one of the satellite conferences of the ICM. The
originally planned topic of the Colloquium was “non-classical logics” but,
later on, the more specific topic was agreed upon. The main organizer of the
Colloquium was G.H. von Wright.

The whole logic community in the ICM , more or less, came from Stock-
holm to Helsinki, and there were also many additional logicians in Helsinki
because of the DLMPS/IUHPS activities. From the subsequent lists of names
one can see what an impressive crowd was present. All lectures in the Collo-
quium were invited ones, there were no submitted papers.

The lecturers in the following list are given in the alphabetic order:
A.R. Anderson (Yale University), C.C. Chang (UCLA), P.T. Geach (Uni-

versity of Birmingham), S. Halldén (University of Uppsala), K.J. Hintikka
(University of Helsinki), H. Hiz̀ (University of Pennsylvania), S. Kanger (Uni-
versity of Stockholm), S.A. Kripke (Harvard University), E.J. Lemmon (Uni-
versity of Oxford), Ruth Barcan Marcus (Roosevelt University, Chicago),
Gr.C. Moisil (University of Bucharest), R. Montague (UCLA), A. Mostowski
(University of Warsaw), J. Porte (CNRS, Paris), A.N. Prior (University of
Manchester), H. Rasiowa (University of Warsaw), N. Rescher (University
of Pittsburgh), A. Salomaa (University of Turku), T.J. Smiley (University
of Cambridge), E. Stenius (Åbo Akademi), A.R. Turquette (University of
Illinois), and L. Åqvist (University of Uppsala).

Many sessions of the Colloquium were also attended by the majority of
the delegates to the General Assembly of the DLMPS/IUHPS, for instance,
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Alonzo Church and S.C. Kleene. Moreover, at least the following delegates
to the General Assembly served as chairmen of various sessions of the Col-
loquium: K. Adjukiewicz (University of Warsaw), H.B. Curry Pennsylvania
State University), J.B. Rosser (Cornell University), and A. Tarski (University
of California, Berkeley).

The weather was not very good. Some people, notably R. Montague, had
their overcoats on at all times, also inside. There was a conference dinner,
at least Church and Curry were in the same table with me. There was no
conference excursion.

Moisil had his talk in the same session as me. His talk was before mine.
Mostowski was the chairman. I was nervous because of my talk, and did not
really listen to Moisil’s talk but studied the matters only later on. Those days
the only possibility was to use chalk and blackboard, so you had to remember
your stuff. Mostowski was very considerate and apparently noticed that I
was nervous. He did not ask his very interesting and difficult question about
decidability during the actual session but only afterwards.

Moisil’s and my own talks were published later on, [4, 14]. My presenta-
tion in Section 3 is very much based on [4]. The matters in [14] will not be
dealt with in this article because they are not among the topics I discussed
with Moisil.

3 Moisil: les logiques non-Chrysippiennes

Moisil’s contribution [4] for the Helsinki satellite conference is an overview
of some of his work on many-valued logic. It reflects very well his tendency
to combine the axiomatic approach to the truth-table approach, as well as
his interest in lattice theory. In this section we mention some ideas from this
paper. We use the same notation here as in the last section. In an n-valued
logic the truth values are 1, . . . , n, with 1 being the highest. Truth-functions
f(x, y) are given by tables: the value f(x, y) is in the intersection of the x-th
row and y-th column.

Moisil considers the truth-tables of the three-valued logic of ÃLukasiewicz.
The negation N interchanges 1 and 3 but keeps the value 2 fixed: N(2) = 2.
The conjunction K, disjunction A and implication C have the truth-tables
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1 2 3
2 2 3
3 3 3

,
1 1 1
1 2 2
1 2 3

,
1 2 3
1 1 2
1 1 1

.

The axiomatic version of the logic uses two rules of inference: substitution
and modus ponens. Moisil considers the following axioms:

CpCqp, CCpqCCqrCpr, CCNpNqCqp, CCCpNppp.

Somewhat differently from Moisil’s presentation, we have used here the cus-
tomary parenthesis-free notation.

Moisil points out that, using the truth-tables above, one can get rid of
the disjunction and conjunction by defining Apq as CCpqq, and Kpq as
NANpNq. He then investigates the distributive lattice structure of the logic
obtained.

Moisil also investigates the modal aspects of the three-valued logic. He
considers four modalities: possibility, necessity, impossibility and non-necessity.
We restrict the attention to the first two. Following Moisil, we denote possi-
bility by µ and necessity by ν.

By definition, for the value sequence 1, 2, 3, the function µ assumes the
value sequence 1, 1, 3, and the function ν the value sequence 1, 3, 3. Thus, the
intermediate value is completely avoided. The definitions are also in accor-
dance with the Aristotelian principle: Ab esse ad posse valet consequentia.

Possibility can also be defined in terms of negation and implication by
letting µp to be CNpp.

Moisil makes the general comment that an axiomatization should yield
an algebraic system with easy operation rules. He does not comment upon to
what extent this goal is achieved in the systems he investigates, except that
the ÃLukasiewicz 3-valued logic is particularly strong in this respect. (See also
[6].)

Moisil investigates the notion of compatibility: when are two propositions
p and q compatible? A false proposition is not compatible with any other,
whereas two “sufficiently true” ones are compatible among themselves. The
considerations lead Moisil to a 4-valued logic, where compatibility is defined
by the truth-table

1 1 1 4
1 1 4 4
1 4 1 4
4 4 4 4

.
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Thus, the intermediate truth-values do not appear in the table. Moisil’s
idea was that two “equally true” propositions are compatible (if they are not
false). This is the case even for the truth-value 3.

When considering the validity of certain specific propositions, Moisil in-
troduces the following two modifications of the ÃLukasiewicz implication:

1 2 3
1 1 3
1 1 1

,
1 3 3
1 2 3
1 1 1

.

Thus, the differences concern the positions (1, 2), (2, 2), (2, 3).

Moisil was also interested (especially in Section VI of [4]) in generating
functions in terms of other functions. This was a topic of my main interest.
I will mention one example, not from Moisil’s paper.

Consider the three-valued logic, n = 3. There are altogether 27 possible
truth-functions of one variable. How to generate them in terms of some
basic functions? At least three functions are needed for this purpose. We
define three functions {a, b, c} by their value sequences 231, 132 and 223,
respectively. This means that, for instance,

a(1) = 2, a(2) = 3, a(3) = 1.

Thus, a is the circular permutation (123), b is the transposition (23), whereas
g assumes only 2 values and maps 1 to 2 but keeps 2 and 3 fixed.

The following array lists all of the 27 functions, giving in each case the
value sequence and a shortest possible composition sequence.
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name values composition name values composition
1 111 ca2ca2 • 2 112 ca2

3 113 cba • 4 121 aca2

5 122 a2cab • 6 123 b2

7 131 acba • 8 132 b
9 133 a2ca • 10 211 a2ca2

11 212 acab • 12 213 ba
13 221 cab • 14 222 ca2c
15 223 c • 16 231 a
17 232 ac • 18 233 a2cb
19 311 abcba • 20 312 a2

21 313 aca • 22 321 ab
23 322 a2c • 24 323 acb
25 331 ca • 26 332 cb
27 333 ca2ca •

Thus, altogether 10 different functions are represented by words of length
≤ 2. Additionally, 6 functions are represented by words of length 3, and 6
further functions by words of length 4. The remaining exceptional functions
1,5,10,19,27 require a longer word for their representation. The length con-
siderations lead to matters discussed in [3]. Observe that [1] is a very early
paper along these lines.

4 Many-valued truth functions

This section describes some of my work concerning generalizations of the
connectives in two-valued propositional calculus into many-valued logic. The
approach is more truth-functional than axiomatic. This is an area where I
was influenced by discussions with Moisil. I will restrict here the attention
to the generalizations of the material implication. More details, as well as
generalizations of other connectives, are contained in [11].

Binary functions f(x, y) over a finite set (here the set of truth-values)
are conveniently defined by tables, where the values of x are read from the
rows and those of y from the columns. We already considered the three-
valued ÃLukasiewicz implication. It is generalized to the n-valued case. Then
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its truth-function is defined by c(x, y) = max(1, 1 − x + y). For n = 6, its
truth-table is

1 2 3 4 5 6
1 1 2 3 4 5
1 1 1 2 3 4
1 1 1 1 2 3
1 1 1 1 1 2
1 1 1 1 1 1

(We have omitted here the indices 1, . . . , 6 from the rows and columns. The
ordering of the truth-values is the same as in Section 3.)

Before we continue, some clarifying remarks are in order. We always use
the numbers 1, . . . , n to denote truth-values, 1 being the “greatest”. The
numbers 1, . . . , d, d < n refer to designated truth-values. (Assertible propo-
sitions should get only designated truth-values. This is a notion standard in
many-valued logic, see [9].) Arithmetical operations are carried out modulo
n.

ÃLukasiewicz did not motivate his choice of the particular implication func-
tion presented above. However, his function satisfies most of the requirements
for a generalized implication listed below. This is the case only when the
number of designated truth-values is one.

The following list, [11], of conditions for a generalized implication c(i, j)
is based on the literature and discussions with some people, notably Moisil.
Intuitive explanations are added to some conditions. The range of i, j and
h is the set of truth-values.

1. For all i ≤ d and j > d, c(i, j) > d. (Modus ponens is valid.)

2. For some i and j, c(i, j) ≤ d and c(j, i) > d. (Implication is not com-
mutative.)

3. For some j > d, c(i, j) ≤ d. (The minor premise is not superfluous in
modus ponens.)

4. For some i, j ≤ d, c(i, j) ≤ d.

5. For all i, c(i, i) ≤ d.

6. For all i, j, if i ≥ j, then c(i, j) ≤ d.
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7. For all i, j, if i < j then c(i, j) > d.

8. For all i, j, h, if i > j then c(h, i) ≥ c(h, j).

9. For all i, j, h, if i > j then c(i, h) ≤ c(j, h).

10. Whenever c(h, i) ≤ d and c(i, j) ≤ d, then also c(h, j) ≤ d. (Transitivity
of implication.)

11. c(i, j) > d if and only if both i ≤ d and j > d.

At least these conditions, and perhaps some others, should be considered
when one wants to study the question which among the functions in n-valued
propositional calculus might plausibly be called implication functions. There
are mutual dependencies among the conditions. For instance, condition 11
alone implies conditions 1–6 and 10. Condition 5 implies both 3 and 4, and
conditions 6 and 7 together imply 1–5 and 10. Moreover, 11 is not consistent
with 7 in some cases. By grouping together some of the conditions, one
obtains quite satisfactory results. Consider the following sets of conditions.

• C1 consists of conditions 1–4.

• C2 consists of 1,2,5.

• C3 consists of 1,2,5,10.

• C4 consists of 6,7.

• C5 consists of 6–9.

• C6 consists of 11 alone.

• C7 consists of 8,9,11.

Each of the sets Ci is strong enough to determine implication uniquely
in the ordinary two-valued case where n = 2, d = 1. The sets C1 − C5 form
a sequence where each set contains stronger conditions than the preceding
one, that is, a function satisfying Ci also satisfies Ci−1. The same holds
true with respect to the sequence C1 − C3, C6, C7. Thus, the sets C1 − C7

give a pretty good view of conditions of various strengths, as well as the
contradictoriness of conditions 7 and 11. Moreover, each of the sets C1 −C7

10



is consistent: for all d, n, there is a function satisfying every condition in
the set. Each of the sets C1 − C6 consists of strongly independent and the
set C7 of weakly independent conditions. The difference depends on whether
we can find examples (separating any two conditions in the set as regards
satisfaction) for all d, n or for some d, n.

The ÃLukasiewicz implication considered above satisfies conditions 1–10
and 12, provided d = 1. If d > 1 then it satisfies none of the conditions 1, 7
or 10. The condition 11 is never satisfied by the ÃLukasiewicz implication.

Moisil emphasized the interconnection between the axiomatic approach
and the truth-table approach. A problem along these lines is to study the
validity of two-valued tautologies under functions satisfying a certain set Ci

of conditions. (We restrict the attention here to conditions for implication.)
Such a study was carried out in [11] for tautologies considered as most impor-
tant in divisions 2-5 of Principia Mathematica. If the implication satisfies the
set C7, then any tautology of the two-valued logic is valid. This follows be-
cause ordinary truth-table technique can be applied, with “true” and “false”
replaced by “designated” and “undesignated”.

The situation is quite different if one considers the other “strong” set C5.
Then in some cases things become very tricky. We mention one example.

Consider the “commutative principle”

CP : (p → (q → r)) → (q → (p → r))

and the set C5. Assume that n ≥ 3, 1 ≤ d < n. A rather surprising
result is that CP is completely independent of C5. For all n, d, there is
an implication function satisfying C5 and making CP assertible, as well as
another implication function satisfying C5 and making it non-assertible.

In most cases the required functions are fairly easy to construct. The
difficult case is where d > 1 and we are looking for a function c(x, y) making
CP assertible. Such a function can be defined as follows. We define first the
values of the function when one of the arguments is either 1 or n. Then

c(n, i) = c(i, 1) = 1, for all i,

and
c(1, i) = n if i > 1; c(i, n) = n if i < n.

The definition is completed by the following two equations (now both x, y
differ from 1, n):

c(x, y) = min(n, d + max(|x− d|, |y − d|)) if x < y,
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and
c(x, y) = max(2, d−max(|x− d|, |y − d|)) if x ≥ y.

As an example, we give the truth-tables of c(x, y) when n = 7 and d =
2, 3, 4, 5, 6, successively:

1 7 7 7 7 7 7
1 2 3 4 5 6 7
1 2 2 4 5 6 7
1 2 2 2 5 6 7
1 2 2 2 2 6 7
1 2 2 2 2 2 7
1 1 1 1 1 1 1

,

1 7 7 7 7 7 7
1 2 4 4 5 6 7
1 2 3 4 5 6 7
1 2 2 2 5 6 7
1 2 2 2 2 6 7
1 2 2 2 2 2 7
1 1 1 1 1 1 1

,

1 7 7 7 7 7 7
1 2 6 6 6 6 7
1 2 3 5 5 6 7
1 2 3 4 5 6 7
1 2 3 3 3 6 7
1 2 2 2 2 2 7
1 1 1 1 1 1 1

,

1 7 7 7 7 7 7
1 2 7 7 7 7 7
1 2 3 7 7 7 7
1 2 3 4 6 6 7
1 2 3 4 5 6 7
1 2 3 4 4 4 7
1 1 1 1 1 1 1

,

1 7 7 7 7 7 7
1 2 7 7 7 7 7
1 2 3 7 7 7 7
1 2 3 4 7 7 7
1 2 3 4 5 7 7
1 2 3 4 5 6 7
1 1 1 1 1 1 1

.

It is easy to see that c(x, y) satisfies the conditions in C5. (For instance,
each row should be non-decreasing and each column non-increasing.) It is
much more difficult to show that c(x, y) makes CP assertible. Then ordinary
truth-table technique works if one of the variables assumes the truth-value
1 or n. Otherwise, one applies induction on i and shows that CP assumes a
designated value always when the variables belong to the intersection of the
two closed intervals (d− i, d + i) and (2, n− 1).

In general, the truth-table technique has to be modified when one has
to demonstrate that some well-formed formula is assertible in the n-valued
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propositional calculus, without specifying the number n. Then one cannot
simply list all combinations of values for the variables. One has to consider
some systems of truth-tables or use inductive procedures.
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