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Preface

Preface to the Second English edition (2007). c©

This is Version 1.3: June 15, 2010

In 2007 I recovered the Copyright. This is a new version that follows closely
the first edition by Springer-Verlag. I made very few changes. Among them
the Gauss’ method, already inserted in the second Italian edition, has been
included here. Believing that my knowledge of the English language has im-
proved since the late ’970’s I have changed some words and constructions.

This version has been reproduced electronically (from the first edition) and
quite a few errors might have crept in; they are compensated by the corrections
that I have been able to introduce. This version will be updated regularly and
typos or errors found will be amended: it is therefore wise to wait sometime
before printing the file; the versions will be updated and numbered. The ones
labeled 2.* or higher will have been entirely proofread at least once.

As owner of the Copyright I leave this book on my website for free down-
loading and distribution. Optionally the colleagues who download the book
could send me a one line message (saying “downloaded”, at least): I will be
grateful. Please signal any errors, or sources of unhappiness, you spot.

On the web site I also put the codes that generate the non trivial figures
and which provide rough attempts at reproducing results whose originals are
in the quoted literature. Discovering the phenomena was a remarkable achieve-
ment: but reproducing them, having learnt what to do from the original works,
is not really difficult if a reasonably good computer is available.

Typeset with the public Springer-Latex macros.

Giovanni Gallavotti Roma 18, August 2007

Copyright owned by the Author



6 Preface

Preface to the first English edition

The word ”elements” in the title of this book does not convey the impli-
cation that its contents are ”elementary” in the sense of ”easy”: it mainly
means that no prerequisites are required, with the exception of some basic
background in classical physics and calculus.

It also signifies ”devoted to the foundations”. In fact, the arguments chosen
are all very classical, and the formal or technical developments of this century
are absent, as well as a detailed treatment of such problems as the theory
of the planetary motions and other very concrete mechanical problems. This
second meaning, however, is the result of the necessity of finishing this work
in a reasonable amount of time rather than an a priori choice.

Therefore a detailed review of the ”few” results of ergodic theory, of the
”many” results of statistical mechanics, of the classical theory of fields (elas-
ticity and waves), and of quantum mechanics are also totally absent; they
could constitute the subject of two additional volumes on mechanics.

This book grew out of several courses on “Meccanica Razionale”, i.e.,
essentially, Theoretical Mechanics, which I gave at the University of Rome
during the years 1975-1978.

The subjects cover a wide range. Chapter 2, for example, could be used in
an undergraduate course by students who have had basic training in classical
physics; Chapters 3 and 4 could be used in an advanced course; while Chapter
5 might interest students who wish to delve more deeply into the subject, and
fit could be used in a graduate course.

My desire to write a self-contained book that gradually proceeds from
the very simple problems on the qualitative theory of ordinary differential
equations to the more modem theory of stability led me to include arguments
of mathematical analysis, in order to avoid having to refer too much to existing
textbooks (e.g., see the basic theory of the ordinary differential equations in
§2.2-§2.6 or the Fourier analysis in §2.13, etc.).

I have inserted many exercises, problems, and complements which are
meant to illustrate and expand the theory proposed in the text, both to avoid
excessive size of the book and to help the student to learn how to solve theoret-
ical problems by himself. In Chapters 2-4, I have marked with an asterisk the
problems which should be developed with the help of a teacher; the difficulty
of the exercises and problems grows steadily throughout the book, together
with the conciseness of the discussion.

The exercises include some very concrete ones which sometimes require
the help of a programmable computer and the knowledge of some physical
data. An algorithm for the solution of differential equations and some data
tables are in Appendix O and Appendix P, respectively.

The exercises, problems, and complements must be considered as an im-
portant part of the book, necessary to a complete understanding of the theory.
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In some sense they are even more important than the propositions selected
for the proofs, since they illustrate several aspects and several examples and
counterexamples that emerge from the proofs or that are naturally associated
with them.

I have separated the proofs from the text: this has been done to facilitate
reading comprehension by those who wish to skip all the proofs without los-
ing continuity. This is particularly true for the more mathematically oriented
sections. Too often students tend to confuse the understanding of a mathemat-
ical proposition with the logical contortions needed to put it into an objective,
written form. So, before studying the proof of a statement, the student should
meditate on its meaning with the help (if necessary) of the observations that
follow it, possibly trying to read also the text of the exercises and problems
at the end of each section (particularly in studying Chapters 3-5).

The student should bear in mind that he will have understood a theorem
only when it appears to be self-evident and as needing no proof at all (which
means that its proof should be present in its entirety in his mind, obvious and
natural in all its aspects and, if necessary, describable in all details). This level
of understanding can be reached only slowly through an analysis of several
exercises, problem, examples, and careful thought.

I have illustrated various problems of classical mechanics, guided by the
desire to propose always the analysis of simple rather than general cases. I
have carefully avoided formulating ”optimal” results and, in particular, have
always stressed (by using them almost exclusively) my sympathy for the only
”functions” that bear this name with dignity, i.e., the C∞-functions and the
elementary theory of integration (”Riemann integration”).

I have tried to deal only with concrete problems which could be ”construc-
tively” solved (i.e., involving estimates of quantities which could actually be
computed, at least in principle) and I hope to have avoided indulging in purely
speculative or mathematical considerations. I realize that I have not been en-
tirely successful and I apologize to those readers who agree with this point
of view without, at the same time, accepting mathematically non rigorous
treatments.

Finally, let me comment on the conspicuous absence of the basic elements
of the classical theory of fluids. The only excuse that I can offer, other than
that of non pertinence (which might seem a pretext to many), is that, perhaps,
the contents of this book (and of Chapter 5 in particular) may serve as an
introduction to this fascinating topic of mathematical physics.

The final sections, §5.9-§5.12, may be of some interest also to non stu-
dents since they provide a self-contained exposition of Arnold’s version of the
Kolmogorov-Arnold-Moser theorem.

This book is an almost faithful translation of the Italian edition, with the
addition of many problems and §5.12 and with §5.5, §5.7, and §5.12 rewritten.

I wish to thank my colleagues who helped me in the revision of the
manuscript and I am indebted to Professor V. Franceschini for providing (from
his files) the very nice graphs of §5.8.
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I am grateful to Professor Luigi Radicati for the interest he showed in
inviting me to write this book and providing the financial help from the Italian
printer P. Boringhieri.

The English translation of this work was partially supported by the
”Stiftung Volkswagenwerk” through the IHES.

Giovanni Gallavotti
Roma, 27 December 1981
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1

Phenomena Reality and models

1.1 Statements

The results of physical experiments are determined by observations based
on the measurement of various entities, i.e. the association of well defined
sequences of numbers with well defined sequences of events.

The physical entities are “operationally defined”. This means that they
are defined in terms of the operations used to construct the numbers that
provide their “measure”.

For instance, the sequence of operations necessary to measure the “dis-
tance” between two given points P and Q in space consists in choosing a
particular ruler and placing it on the straight line joining points P and Q,
starting from P . Taking the endpoint of the ruler as the new starting point,
the procedure is repeated n times until the endpoint of the ruler is superim-
posed on Q. If the distance PQ is not an exact multiple of the length of the
ruler, one may, after n such operations, reach a point Qn 6= Q preceding Q on
the line PQ; and after n+ 1 operations one may reach point Qn+1 following
Q on the line PQ. Then one takes a new ruler “ten times shorter” and puts it
on QnQ trying to match, as before, the second endpoint with Q. When this
turns out to be impossible, one can, as in the first case, define a new point
Qn1 on QnQ and, then, take a third ruler ten times shorter than the second
and repeat the operation.

Thus, inductively, a number n + 0.n1n2 . . . (in decimal representation) is
built which, by definition, is the measure of the distance between P and Q.

The above sequence of operations appears well defined but, in fact, a care-
ful analysis shows that it does not have the prerequisites to be considered a
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mathematically precise definition. What, for instance is “space”, what is a
“point”, what is a “ruler”? Is it possible to “divide” a ruler into parts, and
infinitely often?

The physicist is not too concerned (or, rather, not at all concerned) with
such aspects of the question: he considers a physical entity well defined when-
ever the empirical procedure necessary for its measurement is clear.

A measurement procedure is considered to be clear when every observer
is led to the same result when measuring the same physical entity. It should
be stressed, however, that this is an empirical criterion perpetually subject to
critique; thus physical entities which today are considered to be well defined
may no longer be so in the future.

Hence, the physicist, from his observations of nature, obtains a set of num-
bers corresponding to the performance of some operations which are consid-
ered to be “objectively defined”. Trying to organize such numbers coherently,
the physicist often formulates “models”.

In the attempt to organize coherently such numbers, the physicist formu-
lates “models”: i.e. he associates well-defined mathematical structures with
his measurements, and he tries to establish a (small) number of mathematical
relationship among them. From such relationships new ones logically follow,
which reinterpreted through the model, used inversely, may serve to predict
new relations between various empirical measurements.

The belief in the existence of good models motivated Galileo to write:
“Philosophy is written in the great book which is always open before our eyes
(I mean the universe) but it cannot be understood unless one first learns the
language and distinguishes the characters in which it is written. It is a mathe-
matical language and the characters are triangles, circles and other geometri-
cal figures, without which it cannot be understood by the human mind; without
them one would vainly wonder through a dark labyrinth”.1

A mathematical model is considered satisfactory whenever it does not lead
to contradictions with the experiments. If a contradiction occurs, the physicist
dismisses the model as “wrong”; nevertheless, the mathematical construction
built with it remains valid and is witness to an imperfect representation of
nature.

Strictly speaking there is no model which is not wrong: only models that
have not yet been shown to be wrong exist. However, all “serious” models (such
as the dynamics of point masses, the theory of relativity, quantum mechanics,
electromagnetism, thermodynamics, statistical mechanics, etc.) have led, and
still lead, to the formulation of extremely interesting mathematical problems.
Furthermore, it often happens that the analysis of the mathematical properties
of a “wrong” model helps in the formulation of the new “more elaborate”
model that the physicist tries to set up as a substitute.

A link between phenomena reality and mathematics can therefore be es-
tablished as just described, through what has been called “a model”. However,

1 G.Galilei, Il Saggiatore, p. 232, [20].
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it would be impossible to give a precise mathematical definition of the notion
of a model because it is a rather empirical notion which can only be well
understood through the analysis of several concrete cases.

1.2 An example of a Model

Consider the historically particularly important and significant case of the
“mechanics of point masses”. Its construction from empirical observations
will be briefly and concretely analyzed, presenting it as a model of one or
several point masses subject to forces.

The first statement (or “axiom”, to use a mathematical term) says that
the point masses are in a three-dimensional Euclidean space R3 in which any
point can be represented by its three coordinates with respect to an orthogonal
reference system (O; i, j,k). The notation means that O is the origin and i, j,k
are the three orthogonal unit vectors pointing along the x, y, z coordinate axes,
respectively.

Such an idealization has a clear mathematical meaning, but it appears to
be unprovable in mathematical terms: it just renders the following empirical
observation.

In practice, a point in space is determined by measuring (often only in
principle and with the ruler method described in §1.1) its distance from three
orthogonal walls. It is to be remarked that all such operations are ordinarily
considered well defined.

A second statement (or “axiom”) concerns “time” which, for the physicist,
is the physical entity measured by a “clock” (classically described as a pen-
dulum, although any more modern device will do as well). One assumes that
time is an absolute “entity”: in other words, one states that, at least in prin-
ciple it is possible to associate with every point in space a clock mechanically
identical at every point, and, furthermore, to coordinate (“synchronize”) the
clocks.

This means that if P, P ′ are two points and t, t′ are two chosen time
instants t < t′ it is then possible to send a signal from P towards P ′ leaving P
at time t and reaching P ′ at time t′ (as indicated by the local clocks in P and
in P ′, respectively); while, vice versa, if t > t′, the above operation should be
impossible.

A little thought makes it clear that the operational definition of a “system
of synchronized clocks” is based on the empirical fact that it is possible to
send signals with arbitrary speed. It is also clear that the notion of time is a
phenomenological notion, far from being mathematically well posed.

Accepting the point of view so far discussed, one is led to say that the math-
ematical scheme, or model, representing the space-time continuum,where our
observations take place, consists of a four-dimensional space: each of its points
(x, y, z, t) represents a point seen in a Cartesian coordinate frame (O; i, j,k)
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(“laboratory”) and observed at the instant t (as measured by the formerly
introduced universal clocks).

Empirically, a point mass is any object which, at least as far as our obser-
vations are concerned, can be assimilated with a point in space (for instance, a
planet or a star in the universe, a stone falling in a ravine, a ship sailing in the
ocean, etc.). Such a point preserves its identity over the course of time; hence,
it is possible to define its trajectory through a function of time t→ x(t), where
x(t) = (x(t), y(t), z(t)) is the vector whose components are the coordinates of
the point at time t, in the chosen reference frame (O; i, j,k).

Mathematically, a point mass moving in the reference frame (O; i, j,k)
observed as t varies over an interval I is represented as a curve C in R3 by
the vector equations P (t) − O = x(t), t ∈ I; and the parameter t has the
interpretation of time (i.e., it is called “time”).

Given a point mass moving as t varies in I, one can associate with it its
“velocity” at time t ∈ I. Operationally, velocity is defined by fixing t0 ∈ I,
finding the positions P (t0) and P (t0 + ε), and setting

v(t0) =
P (t0 + ε)− P (t0)

ε
, (1.2.1)

where the parameter ε > 0 is to be chosen “suitably small” (according to well-
defined criteria which, however, depend on the concrete cases). The mathe-
matical model defines the point mass velocity at time t0 ∈ I as the derivative
of the function t→ x(t) at t = t0.

To complete the mathematical model of a point mass, it is important to
define the “force” acting on it.

Operationally, the force acting at a given instant on the point mass con-
sists of three scalar quantities which together define a vector f(t). The force
acting on the point mass moving in R3 and observed in the frame (O; i, j,k)
is measured through a “dynamometer” which is an instrument whose use is
convenient to describe in a strongly idealized form. It is, basically, a suitably
built spring which will be imagined as a very thin, light segment with a hook.

Consider a point mass moving in R3, with a velocity v = (vx, vy, vz)
relative to the reference frame (O; i, j,k) at time t0. To measure the force
acting upon it, hook it to the dynamometer to which the same velocity v has
been imparted and which will be kept fixed during the measurement. Then
try to adjust the spring length and direction so that the acceleration at time
t0 + ε is 0, where ε > 0 is chosen “suitably small”. (The empirical notion of
acceleration and the corresponding mathematical model of it, as the second
derivative with respect to t of the point position, is discussed along the same
lines as the notion of velocity.)

The force is then the vector f whose direction is that of the dynamometer
at time t0 + ε, whose orientation is that parallel to hook but pointing away
from it and whose modulus is the size of the spring elongation.

Summarizing: a point mass subject to forces and observed in a frame
(O; i, j,k) in R3 as time varies within an interval I is, in its mathematical
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model, described by a curve in seven-dimensional space: one of its points
(t, x, y, z, fx, fy, fz) represents a point mass which at time t has coordinates
(x, y, z) in (O; i, j,k) and, in the same frame, is subject to a force (fx, fy, fz).
The curve representing this situation can be parameterized by the parameter
t itself, as t varies in some time interval I; it shall also be assumed that in
this parametric representation the functions t → (x(t), y(t), z(t)) are twice
continuously differentiable so that a mathematical definition of velocity and
acceleration is meaningful.

1.3 The Laws of Mechanics

Once it is established what is meant by a point mass subject to forces and
studied in a given frame of reference in R3 as the time varies in an interval
I (briefly, “a point mass subject to forces”), it is possible to complete the
mathematical model of the point mechanics. For this purpose, the “laws of
dynamics” and their mathematical interpretation have to be discussed.

Experimentally, given a point mass, a simple relation is observed between
its acceleration a at time t (in a given frame of reference) and the force f acting
on it at that time (observed in the same frame). Such a relation is called the
Second Law of Mechanics and establishes the existence of a constant m > 0,
characteristic of the point mass and independent of the frame of reference
used for the observations, such that:

ma = f . (1.3.1)

This law introduces, via the properties of the differential equations, many
relations among the quantities x,v, t, and such relations can sometimes be
experimentally checked. For instance, if it is known a priori which force will
act on the point mass whenever it is at the point (x, y, z) at time t with velocity
(vx, vy, vz), then, denoting such force as f(vx, vy, vz , x, y, z, t) = f(v,x, t), the
differential equation

m ẍ = f(ẋ,x, t) (1.3.2)

allows the determination of the motion following an initial state, in which the
velocity v0 and the position x0 are given at time t0, at least for a small time
interval around t0 if f is a smooth function, see Chapter 2.

The First Principle of Mechanics postulates the existence of at least one
reference frame (O; i, j,k), called “inertial frame”, in R3 where a point mass
“far” from the other objects in the universe appears to be subjected to a null
force in (O; i, j,k). Such a frame is experimentally identified with a frame with
origin in a fixed star and with axes oriented towards three more fixed stars.
It is to such a frame that motion is often referred.

Of course the notions of “far” and of “fixed star” are empirical notions
rather than mathematical ones.
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Mathematically, the first principle is used to grant to a particular frame
of reference in the space-time continuum a privileged role and to define the
“absolute force” or the “true force” as that acting on the point mass in this
frame. This frame has to be chosen once and for all and is called the “fixed
reference frame” (as opposed to “moving reference frame”).

It is possible and sometimes convenient to introduce frames whose ori-
gin and axes vary with time with respect to the “fixed” frame (O; i, j,k) :
(0(t); i(r), j(t),k(t)).

Since f = ma, it follows that if the moving frame is in uniform rectilinear
translational motion with respect to the fixed frame, then the force acting
upon the point is the same whether observed in the fixed frame or in the
moving frame: hence, in this moving frame, the “inertia principle”, i.e., the
first principle, is valid: a point mass which is “very far” from the other objects
in the universe is subject to a null force, since the acceleration is the same
in the two frames. All frames in rectilinear uniform motion with respect to a
fixed frame are called “inertial frames”.

The mathematical model of a point mass with mass m subject to forces
and obeying the laws of dynamics is then, simply, a point mass subject to
forces, in the sense of the preceding section, and such that the relation

m a = f (1.3.3)

holds and, furthermore, f is a function of the point velocity, position, and
time; i.e., the following relation holds:

f = f(v,x, t). (1.3.4)

Clearly, from such a mathematical viewpoint (where f is imagined as given a
priori), the first principle is deprived of its deep physical meaning.

An important extension of the point mass model is a model for the me-
chanics of a “system of N point masses”. Mathematically, such a system con-
sists of N point masses with mass m1, . . . ,mN , in the above sense, satisfying
the Third Principle of Mechanics. This means that it should be possible to
represent the force fi acting on the i-th point as

fi =
∑

j 6=i
fj→i, (1.3.5)

where fj→i are such that
(a) fj→i = −fi→j , j, i = 1, 2, ..., N, i 6= j;
(b) fj→i is parallel to Pj − Pi, i.e., to the line joining the positions Pi and Pj
of the i-th and j-th points;
(c) fj→i depends solely upon the positions and velocities of the it-h and j-th
points and on time:

fj→i ≡ fj→i(vj ,vi, Pj , Pi, t). (1.3.6)
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This assumption corresponds to a precise empirical fact: it is possible to define
operationally what should be understood by fj→i “the force exerted by the
point Pj on the point Pi”.

For instance, the force fj→i could be measured as follows: one measures,
in the given inertial frame of reference, the force fi, acting on i and then one
measures, after removing the point j from the system, the new force acting

on the i-th point, obtaining the result f
(j)
i ; then one sets

fj→i = fi − f
(j)
i . (1.3.7)

The Third Principle of Mechanics arises from the experimental observation
that fj→i = −fi→j , that fj→i is parallel to Pj −Pi, that the total force acting
on a singe point mass is the sum of the forces exerted on it by the other
system points (in the sense of vectors addition) if observed in an inertial
frame of reference, and, finally, that fj→i depends only upon the positions
and velocities of the points involved and, possibly, on time.

Physics often places still more requirements and restrictions upon the laws
of force which can be used to give a more detailed specification of a mechani-
cal system model. However, they do not have a general character comparable
to the three principles but, rather, are statements explaining which laws of
force are to be considered a good model under given circumstances. For in-
stance, two point masses “without structure” (this is, again, an empirical
notion which we refrain from elucidating) attract each other with a force of
intensity mm′/kr2, where r is the distance between the points, m and m′ are
their masses, and k is a universal constant. If the structure of the two points
can be summarized by saying that they have an “electric charge e” (a new em-
pirical notion), the mutual force will be the vector sum of the above-described
gravitational force and of a repulsive force with intensity k′e2/r2, where k′ is
another universal constant.

The principles of mechanics already place enough restrictions upon the na-
ture of the forces admissible in mechanical problems: therefore it is convenient
and interesting to examine their implications before passing to the analysis
of special models obtained by concretely specifying the “force laws”, i.e., the
functions giving the forces in terms of the points positions and velocities and
of time.

It should be stressed, and this is a general comment on the mathemati-
cal models for physical phenomena, that the mathematical model is always
“poorer” than the physical reality that it tries to imitate. For instance in the
above mathematical model for mechanics, the first principle loses its meaning.
Another example, implicit in the above discussion, is the following.

To give an operational meaning to the notions of position, speed, force, etc.,
it must be possible to repeat “identical” experiments several times (e.g., see
the position measurement in §1.1 by repeating the measurement operations.
However, time inexorably flows away, and this is impossible. Physically, this
difficulty is avoided by the “principle of homogeneity of space-time” which
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says that experiments starting at any time in any space location will yield
the same results if the points involved are in the same relative positions and
situations.

In the mathematical model for mechanics just described, the necessity of
understanding the above problems does not arise, nor do many other similar
problems which the reader will easily think of.

Usually it is possible to complicate the models in order to imbue them with
any given number of physical facts: but an analysis of this type of questions
would lead us beyond the scope of this book.

In any case, a decision is always needed on where to put a stop to the
process of model improvement, which would otherwise hopelessly continue ad
infinitum. We must recall that we have the more down-to-earth, and more
interesting, problem of obtaining some concrete prediction algorithms for our
observations of nature.

1.4 General Thoughts on Models

In this book more abstract schematization processes concerning empirically
observed phenomena will be met (e.g., when we discuss the notion of an
“observable” or of a “vibrating string”). In such cases, however, the details
of the construction of the mathematical model will not be repeated: a very
common practice based on the idea that the very words used to designate
well-defined mathematical objects will implicitly define the model.

It is such a practice, or better, its imperfect understanding, which some-
times causes misunderstandings between physicists and mathematicians and
provokes allegations of non-rigorous use of mathematics.

It is important to realize that when the physicist speaks in mathematical
terms he is by no means attributing to them the same rigid meaning that a
mathematician would assume for them. Rather he is using this language to
help himself in the formulation of a model which, once well defined, he shall
rigorously treat (since he believes, or at least hopes, that the book of nature
is written in mathematical characters).

Possibly logically non rigorous steps or apparently wild mathematical ap-
proximations in a physicist’s argument should always be interpreted as further
complications or, better, refinements of the model that the physicist is trying
to build.

In the hectic development of research, a physicist often modifies a model
while using it, or he modifies the mathematical meaning of the objects and
entities which belong to the model without changing their names (otherwise,
a dictionary would not suffice). He does this because his main interest is in
the construction of models and only secondarily in its mathematical theory,
often considered trivial for his needs.

To avoid excessively pedantic discussions, we shall adhere, in the following,
to the well-established practice of avoiding the physical analysis necessary to
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the construction of a model and shall leave it to the reader to imagine such an
analysis via the suggestive names used for the various mathematical entities
(with the exception of a few important cases). In any case, this book is devoted
to the mathematical, rather than physical aspects, of mechanical problems.

Bibliographical Comment. It is very useful to study at least the defi-
nition and the laws of motion in the Philosophiae Naturalis Principia Mathe-
matica by I. Newton, [37], to understand exactly the Newtonian formulation
of mechanics and its modernity. To avoid “reading too much”, i.e., to avoid
interpreting these immortal pages in too modern a way, it is a good idea to
read the paper Essays on the history of mechanics by C. Truesdell, pp. 85-137
([48]). The reading of the first two chapters of the work by E. Mach, [31],)
will be a very useful and stimulating complement to the first three chapters
of this book.





2

Qualitative Aspects of One-Dimensional
Motion

2.1 Energy Conservation

Consider a point mass, with mass m, on the line R and subject to a force law
depending uniquely on its position. Therefore, a force law ξ → f(ξ) is, given
ξ ∈ R, which we shall suppose to be of class C∞, associating with every point
ξ on the line R the component f(ξ) of the force acting on the point when it
happens to occupy the position ξ.

A “motion” of the point mass, observed as t varies in an interval I, is a
function t→ x(t), t ∈ I, of class C∞(I) such that

mẍ(t) = f(x(t)), ∀ t ∈ I (2.1.1)

The “energy conservation theorem” follows by multiplying Eq. (2.1.1), side
by side, by ẋ(t):

mẋ ẍ = ẋ f(x), (2.1.2)

omitting, as will often be done, the explicit mention of the t-dependence.
Then, defining the functions,

η → T (η)
def
=

1

2
mη2, ξ → V (ξ)

def
= −

∫ ξ

f(ξ′) dξ′, (2.1.3)

it is

d

dt
T (ẋ) = mẋ ẍ,

d

dt
V (x) = −f(x) ẋ (2.1.4)
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so that Eq. (2.1.2) becomes

d

dt
(T (ẋ) + V (x)) = 0 (2.1.5)

This implies a constant E can be associated with every motion t →
x(t), t ∈ I, depending on the motion under consideration and such that

T (ẋ(t)) + V (x(t)) = E, ∀ t ∈ I. (2.1.6)

The expressions T (ẋ) and V (x) are respectively called the “kinetic energy”
and the “potential energy” and Eq. (2.1.6) has to be read as follows: “in every
motion developing under the action of a force with potential energy V , the
sum of the kinetic energy and potential energy is a constant”. This constant
is given the name “total energy” of the considered motion. The “qualitative
theory” of Eq. (2.1.1) is concerned with the analysis of the properties of the
motion verifying Eq. (2.1.1), which are valid independently of the choice of
f , at least for vast classes of functions f . The energy conservation is a first
example of a qualitative property.

Observations. The energy conservation goes back at least to Huygens; after-
wards, it was used by J. and D. Bernoulli together with the law of conservation
of linear momentum (Descartes) (see [48], p. 105 and following).

Eq. (2.1.6) implies an expression for the velocity:

ẋ(t) = ±
( 2

m
(E − V (x(t)))

) 1
2 , t ∈ I (2.1.7)

This relation, which will be used and discussed in §2.6, allows the reduc-
tion of the determination of the evolution law t → x(t), t ∈ I, “time law”,
to an area-computation problem for a planar figure, “quadrature”. In fact,
supposing ẋ > 0, it yields:

t =

∫ x(t)

x(0)

dξ√
2
m(E − V (ξ))

dξ (2.1.8)

when I ⊃ [0, t].
Hence, the area under the graph of the curve with equation ξ → T (ξ) =

( 2
m (E − V (ξ)))−

1
2 above the interval [x(0), x(t)] is the time that the point

needs to reach x(t), starting from x(0) at time 0 with positive speed and
energy E, at least for small t (i.e., as long as ẋ > 0).

Newton “reduced to quadratures” the simplest problems of motion without
explicitly using energy conservation ([37], for instance Book I, Propositions
XXXIX, XLI, LIII, LVI, etc.).
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2.2 General Properties of Motion. Uniqueness

In the preceding §2.1, a motion developing, under the action of a force f , in a
time interval I was supposed to be given. We can ask which further properties
of a particular motion allow us to select it from among all motions which, in
the same time interval I, take place under the action of the same force.

One can even preliminarily ask whether, given an interval I, there exist
any motions, i.e., C∞ solutions of Eq. (2.2.1) thought of as an equation for
t→ x(t), t ∈ I.

In view of the importance of such questions, before proceeding in the
analysis of Eq. (2.1.1), some attention will be devoted to the general problem
of the existence, uniqueness, and regularity of the solutions of differential
equations in Rd.

Eq. (2.1.1), thought of as a “second-order” differential equation in R1, is
equivalent to a “first-order” equation in R2: it suffices to write it as

ẋ(t) = y(t), ẏ(t) = f(x(t)), (2.2.1)

where Eq. (2.2.1) is an equation for the unknown C∞ function t→ (x(t), y(t))
defined on I and with values in R2.

More generally, consider an arbitrary “s-th order” differential equation in
Rd, s = 0, 1, . . ., like

dsx(t)

dts
= f(

ds−1x(t)

dts−1
, . . . ,

dx(t)

dt
,x(t), t), (2.2.2)

with t ∈ I, where f is an Rd-valued C∞ function defined on Rd×Rd×R and
t → x(t) is an unknown Rd-valued C∞ function on I. The latter equation
may be thought of as a first-order equation in Rd by setting

dx(t)

dt
= y1,

dy(t)1
dt

(t) = y2, . . .

dy(t)s−2

dt
= ys−1,

dy(t)s−1

dt
= f(ys−1(t), . . .y1(t),x(t), t) (2.2.3)

and then considering Eq. (2.2.3) as an equation for the C∞ function t →
(x(t),y1(t), . . . .ys−1(t)) defined on the interval I and with values in Rd ×
. . .×Rd = Rd s.

Eq. (2.2.2) is the most general differential equation that will be met in this
book. By virtue of the preceding remark, it will then suffice, for our purposes,
to study first-order differential equations in Rd having the form

ẋ(t) = F(x(t), t), t ∈ I, (2.2.4)

It will be convenient to introduce a precise convention about what a dif-
ferential equation is or about what one of its solutions is.
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1 Definition. Given an Rd-valued function F ∈ C∞(Rd×R), the expression
(2.2.4), denoted, for short, ẋ = F(x, t), will be called a “differential equation
on Rd associated with F”.
A “C(k) solution”, k > 1, of Eq. (2.2.4) on the interval I, closed or open or
semi open, will be a C(k) function which turns Eq. (2.2.4) into an identity
when substituted into it.1 A “solution” of Eq. (2.2.4) for t ∈ I is a C∞

solution. The solutions of Eq. (2.2.4) will often be called “motions”.

Let us first examine the uniqueness problem for the solutions of Eq. (2.2.4).

1 Proposition. Let (ξ, t)→ F(ξ, t) be an Rd-valued C∞ function on RdxR.
Given a > 0, b > 0, t0 ∈ R, let t → x(t) be a C(1) solution of Eq. (2.2.4) on
J = [t0 − a, t0 + b]:
(i) the function t→ x(t) is in C∞(J);
(ii) if t → y(t) is another solution of Eq. (2.2.4) on J and if y(t0) = x(t0),
then x(t) = y(t), ∀ t ∈ J .

Observations.

(1) This proposition applied to Eq. (2.2.2) via Eq. (2.2.3) tells us that two
C(s) solutions of an s-th order differential equation in Rd for t ∈ J coincide
if and only if at time t0 ∈ J (“initial time”) they have the same first (s − 1)
derivatives (“equal initial data”). When Eq. (2.2.2) is the equation governing
a physical motion in Rd, it is s = 2; this means that the motion is uniquely
determined, if existing at all, by its initial position x(t0) and by its initial
velocity ẋ(t0), i.e., as one says, by its initial “act of motion” ẋ(t0).
(2) It would appear that it might be interesting or important to know if,
by specifying properties of the solutions of Eq. (2.2.2) other than the just-
mentioned initial data at some initial time, the solution verifying such prop-
erties is uniquely determined 2, if existing at all. The uniqueness criterion
that we chose above for illustration purposes, Proposition 1, has been se-
lected only because it quickly leads to a simple answer and because it is one
of the uniqueness criteria which are most useful in many applications.
(3) From the proof it will appear that if F had been only supposed to be of
class C(k), k ≥ 1, then uniqueness would have followed in an equal way. The
regularity of t→ x(t), t ∈ J , could also be deduced in this case, but one would
only obtain that t→ x(t) is a C(k+1) function.

Proof. By integrating both sides of Eq. (2.2.4) and by setting x0 = x(t0) =
y(t0), we get:

x(t) = x0 +

∫ t

t0

F(x(τ), τ) dτ, t ∈ J, (2.2.5)

1 We shall see that every C(k) solution, k > 1, is automatically a C∞ solution, if F ∈ C∞.
2 For instance, we can ask the following question. Consider Eq. (2.2.2) with s = 2 and

lei t1, t2 be two times and x1,x2 ∈ Rd be two positions. Is the motion [solution of Eq.
(2.2.2)] leading from x1 to x2 as time elapses from t1 to t2 (assuming that one such
motion, at least, exists) unique? We shall see that the answer to this question will, in
general, be no.
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and, similarly, since also t→ y(t) is a solution of Eq. (2.2.4):

y(t) = x0 +

∫ t

t0

F(y(τ), τ) dτ, t ∈ J. (2.2.6)

Hence,

x(t)− y(t) =

∫ t

t0

(F(x(τ), τ) − F(y(τ), τ)) dτ. (2.2.7)

To prove (ii) the procedure that will be followed is very interesting since
it obviously goes beyond the particular result that we wish to obtain.

Informally, the argument is the following: the difference |x(t) − y(t)| is,
by Eq. (2.2.7), about |t − t0| |F(x(t), t) − F(y(t), t)|, if t ∼ t0; however, the
increment |F(x(t), t) − F(y(t), t)| is proportional, by Lagrange’s theorem, to
the increment of the argument of F, i.e., to C |x(t) − y(t)|, where C is an
estimate of the first derivatives of F. Hence, Eq. (2.2.7) implies that |x(t) −
y(t)| and C|t − t0| |x(t) − y(t)| are about equal if t ∼ t0, and this, in turn,
implies that |x(t) − y(t)| = 0 for t dose to t0 because for t ∼ t0, one has
C|t− t0| < 1.

To estimate the integrand of Eq. (2.2.7) let S ⊂ Rd be a sphere with so
large a radius that it contains all the values x(τ),y(τ), ∀ τ ∈ J , and let

MS = max
ξinS,τ∈J

d∑

i,j=1

∣∣∂F
(i)

∂ξj

∣∣ (2.2.8)

where F (i)(ξ, t) is the i-th component of the vector F(ξ, t) = (F (1)(ξ, t), . . . ,
F (d)(ξ, t)) ∈ Rd. Then, from Taylor’s formula:

|F(x(τ), τ) − F(y(τ), τ)| ≤MS |x(τ) − y(τ)|. (2.2.9)

Inserting this inequality into Eq. (2.2.7), yields

|x(t) − y(t)| ≤MS

∫ t

t0

|x(τ) − y(τ)| dτ (2.2.10)

Let M(t) = maxt0≤τ≤t |x(τ) − y(τ)|, t ∈ [t0.t0 + b]; then Eq. (2.2.10) implies
|x(t)− y(t)| ≤MSM(t) |t− t0|, ∀ t ∈ [t0, t0 + b].

Since M(t) is monotonic nondecreasing and since this inequality holds for
all t ∈ [t0, t0 + b], one easily finds that

M(t) ≤MS |t− t0|M(t), ∀ t ∈ [t0, t0 + b] (2.2.11)

which implies M(t) = 0 for |t− t0| < M−1
S , t ∈ [t0, t0 + b].

Hence, x(t0+M−1
S ) = y(t0+M−1

S ), if t0+M−1
S < t0+b, and the argument

can be repeated, replacing t0 by t0 + M−1
S , to show that M(t) = 0 for t ∈

[t0, t0 +2M−1
S ] if t0 +2M−1

S < t0 + b, etc., so that M(t) = 0 for t ∈ [t0, t0 + b].
For t ∈ [t0 − a, t0], one proceeds likewise.3

3 Alternatively, Eq. (2.2.10) could be iterated n times to yield, if µ = max |x(τ) − y(τ)|,
τ ∈ [t0 − a, t0 + b]:
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To check (i), i.e., that t → x(t) is a C∞ function on J , remark that
if t → x(t) is a C(1)(J) function, then Eq. (2.2.4) implies that t → ẋ(t)
is in C(1)(J), being a composition of a C∞ function with a C(1) function;
furthermore, by differentiating Eq. (2.2.4):

ẍ(t) =

d∑

i=1

∂F

∂ξi
(x(t), t) · ẋ(i) +

∂F

∂t
(x(t), t) (2.2.12)

which, in turn, implies that t→ ẍ(t) is a C(1) function by the same argument
as above. Then, by differentiating Eq. (2.2.12), one finds that x

. . .
(t) is a C(1)

function on J , etc. mbe

2.2.1 Problems for §2.2

1. If t → x(t), t ≥ 0, solves ẋ = f(x) and x(0) = x(T ) for some T > 0, then x(t) =
x(t + T ),∀ t > 0; assume f ∈ C∞(Rd). Would this also be true if f ∈ C1(Rd)? (Hint: Use
uniqueness).

2. The property of the preceding problem is not valid when the differential equation right-
hand side is explicitly time dependent (i.e., ẋ = f(x, t), and ∂f/∂t 6= 0, the “non autonomous
case”). Find an example.

3. Let f(x, t) be such that f(ξ, t) = f(ξ, t+ T ) for some T > 0 and for all ξ ∈ Rd. Suppose
that t → x(t) is a solution of ẋ = f(x, t) such that for some integer m > 0, one has
x(0) = x(mT ), then x(t) ≡ x(t+mT ), ∀ t ≥ 0. (Hint: Use uniqueness.)

4. Consider the equation ẋ(t) = ℓ(t) x(t) with ℓ ∈ C∞(R). Show that if t → x(t) and
t → y(t) are two solutions for t ∈ J and if x(t) 6≡ 0, there exists a constant A such that
y(t) ≡ Ax(t), ∀ t ∈ J .

5. If the function ℓ of the Problem 4 is periodic with period T > 0 and t → x(t) 6≡ 0,
is one of its solutions then also t → x(t + T ) is a solution. Hence, ∃λ 6= 0 such that
x(t + T ) = λx(t). Show that λ > 0. (Hint: Otherwise either λ = 0 and x(T ) = 0, hence
x(t) ≡ 0 (by uniqueness on [0,+∞)), or λ < 0 and there would be t ∈ (0.T ] where x(t) = 0:
hence, again, x(t) = 0 by uniqueness.)

6. The most general solution t→ y(t), t ∈ R+, of the equation in Problem 4, with ℓ periodic
with period T has the form y(t) = Aλt/T z(t), where z ∈ C∞(R+) is T -periodic.
7.∗ Consider the equation ẋ = L(t)x in Rd, where t→ L(t), t ∈ R, is a d×d-matrix valued
C∞ function. Consider d solutions x(1), . . . ,x(d) for t ∈ I = [a, b] and call them “inde-
pendent” if ∃ t0 ∈ I such that the d vectors x(1)(t0), . . . ,x(d)(t0) are linearly independent.
Show that, if t ∈ I, then also x(1)(t), . . . ,x(d)(t) are linearly independent whenever they
are such for t = t0 and, furthermore, any solution t → y(t), t ∈ I, can be represented as
y(t) =

Pd
j=1 Ajx

(j)(t), ∀ t ∈ I. (Hint: If for t = t, the d vectors were not independent,

|x(t)− y(t)| < Mn
S

Z

[t0,t]
dτ1

Z

[t0,τ1]
dτ3 . . .

Z

[t0,τν−1]
dτn |x(τn)− y(τn)|

≤Mn
Sµ

Z

[t0,t]
dτ1

Z

[t0,τ1]
dτ3 . . .

Z

[t0,τν−1]
dτn = Mn

Sµ
|t− t0|n

n!
≤Mn

Sµ
(a + b)n

n!

so that x(t) − y(t) ≡ 0 since n is arbitrary and it can be let to +∞.
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one could find constants A, . . . , Ad, not all equal to zero, such that
Pd
j=1Ajx

(j)(t) = 0;

hence, by linearity and uniqueness,
Pd
j=1Ajx

(j)(t) = 0, ∀ t ∈ I which contradicts the
independence for t = t0.)

8. Show that Problem 7 implies that, given d solutions t → x(1)(t), . . . ,x(d)(t), t ∈ I, to
ẋ = L(t)x, the matrix W (t) (“Wronskian matrix” of x(1), . . . ,x(d)) defined by

Wij(t) = x
(i)
j (t), i, j = 1, 2, . . . , d, t ∈ I

has a determinant w(t) non vanishing for t ∈ I if and only if ∃t0 ∈ I such that w(t0) 6= 0.
(Hint. By linear algebra, this is just another way of phrasing Problem 7: d vectors are
linearly independent if and only if the “determinant of their components” is not zero.)

9. Using the determinant differentiation rule, by rows, show that

d

dt
w(t) ≡ d

dt
detW (t) =

“ dX

i=1

ℓij(t)
”
w(t);

hence, if
Pd
i=1 ℓij(t) = ℓ(t), one has w(t) = w(t0) e

R t
t0
ℓ(τ)dτ

.

10. In the context of Problem 8, suppose that the matrix function t → L(t), t ∈ R, is
periodic with period T > 0, i.e., t → ℓij(t), i, j = 1, . . . , d are T−periodic functions. Let
x(1), . . . ,x(d) be d linearly independent solutions for t > 0. Then there exist d2 constants

A
(i)
j , i, j = 1, . . . , d, such that

x(i)(t + T ) =
dX

j=1

A
(i)
j x(j)(t), t ≥ 0.

Show that detW (T )/detW (0) = w(T )/w(0) = detA 6= 0.

11. Suppose that the matrix A is similar, via a real nonsingular matrix S, to a real diagonal
matrix Λ, Λij = λi δij , i, j = 1, . . . , d: SAS−1 = Λ. In the context of Problem 10, define

y(i)(t) =
dX

j=1

Sijx
(j)(t).

Show that y(1), . . . .y(d) are linearly independent solutions, λ1, . . . , λd 6= 0, and

y(i)(t+ T ) = λi y
(i)(t), t ≥ 0

12. Suppose that A is a matrix similar to a diagonal matrix Λ via a complex nonsingu-
lar matrix S. Show that y(1), . . . ,y(d), defined as in the preceding problem, are complex
solutions of ẋ = L(t)x and that y(i)(t + T ) = λi y

(i)(t), ∀ t ≥ 0. (For applications, recall
that from linear algebra (see Appendix E), a sufficient condition for the similarity between
A and a diagonal matrix Λij = λi δij is that the roots λ1, . . . , λd of the secular equation
det(A− λ) = 0 are pairwise different.)

13. Given the assumptions of Problems 10,11 and supposing λ1, . . . , λd > 0, show that the
most general solution to ẋ = L(t)x has the form

x(t) =
dX

j=1

αjλ
t/T
j z(j)(t)

where the functions z(1), . . . , z(d) are d C∞ functions periodic with period T , and α1, . . . , αd
are arbitrary constants. (Hint: Let z(i)(t) = λ

−t/T
i y(i)(t).)
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14. Suppose that for every nonzero complex number λ, there exists a C∞ function t →
γ(t), t ∈ R, such that γ(t + t′) = γ(t)γ(t′), γ(0) = 1, γ(T ) = λ−1, γ(t) 6= 0 ∀ t ∈ R; then
the conclusions of Problem 13 would hold, replacing λ−t/T by γ(t), without the assumption
λj > 0, j = 11, . . . , d, under the only assumption detA 6= 0. See also the following problem.

15. Let λ ∈ C, λ−1 = ̺ (cos θ + i sin θ, ̺ > 0, θ ∈ [0, 2π]. Define γ(t) = ̺t/T (cos t
T
θ +

i sin t
T
θ). Show that γ(0) = 1, γ(t)γ(t + t′) = γ(t+ t′), γ(T ) = λ−1, γ(t) 6= 0, ∀ t ∈ R (e.g.,

(−1)t/T = cos t
T
π + i sin t

T
π).

Observations to Problems 8-15.

We shall see that there always exist d linearly independent solutions to ẋ = L(t)x.
However, the existence of S is a restrictive condition. When such an S does not exist, it is
possible to show that the most general solution to ẋ = L(t)x, with L periodic with period
T > 0 and C∞, can be written in the form

x(t) =

pX

j=1

δ(j)−1X

k=0

αjkλ
t/T
j tkz(j)(t),

where
Pp
j=1 δ(j) = d, and δ(j), λj are suitably chosen, and t → z(j)(t), t ≥ 0, are C∞

functions periodic with period T and possibly complex valued (when λj are not positive

and λ
t/T
j is interpreted as explained in Problem 15), and αjk are arbitrary constants (see

[38], for instance, Vol. 1, pp. 63-68, ).

16. Consider a differential equation ẍ + a(t)ẋ + b(t)x = 0, t ∈ R, a, b ∈ C∞(R). After
reducing it to a first-order system of two differential equations in R2, interpret the results
of Problems 7-15 in terms of its solutions. Show first that the matrix W (t) associated with
this system is expressed in terms of two of its solutions t→ x(1)(t) and t→ x(2)(t) as

W (t) =

„
x(1)(t) ẋ(1)(t)

x(2)(t) ẋ(2)(t)

«
and ẇ(t) = a(t)w(t).

17.* Extend Problem 16 to the case of the sth-order differential equation in R:

dsx

dts
+

s−1X

j=0

aj(t)
djx

dtj
, t ∈ R.

2.3 General Properties of Motion. Existence

An existence problem for the solutions of Eq. (2.2.4), hence of Eq. (2.2.2),
naturally associated with the uniqueness property given in Proposition 1,
§2.2, is solved by the following proposition:

2 Proposition. Let F be an Rd-valued function in C∞(Rd×R). Let x0 ∈ Rd
and t0 ∈ R. Let S(ξ0, ̺) be the closed ball in Rd with center ξ0 and radius ̺.
Let θ > 0. There exists T̺,θ > 0 and a solution of Eq. (2.2.4), i.e., ẋ = F(x, t),
defined for t ∈ [t0 − T̺,θ, t0 + T̺,θ] and of class C∞ such that:

x(t0) = ξ0, x(t) ∈ S(ξ0, ̺), t ∈ [t0 − T̺,θ, t0 + T̺,θ]. (2.3.1)
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Furthermore, if one defines:

M̺,ξ0,t0,θ
def
= max

ξ∈S(ξ0,̺)

t∈[t0−θ,t0+θ]

|F(ξ, t)| ≡M (2.3.2)

one can choose

T̺,θ =
̺

̺+ θM
θ. (2.3.3)

Observations.

(1) By Proposition 1, §(2.2), it is enough to show the existence of a C(1)

solution verifying Eq. (2.3.1).
(2) The proof that follows is “constructive” in the sense that it provides a
sequence t→ x(n)(t), t ∈ [t0 − T̺,θ, t0 + T̺,θ], of functions approximating (as
n → ∞) the solution and, at the same time, it provides an estimate of the
approximation error defined as max |x(t) − x(n)(t)|, where the maximum is
taken on the interval [t0 − T̺,θ, t0 + T̺,θ].
(3) It is often useful, in applications, not to follow the solution scheme pro-
posed by the following proof of Proposition 2. It might, in fact, be more
convenient to use ad hoc procedures based on the particular features of the
F under analysis in a concrete case. Usually, with such procedures one finds
much better error estimates than the ones following from general methods,
where one cannot take into account some special properties of the equations
(e.g., symmetry properties, Hamiltonian form, etc.).
(4) To understand informally the bound on the magnitude of the interval of
existence consider first that, during the proof, it appears necessary to have an
a priori control of how far x(t) can travel away from the initial position ξ0.
The continuity of F guarantees the boundedness of the maximum of |F(ξ, t)|,
for, say, ξ ∈ S(ξ0, ̺), t ∈ [t0 − θ, t0 + θ]. It follows that during the whole
time interval [t0 − T̺,θ, t0 + T̺,θ], the point x(t) stays inside S(ξ0, ̺) because
ẋ(t) = F(x(t), t) and the right-hand side of this relation does not exceed M ,
Eq. (2.3.2): notice, in fact, that T̺,θ has been chosen, just to achieve this
effect, smaller than both θ and ̺M−1 (i.e., T̺,θ = (θ−1 + ̺−1M)−1 so that
MT̺,θ < ̺).
(5) The interval [t0 − T̺,θ, t0 + T̺,θ] is certainly not optimal, at least because
the choice of the set S(ξ0, ̺) × [t0 − θ, t0 + θ], where the maximum of |F| is
considered, was arbitrary. A better existence interval could be obtained using
this arbitrariness and optimizing the result over the possible sets on which one
takes the maximum. Also, once the existence of a solution verifying Proposi-
tion 2 has been established, one could apply Proposition 2 and Proposition 1
to the equation with initial datum x(t0+T̺,θ) at the initial time t0+T̺,θ, thus
continuing it beyond T̺,θ. However one cannot hope, in general, for an infinite
existence interval containing R+: this can be seen through counterexamples.
The simplest among them is provided by the equation ẋ = x2, x(0) = 1, in R.
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Proof. Rather than studying C(1) solutions of ẋ = F(x, t) verifying the initial
conditions (2.3.1), look for Rd-valued C(0)([t0 − T̺,θ, t0 + T̺,θ]) solutions of
the equation:

x(t) = ξ0 +

∫ t

t0

F(x(τ), τ) dτ. (2.3.4)

Every C(0)([t0 − T̺,θ, t0 + T̺,θ]) function verifying Eq. (2.3.4) is a C(1)

solution to the original equation also verifying Eq. (2.3.1), and vice versa.
For t ∈ [t0 − T̺,θ, t0 + T̺,θ] define the sequence of Rd-valued functions t →
x(n)(t), n = 0, . . ., through the following recursive scheme:

x(0)(t) = ξ0,

x(1)(t) = ξ0 +

∫ t

t0

F(x(0)(τ), τ) dτ,

. . .

x(n)(t) = ξ0 +

∫ t

t0

F(x(n−1)(τ), τ) dτ,

(2.3.5)

and remark that each such function is in C∞(R) and it s natural to try taking
the limit as n→ +∞. The existence, uniformly in t ∈ [t0 − T̺,θ, t0 + T̺,θ], of

lim
n→∞

x(n)(t) = x(t) (2.3.6)

should imply that the limit function will also be continuous. Existence and
uniformity of the limit is obtained by rewriting it as

x(0)(t) +

∞∑

k=1

(x(k)(t)− x(k−1)(t)) (2.3.7)

and deducing that if

µk = max
t∈[t0−T̺,θ ,t0+T̺,θ ]

|x(k)(t)− x(k+1)(t)|, then (2.3.8)

∞∑

k=0

µk < +∞ (2.3.9)

This will mean that the series of Eq. (2.3.7) is uniformly convergent for t ∈
[t0 − T̺,θ, t0 + T̺,θ]: hence, the same will hold for the limit of Eq. (2.3.6).

To estimate µk we can refer to Eq. (2.3.5) to obtain for k = 2, 3, . . .,

x(k)(t) − x(k−1)(t) =

∫ t

t0

(
F(x(k−1)(τ), τ) − F(x(k−2)(τ), τ)

)
dτ (2.3.10)

Through Lagrange’s theorem in the form
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|F(ξ, τ)− F(η, τ)| ≤ L |ξ − η|,
∀ ξ, Bh ∈ S(ξ0, ̺), ∀ τ ∈ [t0 − T̺,θ, t0 + T̺,θ]

(2.3.11)

where

L = max
ξ∈S(ξ0,̺)

t∈[t0−T̺,θ,t0+T̺,θ]

d∑

i,j=1

∣∣∂F
(i)

∂ξj
(ξ, t)

∣∣ (2.3.12)

Eqs. (2.3.10) and (2.3.11) imply:

|x(k)(t)− x(k−1)(t)| ≤ L
∫

[t0,t]

|x(k−1)(τ)− x(k−2)(τ)| dτ (2.3.13)

∀ k = 2, 3, . . . provided we preliminarily check that for all k = 0, 1, . . ., the
functions t− → x(k)(t), t ∈ [t0 − T̺,θ, t0 + T̺,θ], take their values in S(ξ0, ̺).

This last property is proved inductively starting from Eq. (2.3.5): keeping
in mind the choice of T̺,θ (chosen, as essentially stated in observation (4),
just in such a way to make this property true) suppose, inductively, that
|x(h)(t) − ξ0| ≤ ̺, ∀h = 0, . . . , k − 1; it is a property which holds for k = 1.
To check that |x(k)(t)− ξ0| ≤ ̺ remark that Eqs. (2.3.5) and (2.3.3) give

|x(k)(t)− ξ0| ≤
∫

[t0,t]

dτ |F(x(k−1)(τ), τ)| ≤M̺,ξ0,θ |t− t0| < ̺ (2.3.14)

Eq. (2.3.13), follows because Eq. (2.3.14) with k = 1 yields for t ∈ [t0 −
T̺,θ, t0 + T̺,θ],

|x(k)(t)− x(k−1)(t)| ≤ Lk−1

∫

[t0,t]

dτ1

∫

[t0,τ1]

dτ2 . . .

×
∫

[t0,τk−2]

dτk−1|x(1)(τk−2)− ξ0| ≤
Lk−1T k−1

̺,θ

(k − 1)!
̺

(2.3.15)

since T̺,θ ≥ |t − t0|. Eq. (2.3.15) shows the convergence of the series of Eq.
(2.3.9) and, therefore, the limit of Eq. (2.3.6) exists uniformly for t ∈ [t0 −
T̺,θ, t0 + T̺,θ] and defines a function t→ x(t) on this interval with values in
S(ξ0, ̺). It satisfies Eq. (2.3.4) as it is seen by taking the n→∞ limit in Eq.
(2.3.5) and by using the uniformity of the limit of Eq. (2.3.6) to exchange the
integration with the limit. mbe

2.3.1 Problems

1. Give a lower estimate for the magnitude of T̺,θ, the amplitude of the existence interval
as in Proposition 2, for the following second-order equations, assuming x(0) = 0, ẋ(0) = 1
or x(0) = 1, ẋ(0) = 0 as initial data at t0 = 0:



22 2 Qualitative Aspects of One-Dimensional Motion

ẍ = x, ẍ = x+ x3, ẍ = x− ẋ+ x3, ẍ = −ẋ2, ẍ == − sinx.

Also estimate sup̺,θ T̺,θ from below. (Hint: Reduce the equation to first order and then
apply Proposition l.)

2. Solve the equation ẍ = x with initial datum x(0) = 1, ẋ(0) = 0.

3. Solve the equations ẋ = −x2, ẋ = cos x, ẋ = (cos x)2 with initial datum x(0) = 1.

4. Solve the equation ẋ = x+ y, ẏ = −x+ 2y with initial datum x(0) = 0, y(0) = 1.

5. Using the “quadrature method”, solve the equation ẍ = 4(x3−x), x(0) = 0, ẋ =
√

2 (see
§2.1, final comment).

6. As in Problem 5 for ẋ = −(4x3 + 6x2 − 2), x(0) = 0, ẋ(0) =
√

2.

7. Find two linearly independent solutions for the equation in Problem 4.

8.* Compute w(t) for the equation in Problem 4 (see Problem 8, §(2.2).
9.* Let t → L(t) be a d × d-matrix-valued C∞ function on R. Show that the equation
ẋ(t) = L(t)x(t) admits d linearly independent solutions defined for |t| ≤ T with T small

enough. (Hint: Let x(i) be the solution with initial data x
(i)
j (0) = δi,j , i, j = 1, . . . d. Then

evaluate an existence interval for such initial data.)

10.* Compute T1,1 for the equation in Problem 9 when |t0| < σ and ξ0 is arbitrary,
ξ0 = x(t0); for the symbols, see Proposition 1. Show that |ξ0|T1,1 can be taken to be
independent of t0 and ξ0 at a given σ > 0. Deduce from this that every solution to ẋ = L(t)x
can be extended to a solution defined for t ∈ R.

11. Let L be a d× d matrix and consider the equation ẋ = Lx in Rd. Suppose that L has
d pairwise distinct real eigenvalues (see Appendix E for the eigenvalue notion) λ1, . . . , λd.
Let v1), . . . ,v(d) be the respective real linearly independent eigenvectors (see Appendix E).
Show that the functions t → eλitv(i) are d linearly independent solutions. Show that any
solution t→ x(t) has the form

x(t) =
dX

j=1

αje
λjtv(j), with (α1, . . . , αd) ∈ Rd.

2.4 General Properties of Motion. Regularity.

In proving Proposition 2 it was found that C(1) solutions of ẋ = F(x, t), F ∈
C∞(Rd × R), are necessarily C∞ solutions. This is the simplest regularity
property shown by the solutions of such differential equations. Other regularity
properties of the solutions will be now analyzed.

In applications it often happens that the right-hand side of Eq. (2.2.4)
depends on parameters α ∈ Rm and that, furthermore, it is important to
know how the solutions change as the initial data ξ0 and the parameters α
vary in Rd and Rm, respectively. A first answer to this question is provided
by the following proposition.

3 Proposition. Let ξ, t,α → F(ξ, t,α) be a C∞(Rd × R × Rm) function
taking its values in Rd, and consider the equation
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x(t) = ξ0 +

∫ t

t0

F(x(τ), τ,α0) dτ (2.4.1)

as an equation for the continuous function t→ x(t) parameterized by ξ0, t0,α0

∈ Rd ×R×Rm. Given ̺, θ, a > 0 and (ξ, t,α) ∈ Rd ×R×Rm, there exists
T > 0 such that:
(i) Eq. (2.4.1) admits a solution for every (ξ0, t0,α0) close enough to (ξ, t,α)
such that |ξ−ξ0| < ̺

2 , |t− t0| < θ
2 , |α−α0| < a. Such solution will be denoted

t→ St(ξ0; t0,α0) and it is defined for t ∈ [t0 − T, t0 + T ].
(ii) The function St(ξ0; t0,α0), defined for

|ξ − ξ0| <
̺

2
, |t− t0| <

θ

2
, |α−α0| < a, |t− t0| ≤ T (2.4.2)

takes its values inside the ball S(ξ; ̺) with center ξ and radius ̺ and it is a
C∞ function of its arguments.
(iii) The value T can be taken as:

T =
̺

2(̺+ θ max |F(ξ, t,α)|) θ (2.4.3)

where the maximum is considered on the set |ξ−ξ| < ̺
2 , |t−t| < θ

2 , |α−α| < a.

Observations.

(1) Eq. (2.4.1) is equivalent to

ẋ(t) = F(x(t), t,α0), x(t0) = ξ0 (2.4.4)

and, therefore, the above proposition provides a regularity theorem for the
solutions of Eq. (2.4.4) as functions of the initial data, of the initial time, of
time itself, and of the parameters α on which F may possibly depend. The set
(2.4.2) and the key estimate (2.4.3) should not be taken too seriously as they
are not optimal: they merely show an example of the type of concreteness
that can be attained in the formulation of a regularity criterion (see, also,
observation 4, p. 19).
(2) Let β = (β1, . . . , βd+m+2) ≡ ((ξ0)1, . . . , (ξ)d, (α0)1, . . . , (α0)m, t, t0) and

x(t) = (x1(t), . . . , xd(t)) = St(ξ0; t0,α0)

≡ (St(ξ0; t0,α0)1, . . . , (St(ξ0; t0,α0)d)
(2.4.5)

Formal differentiation of Eq. (2.4.4) with respect to βi, i = 1, 2, . . . ,m + d,
gives

d

dt

∂x(t)

∂βi
=

d∑

h=1

∂F

∂ξh
(x(t), t,α0)

∂xh(t)

∂βi
+

d∑

h=1

∂F

∂αk
(x(t), t,α0)

∂αk
∂βi

(2.4.6)
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(∂x(t)

∂βi

)
t=t0

=
∂ξ0
∂βi

(2.4.7)

Analogous equations for the higher-order derivatives can also obtained.

(3) From the proof that the above d(m + d) derivatives
∂xj(t)
∂βi

do actually
verify these equations.
(4) The d(m+d) equations (2.4.6) and (2.4.7) can be considered by imagining
that x(t) is a known function [obtained by first solving Eq. (2.4.4)]. Then, for
each i = 1, . . . ,m+d, Eq. (2.4.6) can be thought of as a system of d differential

equations for the functions of t, t→ ∂x(t)
∂βi

, with initial data at t0 given by Eq.

(2.4.7). Each such system can be solved by regarding it as an ordinary linear
system of differential equations of the type (2.2.4) with suitable initial data.

Actually this is a method to compute the derivatives
∂xj(t)
∂βi

which, as it will
appear in several instances, turns out to be quite useful. It is also useful in
numerical computations.
(5) Similarly, equations for the t or t0-derivatives follow from Eq. (2.4.4):

∂x(t)

∂t
= F(x(t), t, ξ0), x(t0) = ξ0, and (2.4.8)

d

dt

∂x(t)

∂t0
=

d∑

h=1

∂F(x(t), t,α0)

∂ξh

∂xh(t)

∂t0
,

(∂x(t)

∂t0

)
t=t0

= −F(ξ0, t0,α0)

(2.4.9)

to which remarks (3) and (4) apply.
(6) Had F been assumed to be a C(k) function, k > 1, on Rd × R × Rm
one could still have obtained a regularity result: however, one could only
show, with the same proof that follows, that the function (t, ξ0,α0, t0) →
St(ξ0; t0,α0) is a C(k) function in the region of Eq. (2.4.2).
(7) Proposition 3 also yields a regularity theorem for the solutions of higher-
order differential equations, of the type considered in Eq. (2.2.2), via the
reduction to first order described in Eq. (2.2.3). The explicit statement of the
corresponding results is left as a problem for the reader.

Proof. This proof is essentially a repetition of the proof of Proposition 2, on
the existence property. Here a sketch is provided, leaving to the reader the
elaboration of the details, if he deems it necessary.

The statement about the existence (and uniqueness) of the solutions
t → St(ξ0; t0,α0) follows easily from Proposition 2: Proposition 2 also im-
plies the estimate (2.4.3) for T which follows from Eq. (2.3.3), identifying the
parameters ̺, θ of Proposition 2 with ̺/2, θ/2.

First check that (ξ0, t, t0,α0)→ St(ξ0; t0,α0) is a C(1) function on the set
(2.4.2). Let β = (β1, . . . , βm+d+2) be defined as in observation 2. As seen in
§2.3, t→ St(ξ0; t0,α0) can be thought of as being obtained via a limit of the
functions t→ x(n)(t, ξ0, t0,α0) recursively defined for t ∈ [t0 − T, t0 + T ] by
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x(0)(t, ξ0, t0,α0) = ξ0

. . .

x(n)(t, ξ0, t0,α0) = ξ0 +

∫ t

t0

F(x(n−1)(τ, ξ0, t0,α0), τ,α0) dτ

(2.4.10)

for n = 1, 2, 3, . . .. The functions (t, ξ0, t0,α0)→ x(n)(t, ξ0, t0,α0) are [see Eq.
(2.4.10)] C∞ functions of their arguments, ∀n. Furthermore, differentiating
Eq. (2.4.10) with respect βi, 1 = 1, . . . ,m+ d+ 2, it is:

∂x(n)(t, ξ0, t0,α0)

∂βi
=
∂ξ0
∂βi

+

∫ t

t0

{ d∑

j=1

∂F

∂ξj
(x(n−1)(t, ξ0, t0,α0), τ,α0)

∂x
(n−1)
j (τ, ξ0, t0,α0)

∂βi

+

m∑

ℓ=1

∂F

∂ξℓ
(x(n−1)(t, ξ0, t0,α0), τ,α0)

∂αℓ
∂βi

}
dτ

+ F(x(n−1)(t, ξ0, t0,α0), τ,α0))
∂t

∂βi
− F(ξ0, t0,α0)

∂t0
∂βi

,

(2.4.11)

where the last two terms arise from the contributions from the integration

extremes. This relation between ∂x(n)

∂βi
and ∂x(n−1)

∂βi
can be used to estimate

∂x(n)

∂βi
− ∂x(n−1)

∂βi
along the lines of proof of Proposition 2. By proceeding in

the same way and remarking that Eq. (2.4.10), by the choice of T , implies
∀ t ∈ [t0 − T, t0 + T ] and ∀n = 0, 1, . . .,

|x(n)(t, ξ0, t0,α0)− ξ0| ≤
̺

2
, (2.4.12)

it follows, from Eqs. (2.4.11) and (2.4.12), existence of two constants M,L
[see Eqs. (2.3.12) and (2.3.15)] such that:

|∂x
(n)

∂βi
(t, ξ0, t0,α0)| ≤M (2.4.13)

|∂x
(n)

∂βi
(t, ξ0, t0,α0)−

∂x(n−1)

∂βi
(t, ξ0, t0,α0)| ≤

L
n−1

(n− 1)!
M (2.4.14)

hold for all (t, ξ0, t0,α0) in the region of Eq. (2.4.2) and for all n = 1, 2 . . ..
Then Eqs. (2.4.13) and (2.4.14) imply existence and uniformity, in region

of Eq. (2.4.2), of the limit:
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ϕi(t, ξ0, t0,α0) = lim
n→∞

∂x(n)

∂βi
(t, ξ0, t0,α0)

(2.4.15)

∂x(0)

∂βi
(t, ξ0, t0,α0) +

∞∑

n=1

(∂x(n)

∂βi
(t, ξ0, t0,α0)−

∂x(n−1)

∂βi
(t, ξ0, t0,α0)

)
,

∀ i = 1, 2, . . . ,m+ d+ 2. The above limit is, therefore, a continuous function
in the region of Eq. (2.4.2).

Since the limit limn→∞ x(n)(t, ξ0, t0,α0) exists and equals St(ξ0; t0,α0),
the uniformity of the limit in Eq. (2.4.15) guarantees permutability of limit
and of ∂/∂βi operations, thereby showing differentiability of St(Bx0; t0,α0) in
the region of Eq. (2.4.2). It also shows, en passant, via the consideration of the
limit as n → ∞ of Eq. (2.4.11), the validity of the statements in observation
3.

An essentially identical argument can be developed to show that (t, ξ0, t0,
α0) → St(ξ0; t0,α0) is in class C(p), ∀ p ≥ 1, in the region of Eq. (2.4.2). It
will suffice to differentiate Eq. (2.4.11) suitably many times to obtain relations
analogous to it for the higher derivatives; such relations will then be used to
obtain estimates analogous to Eqs. (2.4.13) and (2.4.14). mbe

2.4.1 Exercises and Problems

1. Solve the equation ẍ − 2ẋ + αx = 0, α > 1, with initial data x(0) = x0, ẋ(0) = v0, by
finding two solutions of the form t → Aeλ t. By taking the limit α → 1 find the solution,
with the same initial data, to ẍ− 2ẋ+ x = 0 (using Proposition 3).

2. Show that the equations ẍ = −εx, ε > 0, and ẍ = 0 have, for the same initial conditions,
solutions xε(t) and x0(t) such that limε→0 xε(t) = x0(t), ∀ t ∈ R. However, show that this
limit relation is not uniform in t ∈ R, except for special initial data.

3. Consider the equation ẋ = F(x, t,α) and suppose that F(0, t,α) ≡ 0. Then, given R > 0
and fixed t0 = 0, show the existence of ε > 0, σ > 0, ̺ > 0, such that:

(1− σ)|w| ≤ |Stw| ≤ (1 + σ)|w|

having denoted Stw the solution to the equation with initial datum w at t0 = 0. (Hint:

Apply Lagrange’s theorem to estimate |Stw − w| in terms of the maximum of |F| in a

suitable set, and then, likewise, |Sτw − Sτ0| ≡ |Sτw|, (as Sτ0 ≡ 0), for |t| ≤ ε, |w| ≤ ̺:

use the regularity theorem to bound the derivatives of t,w,α→ Sτw; see observations 2-5

to Proposition 3.)

2.5 Local and Global Solutions of Differential Equations

The theory developed so far for the equation:

ẋ(t) = F(x(t), t), x(t0) = ξ0, (2.5.1)
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where F is an Rd-valued function in C∞(Rd × R), is a “local theory”; the
existence theorem given in Proposition 2, §2.3, gives, in fact, a solution to
Eq. (2.5.1) defined in a finite neighborhood of t0. It is often necessary in
applications to have “global solutions”, i.e., solutions to Eq. (2.5.1) defined in
time intervals containing a neighborhood of R+ = [0,+∞). In analyzing this
problem, the following definition is useful.

2 Definition. A solution t → St(ξ0; t0) of Eq. (2.5.1) defined for t ∈ (a, b)
is called “maximal” if there are no other solutions defined in open intervals
properly containing (a, b).
Two solutions of Eq. (2.5.1) defined in two open intervals I1 and I2 coincide
in I1 ∩ I2 (see Proposition 1, p. 14); if I2 ⊃ I1, the second solution is said a
“continuation” of the first.

Observations.

(1) A solution to Eq. (2.5.1) is, therefore, maximal if and only if it “cannot
be continued”.
(2) For every initial datum ξ0 and every initial time t0, there is a solution to
Eq(2.5.1) which is maximal: the interval of definition of such a solution is the
union of all open intervals on which it is possible to define a solution.
(3) This maximality definition only involves open intervals; however, this no-
tion would be the same even other types of intervals were allowed in the
definition of maximality. To understand this, just use the existence theorem
of §(2.3), p. 18, to continue solutions out of closed or half-closed intervals.

The following proposition clarifies the above notion by showing that a
solution of a differential equation can be non global in the future (or in the
past) if and only if it “diverges in a finite time”.

4 Proposition. Let t→ St(ξ0; t0) be a maximal solution for Eq. (2.5.1) and
(a, b) be the interval on which this solution is defined. If b < +∞, it must be

lim sup
t→b−

|St(ξ0; t0)| = +∞; (2.5.2)

if a > −∞, it must be

lim sup
t→a+

|St(ξ0; t0)| = +∞. (2.5.3)

Proof. Assume b < +∞ and that Eq. (2.5.2) does not hold. Then there exists
K < +∞ such that

|St(ξ0; t0)| ≤ K, ∀ t ∈ [t0, b) (2.5.4)

Using Proposition 2, we can find for every τ ∈ [t0, b) a solution to the equation:

ẋ = F(x(t), t), x(τ) = Sτ (ξ0; t0) (2.5.5)
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defined for t ∈ [τ − T1, , τ + T1], where T1, by Eq. (2.3.3) with ̺ = θ = 1, can
be chosen as

T1 =
(
1 + max

|t−τ|≤1

|ξ−x(τ)|≤1

|F(ξ, t)|
)−1 ≥

(
1 + max

|τ|≤1+|a|+|b|
|ξ|≤1+K

|F(ξ, t)|
)−1 ≡ T 1) (2.5.6)

The solution under investigation can therefore be extended to a solution
defined for

t ∈ ∪τ∈(t0,b)

(
τ − T 1, τ + T 1

)
, (2.5.7)

manifestly contradicting the supposed maximality of (a, b). A similar argu-
ment holds if a > −∞. mbe

Considering Proposition 4, it is convenient to introduce the following def-
inition.

3 Definition. Consider the differential equation ẋ = F(x, t) with F being
an Rd-valued C∞(Rd×R) function. Suppose that there is an R+-valued con-
tinuous function defined on R3: (r, s, t)→ µ(r, s, t) such that if t→ St(ξ0; t0)
is a solution to Eq. (2.5.1) defined for t ∈ (a, b) then:

|St(ξ0; t0)| ≤ µ(r, t0, t), ∀ |ξ0| ≤ r, t0 ≤ t. (2.5.8)

The differential equation is said “normal” in the future if µ can be chosen to
be (r, t)-independent. If µ is bounded as t → +∞ the equation will be said to
have “bounded trajectories” in the future.

Observations.

(1) Eq. (2.5.8) is a strong condition on the motions generated by ẋ = F(x, t);
because of its independence on the existence interval(a, b), it is often called
an “a priori estimate” on the motions governed by ẋ = F(x, t).
(2) An equation of higher order, like Eq. (2.2.2), will be called normal, or with
bounded trajectories, if once reduced to a first-order equation it becomes
a normal equation, or an equation with bounded trajectories, in the sense
just introduced. More concretely, this means that it is possible to give an a
priori estimate (i.e., independent of the interval of definition) of the sizes of

x(t), ẋ(t), . . . , d
s−1x
dts (t) in terms of the observation time t, of the initial time

t0, and of the initial data x(t0), ẋ(t0), . . . ,
ds−1x
dts (t0); furthermore, the bound

depends continuously on those parameters.

The importance of the definition is manifest in the following proposition.

5 Proposition. If the differential equation (2.5.1), ẋ = F(x, t), is normal,
then it admits a “global solution”, i.e., a solution defined in a neighborhood of
[t0,+∞), for any given initial datum ξ0 and initial time t0.
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Proof. Let (a, b) be a maximal existence interval for a solution to Eq. (2.5.1),
and suppose that b < +∞. Then by Definition 3:

lim sup
t→b−

|St(ξ0; t0)| ≤ µ(|ξ0|, t0, b) (2.5.9)

would hold, contradicting Proposition 4, Eq. (2.5.2). mbe

An example of a normal equation (which also has bounded trajectories) is
provided by the following proposition.

6 Proposition. Consider the differential equation mẍ = f(x) in R, [see Eq.
(2.1.1)], describing the motions of a point with mass m > 0, on a line and
subject to a force depending only on the position, f ∈ C∞(R). Suppose that
the potential energy V , see Eq. (2.1.3), is bounded below. Then the differential
equation is normal. If limx→±∞ V (x) = +∞, the differential equation also has
bounded trajectories.

Proof. If t → x(t) is a solution to Eq. (2.1.1), with x(t0) = ξ0, ẋ(t0) = η0
and defined for t ∈ (a, b), by energy conservation (see §(2.1):

1

2
mẋ2 + V (x(t)) = E =

1

2
mη̇2 + V (ξ), ∀ t ∈ (a, b), (2.5.10)

and therefore, if M = infξ∈R V (ξ):

|ẋ(t)| =
√

2

m
(E − V (x(t))) ≤

( 2

m
(E −M)

) 1
2 (2.5.11)

and M > −∞, by assumption. Furthermore,

|x(t)| = |ξ0 +

∫ t

t0

ẋ(τ) dτ | ≤ |ξ0|+
( 2

m
(E −M)

) 1
2 |t− t0| (2.5.12)

which, calling µ(|ξ0|, t0, t) the right-hand side of Eq. (2.5.12), yields an a priori
estimate, showing normality.

If limξ→±∞ V (ξ) = +∞, let ξ → W (ξ) be a symmetric (i.e., W (ξ) ≡
W (−ξ)) continuous function which is strictly increasing for ξ > 0 and which is
a lower bound to V (ξ) : V (ξ) ≥W (ξ), ∀ ξ ∈ R, and such that limξ→∞W (ξ) =
+∞. Since V is supposed bounded below, such a function does exist.

Let µ(E) be the positive solution to W (ξ) = E, existing for all E > M , i.e.
for all E’s of the form (2.5.10). Then the motion with energy E given by by
th right-hand side of Eq. (2.5.10) must verify |x(t)| ≤ µ(E), as |x(t)| > µ(E)
would imply, by the left-hand side of Eq. (2.5.10) and by the choice of W ,
that 1

2mẋ(t)
2 < 0.

By the assumed continuity and strict monotonicity of W , the function
µ(E) is continuous in E for E > M ; hence, (t0, t)-independent a priori bound
|x(t)| < µ(E) has been obtained. mbe
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This section will be concluded by the following remark “a priori estimates”.
In applications one often meets functions (x, t)→ F(x, t) which are C∞ func-
tions for (x, t) ∈ (Rd/A)×R), where A is a “singularity set” usually consisting
of points, lines, surfaces, or even in a set with interior points; inside A × R
the F might be undefined. In such cases the singularity of F means that the
model originating the differential equations (2.5.1) is not a good model of the
physical phenomenon that it hopes to describe, at least if the initial data or
the motion generated by them enter the region A.

For instance, the attractive force exerted by the Sun on the Earth is well
described by the formula k|x|−2 only if the distance between the Earth and
the Sun is large compared to the Sun diameter; it is clear that the singularity
in x = 0 is purely fictitious and due to an excessive idealization!

In such cases one is free to modify F by changing it into a function F(A) ∈
C∞(Rd × R) which, outside a small neighborhood of A × R, coincides with
F. The equation

ẋ = F(A)(x, t) (2.5.13)

will then be an equally good model of the same physical phenomenon.
However, it is obvious that the only interesting motions, among those

described by Eq. (2.5.13), will be those evolving outside a neighborhood of
A×R, where, in fact, F and F(A) are indistinguishable.

In this book equations of the form (2.5.1) with F singular in some region
will occasionally be considered. However, in all those cases it will also be
possible to establish an “a priori estimate” guaranteeing the existence of a
continuous positive function µ′ on Rd × R × R such that if St(ξ0; t0) is a
solution to Eq. (2.5.13), defined for t ∈ (a, b) with initial datum at t0 given

by ξ0 ∈ {set of initial data “thought of as interesting”} = Ã, then

d(St(ξ0; t0), Ã) ≥ µ′(ξ0, t, t0) (2.5.14)

where d(ξ, Ã) = (distance of ξ from Ã) and µ′ is positive for ξ0 ∈ Ã. Usually

one shall fix Ã = Ac = (complement of A) by possibly enlarging the set A.
By what has been said so far, it appears that if we are interested only in

motions starting outside A and Ã = Ac, we shall imagine that such motions
verify Eq. (2.5.13) and, therefore, we shall be able to apply to them the various
results concerning the differential equations with right-hand side in C∞.

The above elucubrations motivate the following definition:

4 Definition. Let (ξ, t)→ F(ξ, t) be a C∞ function defined on (Rd/A)×R
with values in Rd, where A ⊂ Rd is a closed set. Suppose that:
(i) there exists an Rd-valued function F(A) ∈ C∞(Rd × R × Rd) coinciding
with F on (Rd/A)×R;
(ii) there exists a real valued function µ′ on Rd × R × R, continuous and
positive valued on (Rd/A)×R×R, such that t→ x(t) is a motion verifying
ẋ(t0) = ξ0, ẋ(t) = F(x(t), t), ∀ t ∈ (a, b), then ∀ t ≥ t0 and t ∈ (a, b) :
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d(St(ξ0, t0), A) > µ′(ξ0, t, t0) > 0; (2.5.15)

(iii) the differential equation ẋ = F(A)(x, t) is normal.
In such a situation we shall say that the “singular differential equation”

ẋ = F(x, t) is “normal outside A”.
It is an exercise to prove the following proposition.

7 Proposition. Let (ξ, t) → F(ξ, t) be an Rd-valued C∞ function on
(Rd/A) × R and consider the singular differential equation ẋ = F(x, t): if
this equation is normal outside A, every initial datum ξ0 6∈ A originates a
C∞ solution of

ẋ = F(x, t); x(t0) = ξ0; x(t) 6∈ A (2.5.16)

defined in a neighborhood of [t0,+∞), i.e., a global solution.

Observation. As the reader will verify when looking at Chapter 4, §4.8, §4.9, an
interesting example of the situation contemplated in Definition 4 and Propo-
sition 7 can be found in the two-body problem: the set A will be, in this case,
the closure of a neighborhood of the set of the initial data with vanishing areal
velocity. Such data are those in which the two bodies are heading into or out
of a collision and which are, therefore, to be considered singular.

2.5.1 Exercises and Problems

1. Formulate the notions of normal differential equation “in the past” or of differential
equation with bounded trajectories “in the past”, and reformulate all the propositions of

§2.5 to deal with the problem of the existence of solutions in intervals like t ∈ (−∞, t0] or
t ∈ (−∞,+∞).

2. Consider the equation in R, ẍ+ d
dx

log(1 + x2) = 0. Determine whether it is normal and
with bounded trajectories. Compute x(1) with a 60% approximation if x(0) = 0, ẋ(0) = 1.

3. Same as Problem 2 for ẍ+ sinx = 0, x(0) = 0, ẋ(0) = 1
4
.

4. Same as Problems 2 and 3 for the differential equations in Problems 1 and 2 of §2.3.
5.* Same as Problem 2 but with a 1% approximation and using a desk computer together
with the error estimate implicit in the existence theorem of §2.3. Alternatively, use the
algorithm of Appendix O, together with a desk computer.

6.* Same as Problem 5 but using energy conservation and the relative quadrature formula,
together with a desk computer.

7.* Same as Problem 6 but for the equation in Problem 3.

8. Let t→ x(t) be an Rd-valued C∞(R) function such that ∃M > 0 for which

|x(t)| ≤ |x(0)|+M

Z t

0
|x(τ)| dτ, t ≥ 0.

Show that |x(t)| ≤ y(t), t ≥ 0, where y is defined as the solution of y(t) = |x(0)| +
M
R t
0 y(τ) dτ ≥ 0, i.e., y(t) = |x(0)|eMt.
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9.* If ξ → ϕ(ξ) is a continuous positive monotonically increasing function of ξ ∈ R+ and if
t→ x(t) is in C∞(R) and

|x(y)| ≤ |x(0)|+
Z t

0
ϕ(|x(τ)|) dτ, t ≥ 0

show that |x(t)| ≤ y(t), t ≥ 0, where y is defined as the solution of y(t) = |x(0)| +R t
0
ϕ(y(τ)) dτ , i.e., setting Φ(y) =

R y
|x(0)|

ϕ(η)
dη

, as the function verifying Φ(y(t)) ≡ t (or

y(t) ≡ Φ−1(t)).

10.* Given the equation ẋ = f(x, t) in Rd, define for T > 0: ϕT (s)
def
= max t∈[0,T ]

|ξ|≤s

|f(ξ, t)|
Show that a sufficient condition for the normality of the equation is that, in R,

ẏ = ϕT (y), y(0) = |x(0)|

admits a global solution (i.e., a solution on [0,+∞)) for all T > 0. (Hint: x(t) = x(0) +R t
0 f(x(τ), τ) dτ ⇒ |x(t)| ≤ |x(0)|+

R t
0 ϕT (|x(τ)|) dτ ; then apply Problem 9.)

11.* If t→ L(t) is a matrix-valued C∞(R) function with values in the d× d matrices, the
equation ẋ = L(t)x is normal in the future (as well as in the past); hence, it has global
solutions (Hint: Apply Problem 10.)

12. In the context of Problem 11, show that the equation admits d linearly independent
global solutions (defined on (−∞,+∞)). (Hint: Use Problem 11 and Problem 9 of §2.3).
13. In the context of Problem 11, suppose that L(t) is a time-independent matrix L. Using
the results of Problem 11 of §2.3, p. 22, and supposing that all the eigenvalues of L are real
and pairwise distinct, show that the equation ẋ = Lx has bounded trajectories if and only
if λj ≤ 0, j = 1, . . . , d.

14.* In the context of Problem 11, let g ∈ C∞(R) be an Rd-valued function. Show the
normality of the equation ẋ = L(t)x + g(t).

15.* Consider a differential equation in Rd, ẋ = F(x, t), with F ∈ C∞(Rd ×R). Suppose
that |F(x, t)| ≤ γ(t)|x| + β(t), where β, γ ∈ C∞(R), β, γ ≥ 0. Show that the equation is
normal by finding an a priori estimate. (Hint: Combine Problems 9 and 4.)

16.* Same as Problem 5 with |F(x, t)| ≤ β(t) + γ(t) log(e+ |x|).
17. Consider a differential equation ẋ = f(x, t,α) of the type considered in §2.4, f ∈
C∞(Rd × R × Rm). Suppose that this equation admits an a priori estimate like Eq.

(2.5.8), for ∀α ∈ Rm, with an α-independent function. Show that, in this case, the

“local regularity theorem”, Proposition 3, p. 22, becomes “global”, i.e., the function

(t, ξ0, t0,α0) → St(ξ0; t0,α0) is a C∞-function of ξ0 ∈ Rd, α0 ∈ Rm, t0 ∈ R, t ∈ R,

t ≥ t0.

2.6 More on Differential Equations. Autonomous
Equations

Before proceeding in the analysis of some applications, it is convenient to set
up a few more definitions, mainly as an excuse to illustrate some simple but
interesting general remarks about differential equations.
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5 Definition. Let (ξ, ξ(1), . . . , ξ(s−1))→ f(ξ, ξ(1), . . . , ξ(s−1)) be an Rd valued
C∞ function on Rsd. Consider the equation for the Rd-valued function t →
x(t) defined for t in an interval I [see Eq. (2.2.2)]:

dsx

dts
= f(x,

dx

dt
, . . . ,

ds−1x

dts−1
), (2.6.1)

x(t0) = ξ0,
dx

dt
(t0) = ξ(1), . . . ,

ds−1x

dts−1
(t0) = ξ(s−1). (2.6.2)

Eq. (2.6.1) will be called an “autonomous” differential equation of class C∞.
In other words, Eq. (2.2.2) is said to be autonomous when the right-hand side
“does not explicitly depend upon time”.
The space Rd × . . .×Rd = Rsd, thought of as the space of the possible initial
data (ξ, ξ(1), . . . , ξ(s−1)) for Eq. (2.6.1), will be called the “space of the initial
data” or the “data space”.

It is also useful to introduce the following definition.

6 Definition. We shall say that a C∞ autonomous differential equation like
Eq. (2.6.1) is “reversible” if any solution, t→ x(t), to Eq. (2.6.1) defined for
t ∈ (−ε, ε), ε > 0, is such that the function t → x(−t), t ∈ (−ε, ε), is also a
solution to Eq. (2.6.1).

Observation. We shall see that many differential equations describing non
dissipative dynamical systems are reversible. Basically, f originates a reversible
system when s is even and f depends evenly on the odd derivatives. It should
be kept in mind that t→ x(−t) will in general be a solution which corresponds
to different initial data (unless s = 1): for instance ẍ = x is an equation in R2

which is reversible, but its solution x(t) = et has initial data x(0) = 1, ẋ(0) = 1
while the solution t→ e−t has initial data x(0) = 1, ẋ(0) = −1.

The interest in autonomous equations lies, from a mathematical point of
view, in the validity of the following easy propositions.

8 Proposition. Consider a normal autonomous first-order.4 differential equa-
tion in Rd. It is possible to define on Rd a family (St)t≥0 of maps, mapping
Rd into itself, such that the functions

t→ St−t0(ξ0), ξ0 ∈ Rd, t, t0 ∈ R, t ≥ t0 (2.6.3)

solve Eq. (2.6.1) with initial datum at t = t0 given by ξ0. For every t ≥ 0, the
map St is a C∞ map and

St(St′(ξ)) = St+t′(ξ), ∀ t, t′ ≥ 0, ∀ ξ ∈ Rd. (2.6.4)

Furthermore, the maps St are C∞ regular jointly in t0 and t: i.e., the functions
(t, ξ0)→ St(ξ0), (t, ξ0) ∈ R+ ×Rd are in C∞(R+ ×Rd).

4 I.e., s = 1 in Eq. (2.6.1)
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Proof. Let t → St(ξ0; t0) be the solution to Eqs. (2.6.1) and (2.6.2) with
s = 1, defined for t > t0. Such a solution does exist since Eq. (2.6.1) is now
supposed to be a normal equation. Let:

St(ξ0) = St(ξ0; 0) for t ≥ 0 (2.6.5)

From §2.5, St is a C∞ map of Rd into itself for each t ∈ R+ and, also, that
(t, ξ0) → St(ξ0), (t, ξ0) ∈ R+ × Rd is in C∞(R+ × Rd). For t ≥ t0, let
x(t) = St−t0(ξ0). Since f “does not explicitly depend on time”, it is

dx

dt
(t) =

d

dt
St−t0(ξ0) =

d

dt
St−t0(ξ0, 0)

= f(St−t0(ξ0, 0)) = f(St−t0(ξ0)) = f(x(t))
(2.6.6)

Hence t→ St−t0(ξ0) is a solution to Eq. (2.6.1) for t ≥ t0. Furthermore,

St0−t0(ξ0) = S0(ξ0) = S0(ξ0; 0) ≡ ξ0 (2.6.7)

which, by the uniqueness theorem, Proposition 1, p.14, gives St−t0(ξ0) ≡
St(ξ0, t0), t ≥ t0 Similarly, one checks that t→ St(St′(ξ0)) is a solution to Eq.
(2.6.1) with initial datum at t = 0 equal to St′(ξ0); such is also → St+t′(ξ0);
hence, Eq. (2.6.4) is also proved. mbe

9 Corollary. Consider an autonomous equation of order s, as in Eq. (2.6.1),
and suppose that it is normal. It is possible to define, on the data space Rd,
a family (St)t≥0 of C∞ maps of Rds into itself such that the function

t→ St−t0(ξ0, ξ
(1), . . . , ξ(s−1)) = (x(t),x(1)(t), . . . ,x(s−1)(t)) (2.6.8)

is a solution to the equations

ẋ(t) = x(1)(t), ẋ(1)(t) = x(2)(t), . . . , ẋ(s−2)(t) = x(s−1)(t),

ẋ(s−1)(t) = f(x(t),x(1)(t), . . . ,x(s−1)(t))
(2.6.9)

[equivalent to Eq. (2.6.1)] and verifies the initial data

x(t0) = ξ0, x
(1)(t0) = ξ(1), . . . , x(s−1)(t0) = ξ(s−1). (2.6.10)

Furthermore,

StSt′ = St+t′ , ∀ t, t′ ≥ 0 (2.6.11)

and the maps St are C∞ regular also, jointly in t and (ξ0, . . . , Bx
(s−1)); i.e.,

the map (t, ξ0, . . . , ξs−1) → St(ξ0, . . . , ξs−1), with (t, ξ0, . . . , ξs−1) ∈ R+ ×
Rd × . . .Rd is in C∞(R+ ×Rd × . . .Rd).
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Proof. It is an immediate consequence of the equivalence between Eqs.
(2.6.1), (2.6.2) and Eqs. (2.6.9), (2.6.10) and of Proposition 8.

mbe

7 Definition. Given a normal s-th order autonomous differential equation
on Rd, the family (St)t≥0 of maps of the data space into itself, defined in
Proposition 8, will be called the “flow” on Rd which “solves Eqs. (2.6.1) and
(2.6.2)”.

Observations.

(1) Because of Eq. (2.6.11), the flow (St)t≥0 is, in mathematical language, a
“semigroup”. When Eq. (2.6.1) is also normal in the past, it becomes possible
to define St for t ≤ 0, and the family (St)t∈R forms a group, i.e., it verifies
Eq. (2.6.11) for all t, t′ ∈ R (exercise).
(2) All the normal reversible equations are also normal in the past (exercise);
hence, such a class of equations provides an important instance when the
solution flow is a group.

An interesting remark about autonomous equations, already met in Prob-
lem 3, §2.2, is the following proposition.

10 Proposition. Consider a normal s-th order autonomous differential equa-

tion on Rd, like Eq. (2.6.1). Suppose that (ξ
(0)
0 , ξ

(1)
0 , . . . , ξ

(s−1)
0 ) is an initial

datum such that there is some T > 0 for which

ST (ξ
(0)
0 , ξ

(1)
0 , . . . , ξ

(s−1)
0 ) = (ξ

(0)
0 , ξ

(1)
0 , . . . , ξ

(s−1)
0 ); (2.6.12)

then the motion generated by (ξ
(0)
0 , ξ

(1)
0 , . . . , ξ

(s−1)
0 ) is a “periodic motion” with

period T , i.e., it is a periodic solution of Eq. (2.6.1) with period T .

Proof. The function t → St+T (ξ
(0)
0 (ξ

(1)
0 , . . . , ξ

(s−1)
0 ), t > 0, where (St)t≥0

is the solution flow to Eq. (2.6.1), is again a solution to Eq. (2.6.1) and, for

t = 0, verifies the initial condition (ξ
(0)
0 , ξ

(1)
0 , . . . , ξ

(s−1)
0 ) by our assumption

Eq. (2.6.12). Hence, by uniqueness, it coincides with t→ St(ξ
(1)
0 , . . . , ξ

(s−1)
0 ).

This means that t→ St(ξ
(1)
0 , . . . , ξ

(s−1)
0 ) is periodic with period T . mbe

Observation. More generally, it is clear that t → St+T (ξ
(1)
0 , . . . , ξ

(s−1)
0 ) is a

solution to Eq. (2.6.9) for t ≥ 0: i.e., if t→ x(t) is a solution to an autonomous
equation, t→ x(t+ T ) is also a solution for T ∈ R.

2.6.1 Exercises and Problems

Show that the following equations are normal both in the past and in the future and:

1. Draw the trajectories of the flow (St)t∈R in the data space R2 for the equation ẍ =
−g, g ∈ R.

2. Same as Problem 1 for ẍ = −ω2x, ω2 > 0
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3. Same as Problem 1 for ẍ = −g − λẋ, g, λ ∈ R.

4, Same as Problem 1 for ẍ = ω2x, ω2 > 0.

5. Describe the trajectories of the flow (St)t∈R in the data space R6 for the equations in
R3: ẍ = −g or ẍ = −ω2x.

6. Same as Problem 5 for the equation, in R2, ẋ = ax + y, ẏ = −x + ay, discussing the
result in terms of a ∈ R.

7. If Eq. (2.6.1) is normal and reversible, prove that it is also normal in the past. Show that

the flow (St)t≥0, solving it for t > 0, can be extended to a flow (St)t∈R, solving Eq. (2.6.1)

for all t ∈ R: one can define S−t = S−1
t , ∀ t ≥ 0. In this case, the family (St)t∈R forms a

group of maps of Rds onto itself.

2.7 One-Dimensional Conservative Periodic and
Aperiodic Motions

Having completed a general survey on existence, uniqueness, and regularity
properties of ordinary differential equations, let us go back to the qualitative
theory of motions developing under the action of a purely positional force f
considered in §2.1 [see Eq. (2.1.1)]. For such motions the energy conservation
theorem was derived (so that they are called “conservative motions” generated
by “conservative forces”). The analysis will now concern another qualitative
property and study under which circumstances the motions are periodic or
aperiodic.

Let V be the potential energy generating the force f (i.e., f(ξ) = − dVdξ (ξ)

and, in order to have motions defined for all times (“globally defined mo-
tions”), suppose that V is bounded below (see Proposition 6). Let (η0, ξ0) ∈
R2, t0 ∈ R, and let t→ ξ(t), t ≥ t0, be the solution to Eq. (2.1.1) with data:

ẋ(t0) = η0, x(t0) = ξ0. (2.7.1)

If E = m
2 η

2
0 + V (ξ0), we can represent graphically the initial datum and the

potential as in Fig.2.1.
If ξ0, as in the picture, is between two contiguous and distinct solutions

x−(E) < x+(E) of V (ξ) = E and if dV
dξ (x−(E)) < 0, dVdξ (x+(E)) > 0, then

by energy conservation the motion t → x(t) will never leave the interval
[x−(E), x+(E)]. In fact V would be strictly larger than E to the left of x−(E)
and to the right of x+(E) and, therefore, the motion with energy E would
have to have negative kinetic energy when occupying such a position.

Such a trapped motion will be periodic if and only if it takes a finite time
for it to run from x−(E) to x+(E). This amount of time can be estimated
easily by the quadrature formula (2.1.8), p. 12.

If x−(E) or x+(E) or both do not exist, the above argument says that
the motion may be unbounded. The above argument also does not give any
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precise predictions when the derivative of V vanishes in at least one of the
two points x−(E), x+(E).

The following proposition provides a general result and in its proof all the
above problems are implicitly or explicitly solved.

M

x− x+ ξ

V

ξ0

E

Figure 2.1.: Two contiguous roots of V (x) = E.

11 Proposition. The motion t → x(t), t ∈ [t0,+∞) of mẍ = − dVdx (x) with
initial datum (2.7.1) is periodic with a positive minimal period if and only if
ξ0 is between two adjacent roots x− < x+ of V (ξ) = E, where the derivative
of V is, respectively, negative and positive.

Proof. Suppose that V (x±) = E, −V ′(x−) andV ′(x+) > 0, and V (ξ) < E
for ξ ∈ (x−, x+) and let ξ0 ∈ [x−, x+]. As already noticed it must be that, ∀ t ≥
t0, x(t) ∈ [x−, x+]. Suppose, first, that η0 > 0 and define t+ = {supremum
of the values t > t0 such that ẋ(τ) > 0 for all τ ∈ [t0, t)}. From energy
conservation, one deduces:

ẋ(t) = +

√
2

m
(E − V (x(t))), t0 ≤ t < t+, (2.7.2)

where the sign in front of the square root comes from the continuity of ẋ(t)
and from η0 > 0. To estimate t+, remark that Eq. (2.7.2) implies:

t− t0 =

∫ x(t)

ξ0

dξ√
2
m (E − V (ξ))

, t0 ≤ t < t+, (2.7.3)

If we show that limt→t+ x(t) = x+, it will follow from Eq. (2.7.3) that

t+ − t0 =

∫ x+

ξ0

dξ√
2
m (E − V (ξ))

(2.7.4)

which can be used to estimate t+ and to conclude that t+ < +∞: i.e., the
point reaches x+ in a finite time.

Once the point reaches x+, it cannot stay there since f(x+) = − dVdx (x+) <
0 and, therefore, ẋ(t+) < 0. This means that ẋ(t) < 0, x(t) < x+ in a right-
hand neighborhood of t+ , by Lagrange’s theorem. We can then repeat the
already used argument to deduce that:
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ẋ(t) = −
√

2

m
(E − V (x(t))), ∀ t ∈ [t+, t−), (2.7.5)

where t− is analogously defined as t− = {supremum of the values t > t+ such
that ẋ(t) < 0 for all τ ∈ (t+, t)}. Proceeding as before, we shall show that

t− − t+ =

∫ x+

x−

dξ√
2
m (E − V (ξ))

(2.7.6)

The same arguments can be again repeated and, therefore, after a suitable
time t′ − t−, the point will again go through ξ0 with positive velocity and

∫ ξ0

x−

dξ√
2
m (E − V (ξ))

(2.7.7)

By Proposition 10, p. 35, from now on the motion will identically repeat itself:
i.e., x(t + T ) ≡ x(t), ∀ t ≥ t0, if T is the sum of the time intervals of Eqs.
(2.7.4), (2.7.6), and (2.7.7):

T = 2

∫ x+

x−

dξ√
2
m (E − V (ξ))

(2.7.8)

hence, the motion will be periodic and T will be, by construction, its minimal
period. It remains to show that limt→t+ x(t) = x+ and that t+ < +∞.

Since ẋ(t) ≥ 0, ∀ t ∈ [t0, t+), the limit limt→t+ x(t) = x exists and
it is approached monotonically. Then, if x < x+, it would follow that

v = limt→t+ ẋ(t) =
(

2
m (E − V (x))

) 1
2 > 0; hence, ẋ(t) would be > 0 in the

right-hand neighborhood of t, if t+ < +∞, against the very definition of t+ or,
if t+ = +∞, this would mean that x = +∞ against x ≤ x+. Hence, x = x+

and Eq. (2.7.4) holds.
To show that Eq. (2.7.4) also implies t+ < +∞, apply Lagrange’s theorem

to infer that there is a point x̃ ∈ (ξ0, x+) such that for all ξ ∈ (x̃, x+):

E − V (ξ) ≥ E − V (x+)− 1

2

dV

dξ
(x+) (ξ − x+) ≡ f(x+) (ξ − x+)

2
(2.7.9)

because E = V (x+) and f(x+) = − dVdξ (x+) < 0 and (E − V (ξ)) − (E −
V (x+))−f(x+)(ξ−x+) is infinitesimal of higher order in (ξ−x+) as ξ → x+.
Therefore,

t+ − t0 ≤
∫ x̃

ξ0

dξ√
2
m(E − V (ξ))

+

∫ x̃

ξ0

dξ√
2
m
f(x+)

2 (ξ − x+)
< +∞ (2.7.10)

since the first integral is finite because max(2(E − V (ξ))/m)−1 < +∞ in
[ξ0, x̃], while the second integral is also finite (an explicit computation). The
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alternatives initially set aside, namely η0 < 0 or η0 = 0 (i.e., ξ0 = x±) are
reduced to the one just treated.

Finally, the cases f(x+) = 0, or f(x−) = 0, or f(x+) = f(x−) = 0, or x+ ,
or x− not existing have to be discussed and shown to give rise to motions not
periodic or with period 0. This last case is realized if (and only if) η0 = 0 and
f(ξ0) = 0: one says that ξ0 is an “equilibrium point”. Among the remaining
cases consider, as an example, the case η0 > 0, f(x+) = −(dV/dξ)(x+) = 0.
Proceeding as before, it is found that t+ is still given by Eq. (2.7.4). This
time, however, to estimate t+ Eq. (2.7.9) must be improved by using Taylor’s
formula to second order, since f(x+) = 0. If f ′(x+) = (df/dξ)(x+), it is:

E − V (ξ) =
1

2
f ′(x+)(ξ − x+)2 + o

(
(ξ − x+)2

)
(2.7.11)

because the left-hand side vanishes together with its first derivative in x+.
Hence ∃x̃′ ∈ [ξ0, x+) such that, if f ′(x+) > 0,

E − V (ξ) < f ′(x+)(x̃− x+)2 + o
(
(ξ − x+)2

)
(2.7.12)

Thus, if f ′(x+) > 0, we deduce from Eqs. (2.7.4) and (2.7.2):

t+ − t0 >
∫ x+

x̃′

( 2

m

f ′(x+)

2
(ξ − x+)2

)− 1
2 dξ = +∞. (2.7.13)

The case f ′(x+) = 0 is treated likewise, as, in this case, E − V (ξ) is infinites-
imal of higher than second order in ξ− x+ and an inequality like Eq. (2.7.12)
holds, therefore, with f ′(x+) replaced, say, by 1.

The case f ′(x+) < 0 is impossible if η0 > 0 (since this would mean that
x+ is a minimum for V ). mbe

For future reference let us state the following obvious proposition.

12 Proposition. If ξ0 ∈ R, the constant function t→ x(t) ≡ ξ0 solves to Eq.
(2.1.1) if and only if ξ0 is a stationary point for the potential energy V .

2.7.1 Exercises and Problems

1. Estimate the period of the motions indicated below with an error rigorously bounded by
60%:

x =x(x− 1), x(0) = 0, ẋ(0) =
1√
6

or
1

2
,

ẋ =− 2x− 4x3, x(0) = 1/
√

2, ẋ(0) = 0

ẋ =− x3, x(0) = 0, ẋ(0) = 1,

ẋ =− x/(1 + x), x(0) = 0, ẋ(0) =
1

2
,

ẋ = log(1 + x), x(0) =
1

2
, ẋ(0) = 0.
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(Hint: Show first: I =
R x+
x−

dx√
(x+−x)(x−x−)Q(x)

≤ I0 = 1
Q(ξ)

R x+
x−

dx√
(x+−x)(x−x−)

≡ π
Q(ξ)

,

where ξ is any point in [x−, x+], with an error δ = |I−I0|
I
≤
h

max
√
Q

min
√
Q
− 1
i
.)

2. Find, if they exist, values of E to which correspond aperiodic motions for the equations

in Problem 1, and for: ẍ = −xe−x2

; ẍ = − sinx.

3. Same as Problem 1 with an error rigorously bounded by 10% or 1%, using a desk
computer.

4. Find whether the motions associated with the second equation in Problem 1 admit a
motion with period T = 10 and, if it exists, estimate within 20% the amplitude of such a
motion.

5. Show that the period of the motion of total energy E verifying ẋ = −x3 has a period

T (E) proportional to E−
1
4 if the potential energy is defined as V (ξ) = 1

4ξ
4. Show that

the proportionality constant is 2
∫ 1

−1(1−ξ4)−
1
2 dξ (Hint: Write the formula of quadrature

for T , Eq. (2.7.8), and change variable as ξ → ξE−
1
4 .)

6. Show that the period of the motion with energy E verifying mẍ = −(dV/dx)(x),
with V such that V (0) = 0, V ′(0) = 0, V ′′(0) > 0, is such that limE→0+ T (E) =

2π
(

m
V ′′(0)

) 1
2 . (Hint: see hint to problem 1).

7. Let ξ → V (ξ) be a C∞ convex even function vanishing at the origin. Let

V (ξ) =
1

2
σ ξ2

def
=

1

2

(
sup
ξ′
V ′′(ξ′)

)
ξ2

Consider a motion, associated with the potential energy V , having total energy E. Show

that its period is larger than the period of the motions with potential energy V .

8. Suppose that V (ξ) = |ξ|α, α > 1, and show that the period of the motion with energy

E is proportional to E
1
α− 1

2 (see Problem 5).

9. Find the limit as E → +∞ the period of the motion with energy E developing with

potential energy V (ξ) = 1
2ξ

2 + 1
4ξ

4

10. Same as Problem 9 with V such that V (ξ) = V (−ξ), limξ→∞
V (ξ)
ξ2 = +∞.

11. Same as Problem 9 with V such that V (ξ) = V (−ξ), limξ→∞
V (ξ)
ξ2 = 0,

limξ→∞ V (ξ) = +∞.

2.8 Equilibrium: Stability in the Absence of Friction

In the proof of Proposition 12, p. 39, it has been remarked that stationary
solutions of mẍ = f(x), i.e., solutions like t → ξ0 = constant, correspond to
the stationary points of the potential energy function V . In such positions,
“equilibrium positions”, the exerted force vanishes. It is also possible to further
distinguish the equilibrium points on the basis of a qualitative property: the
stability of their equilibria. Stability is an empirical notion susceptible to
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assuming different precise meanings, depending on the particular problem
where it appears necessary to study the stability of an equilibrium point.

It is therefore useful to provide several different definitions of stability for
an equilibrium point, leaving to the imagination of the reader the identification
of different types of problems for which such types of notions might be relevant.
A deeper analysis of the stability notion will be found in Chapter 5, which is
entirely devoted to stability theory.

In the following, x0 shall denote an equilibrium point for mẍ = f(x) under
the assumption that f is generated by a C∞ potential V bounded from below
(so that the equation of motion is normal, see Proposition 6, p.29).

8 Definition. x0 is a stable equilibrium position if there is a function ε →
a(ε) ≤ +∞ defined for ε > 0 and infinitesimal as ε → 0, such that every
motion following an initial condition x(0) = x0 , |ẋ(0)| ≤ ε has the property:

|x(t) − x0| < a(ε), ∀ t ≥ 0 (2.8.1)

Observations.

(1) In other words, x0 is a stable equilibrium position if a point mass placed
in x0 with small velocity stays indefinitely close to x0 and the smaller ẋ(0),
the closer it will stay.
(2) The fact that a(ε) might be +∞ means that we admit the possibility
that initial data whose velocity ẋ(0) is too large may originate motions which
travel indefinitely far from x0. Equation (2.8.1) is really a condition which is
relevant only for ε small.
(3) The choice of t0 = 0 as initial time is irrelevant since the equation of
motion is autonomous.

In most applications it is by no means sufficient to know that x0 is a stable
equilibrium position in the sense of Definition 8. For instance, it is sometimes
necessary that the function a(ε), which could be called the “tolerance” func-
tion, has a preassigned structure. This leads to the following definition:

9 Definition. Given a function of the variable ε > 0, ε → b(ε) < +∞ (not
necessarily infinitesimal as ε → 0), one says that x0 is a stable equilibrium
position “with tolerance b” if the motion t → x(t), t ≥ 0, following an initial
condition x(0) = x0, |ẋ(0)| ≤ ε is such that

|x(t) − x0| < b(ε), ∀ t ≥ 0. (2.8.2)

Observations.

(1) Definition 9 differs from Definition 8 because ε → b(ε) is a priori given
and also because b(ε) is not necessarily infinitesimal as ε→ 0.



42 2 Qualitative Aspects of One-Dimensional Motion

(2) Obviously one can also give other analogous definitions where the “per-
turbed” initial data look like x(0) = x0 + ε, ẋ(0) = 0, or some other.

Avoiding formalization of the possibilities hidden in observation 2, some
stability criteria will be discussed. A well-known simple criterion for stability
in the sense of Definition 8 is stated in the following proposition and it will
suggest studying a third stability definition involving the introduction of novel
interesting ideas, see §2.9.

13 Proposition. If x0 is a strict minimum for the potential energy function
V , then x0 is a stable equilibrium point in the sense of the Definition 8.

Proof. Let Eε = 1
2mε

2 + V (x0) be the total energy of the initial datum
x(0) = x0, ẋ(0) = ε. By assumption, x0 is a point of strict minimum for V ,
see Fig. 2.2, i.e., V (ξ) > V (x0) if ξ 6= x0 and |ξ − x0| is small enough; hence
it is possible to define the positions x−,ε, and x+,ε, which are the first root of
E − V (ξ) = 0 to the left or to the right of x0, respectively. It is also easy to
check that the strict minimum assumption also implies that

lim
ε→0

x±,ε = x0 (2.8.3)

and also that x+,ε and x−.ε are, respectively, monotonically increasing and
decreasing in ε. For large ε, it might happen that Eε − V (ξ) does not have
one of the two roots x,−, ε or x+,ε or both. In this case define x−,ε = −∞ or
x+,ε = +∞.

V

Eε

x0x−,ε x+,ε

ξ

Fig.2.2: A minimum of the potential and the two points x±ε.

Then if one sets

a(ε) = max
σ=±1

|xσ,ε − x0|, (2.8.4)

Eq. (2.8.1) is verified for the motions t→ x(t) such that x(0) = 0, |ẋ(0)| < ε,
by the arguments of Proposition 11, p. 37, mbe

Observations.

(1) The proof method of Proposition 13 allowed us to define, in fact, the
minimal tolerance function; i.e., Eq. (2.8.4). It is therefore easy to provide
stability criteria in the sense of Definition 9 by using the preceding proof,
under the assumptions of Proposition 13.

(2) Note that if d2V
dξ2 (x0) > 0 the function a(ε) in Eq. (2.8.4) is of O(ε).
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2.8.1 Exercises and Problems

1. Determine the stable equilibrium positions in the sense of Definition 9 with tolerance
functions:

b(ε) =
1

2
+ ε or

(
b(ε) = 3ε for ε < 1

5
,

b(ε) = +∞ for ε ≥ 1
5
,

for a unit mass point acted upon by a force with potential energy

V (ξ) = ξ(ξ − 1), or log(1 + ξ2), or− sin ξ, or
1

2
ξ2e−ξ

2

2. Show that not all the stable equilibrium positions for V (ξ) = (sin ξ2)e−ξ
2

have tolerance
b(ε) = 1

2
if ε ≤ 1 and b(ε) = +∞ if ε > 1.

3.* Show that the potential energy V defined by

V (ξ) = e−1/|ξ|
“
ξ2 + (sin

1

ξ
)2
”
, ξ 6= 0

and V (0) = 0 has infinitely many stable equilibrium positions in the sense of Definition 8.

(Hint: Show that V ′(ξ) is infinitely many times positive and negative near zero.)

2.9 Stability and Friction

A further alternative definition of an equilibrium point x0 for a force law
f ∈ C∞(R), with potential energy V bounded from below, comes from the
remark that, in practice, when x0 is a stable equilibrium position, then, under
a small perturbation of the equilibrium state, the point mass moves away
from x0 to return eventually to x0 with essentially zero velocity. As it really
happens when a pendulum is slightly deflected from its equilibrium position.

To give a mathematically precise meaning to the stability criterion that
seems to emerge from these considerations, it is necessary to formulate a
precise definition of the term “friction”.

An accurate analysis of the friction phenomenon could be found in physics
and engineering textbooks: here it will be enough to remark that, empirically,
a friction force acts “against the motion”; then one understands why a math-
ematical model for a friction force is that of a force law depending on the
position x and, mainly, on the velocity ẋ of the point mass in such a way to
have a sign systematically opposite to that of ẋ.

The simplest model describes the friction force A in terms of a nonnegative
C∞ function (η, ξ)→ α(η, ξ) on R2 as:

A(ẋ, x) = −ẋ α(ẋ, x) (2.9.1)

with α verifying the further property that α(η, ξ) 6= 0 for η 6= 0; i.e., friction
is absent only if the point is standing still. There are, however, phenomena
for which this is not a good model, like the so-called “static friction” cases
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(which are modeled by discontinuous friction forces). Remarkable examples
are: “linear friction”,

A(ẋ, x) = −λẋ, λ > 0; (2.9.2)

“cubic” friction,

A(ẋ, x) = −λẋ (1 + λ′ẋ2), λ, λ′ > 0 (2.9.3)

and “quadratic friction”,

A(ẋ, x) = −λẋ (1 + λ′ẋ2)
1
2 , λ, λ′ > 0 (2.9.4)

The following stability notion can then be formulated

10 Definition. If x0 is an equilibrium point for mẍ = f(x), it will be said
“strongly stable” if for small enough ε the motions t→ x(t), t ≥ 0, with initial
data x(0) = x0, ẋ(0) = ε and described by the (normal) equation

mẍ = −λẋ+ f(x) (2.9.5)

are such that

lim
t→+∞

x(t) = x0, ∀ λ > 0 (2.9.6)

Observation. In other words, this means that x0 is strongly stable if, in the
presence of an arbitrarily small friction, an initial datum x(0) = x0, ẋ(0) = ε
produces a motion returning asymptotically to x0, at least if ε is not too large.
The following is a stability criterion in the new sense.

14 Proposition. Let x0 be an equilibrium point for mẍ = − dV (x)
dx , with

V ∈ C∞(R) bounded from below. Suppose that for ξ − x0 6= 0 and small

enough, the derivative −f ′(ξ) = d2V (ξ)
dξ2 is positive (“strict convexity of V at

x0”); then x0 is a strongly stable equilibrium point.

Observations.

(1) The condition on V is verified if, for instance, V has a strict minimum in
x0 and not all its derivatives vanish in x0.
(2) The function V defined to be 0 for ξ = 0 and, for ξ 6= 0:

V (ξ) = e−1/|ξ|(ξ2 + (sin
1

ξ2
)2
)

(2.9.7)

is a potential energy function to which the criterion of Proposition 14 cannot
be applied. One can see that, actually, Eq. (2.9.7) provides a counterexam-
ple to the thought that might flash that the above strong stability notion is
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equivalent to the one of Definition 8. The origin is, in fact, a stable equilib-
rium position because of Proposition 13, p. 42, but it is not a strongly stable
equilibrium point.
(3) The proof of Proposition 14 is a particular case of quite general technique
adaptable to the analysis of various stability problems as it will be seen again
in Chapter 5.

Proof. Intuitively it can be expected that, in presence of friction, energy is
no longer conserved: it will, indeed, be shown that the energy of the motion

t→ x(t), solution to Eq. (2.9.5), defined as E(t)
def
= 1

2mx(t)
2 + V (x(t)), t ≥ 0,

is a non constant function of t, such that limt→∞E(t) = E0 = V (x0). Since
V (ξ) ≥ V (x0) = E0 and in the vicinity of x0 there is just one point, namely
x0, where V (ξ) = E0, it must follow that limt→+∞ x(t) = x0, if ε is small.
To study the energy variation, with time, of a motion verifying Eq. (2.9.5),
compute its derivative:

d

dt
E(t) =

d

dt

(mẋ(t)2
2

+ V (x(t))
)

= ẋ (mẍ− f(x)) = −λẋ2 ≤ 0 (2.9.8)

which shows that, in presence of linear friction, energy is nonincreasing (and
strictly decreasing when the velocity does not vanish). Therefore, the limit

E∞ = lim
t→∞

E(t) ≥ inf
ξ∈R

V (ξ) > −∞ exists. (2.9.9)

Since x0 is, by the assumption on f ′, a strict minimum point, there are (if ε
is small enough) two points x+,ε and x−,ε, to the right of x0 and to the left of
x0, respectively, that cannot be bypassed by the motion with Eq. (2.9.5) and
initial datum x(0) = x0, ẋ(0) = ε, because E(t) ≤ E(0), ∀ t ≥ 0. Figure 2.3
eloquently illustrates this, making it unnecessary to expound further details.

V
Eε = E(0)

E∞

a b
x0bx1 bx2 x+,εx−,ε

ξ

Figure 2.3

Fig.2.3: Decrease in energy as function of time in presence of friction.

Suppose that ε has been chosen so small that, as in Fig.2.3, f ′(ξ) 6= 0 if ξ 6=
x0, x−,ε ≤ ξ ≤ x+,ε: this is possible by the supposed structure of the minimum
of V in x0. Per absurdum, let E∞ > E0, as in Fig.2.3. Remark first that, as
t → +∞, limt→∞ x(t) = x̃ must exist. Otherwise, if x̂1 = lim inft→∞ x(t) <
x̂2 = lim supt→∞ x(t), there would be an interval [a, b] ⊂ (x̂1, x̂2), where
minξ∈[a,b](E∞−V (ξ)) > 0, see Fig.2.3. Such an interval would have to be run
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infinitely many times as t → +∞ , since x̂1 and x̂2 are limit points for x(t);
furthermore, when the point mass is in [a, b], its velocity is neither too small
nor too large:

|x(t)| =
√

2

m
(E(t)− V (x(t))) ≥

√
2γ

m
(2.9.10)

for some γ > 0, and

|ẋ(t)| ≤
√

2

m
(E(0)− E0). (2.9.11)

Therefore, every time the point mass enters [a, b], it spends therein at least a
time T :

T = (b− a)
√

m

2(E(0)− E0)
> 0 (2.9.12)

by Eq. (2.9.11) and, therefore [see Eq. (2.9.8)], it loses an amount of energy
given, at least, by

−λ 2

m
γT (2.9.13)

Hence, after infinitely many passages through [a, b], the energy should become
E∞ = −∞, but E ≥ E0. Thus the limit x̂ = limt→∞ x(t) exists and x̂ must
be one of the two abscissae of the intersections of E∞, with the graph of V ,
i.e., in Fig.2.3, one of the two points x̂1, or x̂2. Otherwise, limt→∞ x(t) =

±( 2
m (E∞−V (x̂)))

1
2 6= 0 and x(t) could not have a finite limit.5 This, in turn,

implies that limt→+∞ ẋ(t) = 0.
The last property is, however, in contradiction with the equations of mo-

tion (2.9.5) which would imply that

lim
t→+∞

ẍ(t) =
f(x̂)

m
6= 0, (2.9.14)

i.e., that the limit as t→ +∞ of ẋ(t) could not be finite while we proved it to
be zero. Hence, E∞ cannot be larger than E0, and, then, as already remarked
at the beginning of this proof, limt→+∞ x(t) = x0. mbe

2.9.1 Exercises and Problems

1. Show that the equation for the energy variation versus the position is, for the motions
verifying mẍ+ λẋ+ V ′(x) = 0, given by:

dE

dx
(x) = ±λ

r
2

m

“
E(x)− V (x)

”

5 Exercise: If limt→+∞ f(t) and limt→+∞ f ′(t) exist, then limt→+∞ f ′(t) = 0 (denoting
f ′ the derivative of f).
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2.* Consider the motions described by the equations:

mẍ+ λẋ+ V ′(x) = 0, mẍ+ λẋ+W ′(x) = 0,

with ẋ(0) = ẏ(0) = 0, x(0) = y(0) = x0 and suppose that for x0 ≤ ξ ≤ x1 one has
0 < −W ′(ξ) < −V ′(ξ).
Denote vx(ξ) and vy(ξ) the velocity of the motions x and y, respectively, at their passage
through ξ ∈ [x0, x1] and suppose also that it is known that ẋ(t), ẏ(t) are non-negative for
all the times preceding the (respective) time of first passage through x1.
Show that vx(ξ) ≥ vy(ξ), ∀ ξ ∈ [x0, x1]. (Hint: Use the result of Problem 1 to deduce from
vx(ξ) =

p
2(E(ξ) − V (ξ))/m:

d

dξ
(vx(ξ)2 − vy(ξ)2) =

2

m

“
− λ(vx(ξ) − vy(ξ)) − V ′(ξ) +W ′(ξ)

”
.

This proves that (d/dξ)(vx(ξ)2 − vy(ξ)2) > 0 for ξ > x0 and close enough to x0; hence, for
such ξ’s, vx(ξ) > vy(ξ). If there existed ξ ∈ (x0, x1] where vx(ξ) = vy(ξ) we could consider
the smallest among them: still call it ξ. Then (d/dξ)(vx(ξ)2 − vy(ξ))2 ≤ 0, since ξ is the
first point where vx(ξ) = vy(ξ); but this contradicts the above equation for vx(ξ)2 − vy(ξ)2
since vx(ξ) = vy(ξ) while −V ′(ξ) +W ′(ξ) > 0.)

3.* Consider the case analogous to the one in Problem 2 with initial datum ẋ(0) = ẏ(0) =
v0 > 0.

4.* Formulate and prove results analogous to Problems 2 and 3, when v0 < 0, 0 < W ′(ξ) <
V ′(ξ).

5. Consider the equation ẍ+λẋ−f(ξ) = 0, x(0) = 0, ẋ(0) = 1 or ẋ(0) = −
p

2/15. Determine
the limit, as t→ +∞ , of x(t) for λ = 50 and for f with potential energy V (ξ) = ξ2(1+ξ)2.

6. Same as Problem 5 for λ = 10 and x(0) = 0, ẋ(0) = 10.

7. Same as Problem 5 for V (ξ) = (ξ2 − 1)(ξ + 2), x(0) = 3
2

and ẋ(0) = 0, λ = 4 or

V (ξ) = ξ2(ξ + 1)(ξ + 2), λ = 1, x(0) = 0, ẋ(0) = −
√

2.

8. How large should λ be so that the motion verifying ẍ = −ẋ + V ′(x), with V (ξ) =
1
2
ξ2e−ξ

2
, x(0) = 0, ẋ(0) = 10, is attracted by the origin? (Find a lower bound only.)

9. Show that for λ small enough, the motion in Problem 8 “runs away”, i.e., limt→+∞ x(t) =

+∞. For such a motion, after an arbitrary choice of λ, estimate the time necessary to reach

the point with abscissa ξ = 10. (Find an upper and a lower bound.)

2.10 Period and Amplitude: Harmonic Oscillators

In this section a point with mass m is considered subject to a force law f
generated by a C∞ potential energy V such that

(i) V (ξ) = V (−ξ),

(ii)
dV

dξ
6= 0, ξ 6= 0

(iii) lim
ξ→+∞

V (ξ) = +∞
(2.10.1)

In §2.7 it was proved that all motions are periodic with period T < +∞.
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We now ask whether there exist potential energy functions V verifying
Eq. (2.10.1) and generating motions with energy-independent (or amplitude-
independent) period.

It is well known that the “elastic energy” V (ξ) = V (0) + 1
2k ξ

2 generates

“isochronous” motions of period T = 2π
√

m
k , constant as the total energy

varies (“harmonic oscillations”).
It is remarkable that, in the class (2.10.1)this isochrony is a characteristic

property of the harmonic oscillators, ([28]).

15 Proposition. If all motions developing under the action of a force with
potential V verifying Eq. (2.10.1) have the same period, ∃ k > 0 such that

V (ξ) =
1

2
k ξ2 + V (0). (2.10.2)

V

E

−x(E) x(E)

ξ

Fig.2.4: A potential satisfying Eq.2.10.1.

Observation. Using the idea involved in the following proof, it is also possible
to treat the case when V does not verify (i). See the observations following
Corollary 16 below.

Proof. Let E be the energy of the motion associated with the potential of Eq.
(2.10.1) and let x(E) be the corresponding amplitude (x(E) = x+ with the
notations of §2.7, see Fig. 2.4). The period of this motion is [see Eq. (2.7.8)]

T (E) = 4

∫ x(E)

0

dξ√
2
m (E − V (ξ))

. (2.10.3)

Since V is monotonically increasing in ξ for ξ > 0, the inverse function to the
function V can be defined. Denote it by v → ξ(v), defined for v ∈ [V (0),+∞)
and such that V (ξ(v)) ≡ v, ∀ v ∈ [V (0),+∞). The second relation in Eq.
(2.10.1) implies that v → ξ(v) is in C∞((V (0),+∞)), say, by the implicit
function theorem (see Appendix G).

Changing coordinates in Eq. (2.10.4), ξ → ξ(v), we find:

T (E) = 4

∫ E

V (0)

ξ′(v) dv
[
2(E − V (ξ))/m

] 1
2

, (2.10.4)
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where ξ′(v) is the derivative of ξ(v) with respect to v. Note that ξ′(v) diverges
as v → V (0), but the divergence is summable in Eq. (2.10.4). Supposing
E → T (E) known for E ∈ (V (0),+∞), Eq. (2.10.4) becomes an equation for
ξ(v) which can be solved through the following artifice. Multiply Eq. (2.10.4)

by (b−E)−
1
2 and integrate both sides between V (0) and b (assuming that the

arbitrary parameter b is chosen larger than V (0)):

∫ b

V (0)

T (E) dE√
b− E

=4

√
m

2

∫ b

V (0)

dE

∫ E

V (0)

ξ′(v) dv√
(E − v)(b− e)

=4

√
m

2

∫ b

V (0)

dvξ′(v)
[ ∫ b

v

dE√
(E − v)(b − e)

]
.

(2.10.5)

The integral in the last parenthesis can be explicitly computed and its value
is π (∀ v, b!). Hence,

∫ b

V (0)

T (E) dE√
b− E

= 4π

√
m

2

(
ξ(b)− ξ(V (0))

)
= 4π

√
m

2
ξ(b) (2.10.6)

This formula is interesting in itself since it provides the expression of the
potential energy “as a function of the period” for all V ’s verifying Eq. (2.10.1).

When T (E) = T = constant, ∀E ∈ (V (0),+∞), Eq. (2.10.6) yields

ξ(b) =
T

4π

√
2

m
2
√
b− V (0) (2.10.7)

which, remembering the definition of ξ(b), means that

V (ξ) =
1

2
m
( T
2π

)−2
ξ2 + V (0) (2.10.8)

mbe
The remark after Eq. (2.10.6) provides the following corollary.

16 Corollary. Let E → T (E), E ∈ (V (0),+∞), be the period of the motions
with energy E developing under the action of a potential verifying Eq. (2.10.1)
and let V (0) = 0. Then V is given by

∫ V (ξ)

0

T (E) dE√
b− E

= 4π

√
m

2
ξ (2.10.9)

Observations.

(1) In the above proof, it is necessary that V (ξ) = V (−ξ): if V verifies only
(ii) and (iii) of Eq. (2.10.1), then Eq. (2.10.3) is no longer correct and should
be replaced by
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T (E) = 2

∫ x+(E)

x−(E)

( 2

m
(E − V (ξ))

)− 1
2 dξ, (2.10.10)

where x+(E), x−(E) are the roots of E − V (ξ) = 0 [uniquely defined by Eq.
(2.10.1), (ii) and (iii)]. Proceeding as in the proof of Propositions 15 and 16,
after splitting Eq. (2.10.10) into two integrals like Eq. (2.10.3) between x−(E)
and 0 and between 0 and x+(E), it follows:

2π

√
2

m
(x+(b)− x−(b)) =

∫ b

0

T (E) dE√
b− E

, (2.10.11)

determining x+(b)− x(b) in terms of the period function.
(2) Therefore, because of observation (1), there are infinitely many C∞ func-
tions ξ → V (ξ) verifying (ii) and (iii) and leading to motions with energy-
independent period. They can be visualized by saying that their graphs are
obtained by horizontally deforming the parabolae of Eq. (2.10.8), keeping fixed
the distances between the values x−(E) and x+(E) such that V (x±(E)) = E.
Hence a necessary and sufficient condition that V , verifying (ii) and (iii) of
Eq. (2.10.1), generates isochronous periodic motions is that for all E > V (0),

x+(E)− x−(E) = k′
√
E − V (0) (2.10.12)

for some k′ > 0.
(3) Note that Eq. (2.10.9) does not, in general, imply that there is a V ∈
C∞(R) verifying it for arbitrarily given E → T (E) (see the problems below).

2.10.1 Exercises and Problems

1. Determine the potential V verifying Eq. (2.10.1) and V (0) = 0 such that T (E) is (1+E)
or (1 +E2) or log(1 + E); check whether V ∈ C∞(R) or V ∈ C∞(R/0).

2. Let E → T (E) > 0 be a C∞ function defined for E > 0. Suppose that T (E) =
T0 (1 +

P∞
k=1 τkE

k) for E small enough and suppose |τk| ≤ ̺k for some ̺ > 0. Show that
ξ(b) in Eq. (2.10.6) is given by

ξ(b) = T0

√
b
“
1 +

1

2

∞X

k=1

bbτk

Z 1

0

xk dx

(1− x) 1
2

”

for b small enough.

3. In the context of Problem 2, using the implicit functions theorem (see Appendix G) to
invert the function

ξ2 = T 2
0 V
“
1 +

1

2

∞X

k=1

V kτk

Z 1

0

xk dx

(1− x) 1
2

”

to obtain V as a function of ξ2 for ξ2 small, show that there is a V ∈ C∞(R) verifying
Eq. (2.10.1) and producing motions with energy E whose period is T (E) for all E small
enough; assume π

√
2m = 1.
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4.* Let E → T (E) > 0 be a C∞ function defined for E > 0. Show that given N > 0,
there is a C∞ function AN such that the function ξ(b) in Eq. (2.10.6) can be expressed as,
assuming π

√
2m = 1 and E small

ξ(b) = T0

√
b
“
1 +

NX

k=1

eτkbk + bN+1AN+1(b)
”

where eτ1, . . . ,eτN are suitably chosen constants and T0 = T (0). (Hint: Use the Lagrange-
Taylor expansion to order N on the left-hand side of Eq. (2.10.6) to express T (E) (see
Appendix B).)

5.* Using the result of Problem 4, indicate which, among the following functions E → T (E),
cannot be the function giving the periods of the motions with energy E of some even C∞

potential: E → (1 + E), E → 1 + (cosE)2, E → 1 + ( sin
√
E√

E
), E → 1 + 1

2
(sin
√
E)2,

E → 1 + sinh
√
E, E → 1 + log(1 + E), E → 1 + log(1 +

√
E). (Hint: The problem

is essentially whether the function (2.10.6) really can be used to obtain b (i.e., V ) as a
function of ξ which, also, is C∞.)

6.* Let V → ξ(V ) be defined by

ξ(V ) =
1

4π

√
2m
√
V

Z 1

0

T (x V ) dx√
1− x V ≥ 0

obtained from Eq. (2.10.6) by setting b = V , V (0) = 0, and changing the integration
variable. Assume that E → T (E) is a positive C∞ function of E ∈ [0,+∞). Show that a
necessary and sufficient condition for the existence of a potential V verifying Eq. (2.10.1)
and producing motions with energy E ≥ 0 with period T (E) is that ξ(V )−−−−−−→

V→+∞ +∞,

ξ′(V ) > 0, ∀ ξ > 0. Show also that this happens if T ′(E) ≥ 0,∀E > 0, and does not
necessarily happen if one only supposes T (E) bounded for E > 0; show, however, that such
conditions are only sufficient conditions. (Hint: for V near 0 the analysis is in problems 2
through 5 above; if for some V0 it is ξ′(V0) = 0 the inverse function ξ → V (ξ) cannot be
C∞ while if ξ′(V0) < 0 it cannot be globally defined for ξ ∈ R. If T (E) is only supposed
bounded a counterexample is T (E) = 1 + ε cos E

ε2
for ε small enough.)

7. Let V ∈ C(0)(R) verify (i), (ii), and (iii) of Eq. (2.10.1) and suppose that V ∈
C∞((−∞, 0) ∪ (0,+∞)) and V (0) = 0. Define t → x(t), t ≥ 0 to be a motion gener-
ated by V if x is a C(1) function verifying ẋ(t)2 + V (x(t)) = E > 0 and ẋ(t) changes sign
to the right and to the left of any time t when ẋ(t) = 0. Show that any initial datum x(0),
ẋ(0) gives rise to a unique motion generated by V and respecting the datum, if E > 0.

8.* Show that if in Problem 6 one only drops the condition T (E) > 0 replacing it by
T (E) ≥ 0, one has the same results, provided V is allowed to vary in the class of potentials
considered in Problem 7.

9. Find a calculation algorithm for the tabulation of a function ξ → V (ξ) which generates
motions with period log(1+

√
E) with 30% accuracy as E varies in the interval 4 < E < 10.

(Hint: Define T (E) “arbitrarily” for E 6∈ [4, 10] and use Eq. (2.10.6).)

10. Using a desk computer, actually perform the calculations in Problem 9, drawing (on the

screen) the graph of V (without tabulating it) and the graph of the amplitude x(E), E ∈
[4, 10].
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2.11 The Damped oscillator: Euler’s Formulae

In §2.7 we saw that the harmonic oscillator is a system with the absolutely
remarkable property of exhibiting only periodic motions with the same period.

In this section, and in the following, we shall examine other important
properties of harmonic oscillators before dedicating some attention to the
study of the stability of such properties with respect to “small” modifications
of the force law. Consider a point mass with mass m > 0 whose motions are
described by the equation

mẍ(t) = −kx(t)− λẋ(t) + ϕ(t), (2.11.1)

where k > 0, a > 0, and ϕ ∈ C∞(R) is a preassigned function. Equation
(2.11.1) is a normal differential equation (see §2.5), as it can be readily verified
by multiplying it by ẋ(t) and obtaining

d

dt
E(t) = −λẋ(t)2 + ẋ(t)ϕ(t) ≤ max

η∈R
(−λη2 + ηϕ(t)) =

ϕ(t)2

4λ
(2.11.2)

if E(t) = 1
2mẋ(t)

2 + 1
2kx(t)

2. Hence, for all t > 0, we find the a priori estimate

E(t) =
1

2
mẋ(t)2 +

1

2
kx(t)2 ≤ E(0) +

∫ t

0

ϕ(t)2

4λ
dt (2.11.3)

which implies normality by Proposition 5, p. 28.
Motions described by Eq. (2.11.1) are called “forced oscillations” of a lin-

early damped harmonic oscillator. In this section we shall study the case
ϕ ≡ 0, i.e., the equation

mẍ = −λẋ− kx (2.11.4)

describing linearly damped oscillators.
The arguments used to prove the strong stability criterion, Proposition

14, p. 44, can be adapted to the particular case of Eq. (2.11.4) and lead
to conclude that its motions have a trivial asymptotic behavior as t → ∞:
limt→+∞ x(t) = 0.

Actually Eq. (2.11.4) can be “explicitly” solved and from the formulae of
the solution one gets a very detailed description of the motions as shown by
the following proposition.

17 Proposition. Given (η0, ξ0, t0) ∈ R3, there exist A0, A
′
0 in R such that

the solution of Eq. (2.11.4) with initial datum

ẋ(t0) = η0, x(t0) = ξ0 (2.11.5)

can be written as
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x(t) = e−
λ

2m (t−t0)
(
A0e

λ
2m

√
1− 4mk

λ2 (t−t0) +A′0e
− λ

2m

√
1− 4mk

λ2 (t−t0)) (2.11.6)

if λ2 > 4mk; or as

x(t) = e−
λ

2m (t−t0)(A0 cos
√

k
m (1− λ2

4mk ) (t− t0)

+A′0 sin
√

k
m(1 − λ2

4mk ) (t− t0)
) (2.11.7)

if λ2 < 4mk; or, if λ2 = 4mk, as

x(t) = e−
λ

2m (t−t0)(A0 +A′0 (t− t0)) (2.11.8)

Observations.

(1) Remark that limt→+∞ x(t) = 0 exponentially fast for all solutions.
(2) There are two time scales in the motions described above (they coincide if
λ2 = 4mk). For small λ (compared with

√
4mk), one time scale is 2m/λ and

the other is 2π
√
m/k and 2m/λ≫ 2π

√
m/k. The first time scale controls the

damping (“friction time scale”) and the other controls the oscillatory motion
(“proper time scale”) [see Eq. (2.11.7)].
(3) The above solutions can be continued to solutions of Eq. (2.11.4) on the
entire time range. However, lim supt→−∞ |x(t)| = +∞ unless x(t) ≡ 0.

Proof. A possible proof is by direct verification, i.e., by inserting Eqs.
(2.11.6)-(2.11.8) into Eq. (2.11.4) and by checking that in each case the initial
data can be satisfied by suitably choosing A0, A

′
0. We present a more instruc-

tive proof which illustrates a general method and allows to introduce some
new mathematical notions. Look for solutions of Eq. (2.11.4) having the form

x(t) = Aeαt, A 6= 0 (2.11.9)

By inserting Eq. (2.11.9) into Eq. (2.11.4), we see that in order that Eq.
(2.11.9) be a solution it must be

mα2 + λα+ k = 0; (2.11.10)

hence, α = α+ or α = α− with

α± = − λ

2m

(
1±

√
1− 4mk

λ2

)
(2.11.11)

If λ2 > 4mk, there are no problems. For t ∈ R, setting

x(t) = A0e
α+(t−t0) +A′0e

α−(t−t0) (2.11.12)

one obtains a solution of Eq. (2.11.4) for all A0, A
′
0 ∈ R, since Eq. (2.11.4)

is a linear homogeneous equation. Imposing the initial conditions yields the
system
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ξ0 = A0 +A′0, η0 = α+A0 + α−A
′
0 (2.11.13)

whose determinant is α+−α− = λ
m (1− 4mk

λ2 )
1
2 6= 0. This proves the proposition

if λ2 > 4mk.
The case λ2 = 4mk can be obtained by first letting λ2 > 4mk, solving Eqs.

(2.11.4) and (2.11.5), and taking the limit λ2 → 4mk and using the regularity
theorem, Proposition 3, for differential equations.

The determination of A0 and A′0 from Eq. (2.11.13) gives, for λ2 > 4mk,

x(t) = η0
eα+(t−t0) − eα−(t−t0)

α+ − α−
− ξ0

α−eα+(t−t0) − α+e
α−(t−t0)

α+ − α−
(2.11.14)

which, as λ2 → 4mk, gives

(
ξ0 + (η0 +

λ

2m
ξ0)(t− t0)

)
e−

λ
2m (t−t0) (2.11.15)

For λ2 < 4mk, the roots α± are complex and Eq. (2.11.9) does not directly
make sense. However, if we could give a meaning to the exponential of a
complex number in such a way that the function t→ ezt has the properties

d

dt
ezt = zezt, ∀ z ∈ C (2.11.16)

and, of course, ez =
∑∞
k=0 z

k/k! for z real, we could still take Eq. (2.11.14)
as the solution to Eqs. (2.11.4) and (2.11.5). It is natural to define ∀ z ∈ C

ez =

∞∑

k=0

zk

k!
(2.11.17)

since the series is absolutely convergent even if z is complex.
It is then possible to check Eq. (2.11.16) by series differentiation of Eq.

(2.11.17) with z replaced by zt: in fact, such a series can be differentiated
term by term. Some remarkable properties of ez are

(i) ezez
′

= ez+z
′

, ez = ez (2.11.18)

where the bar denotes complex conjugation. This property can be checked by
series multiplication, as for z real, and by conjugation of the series.

(ii) ex+iy = ex (cos y + i sin y), ∀x, y ∈ R (2.11.19)

which is checked by recalling the Taylor series for the sine and cosine:

ex+iy = exeiy = ex
∞∑

k=0

(iy)k

k!
= ex

∞∑

k=0

( (−1)ky2k

(2k)!
+ i

(−1)ky2k+1

(2k + 1)!

)
(2.11.20)
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(iii) By Eq. (2.11.19), one has

cos y =
eiy + e−iy

2
, sin y =

eiy − e−iy
2i

(2.11.21)

Hence, we see that Eq. (2.11.14) gives a solution to Eqs. (2.11.4) and
(2.11.5), even if λ2 < 4mk, by interpreting the complex exponentials as given
by Eqs. (2.11.17) and (2.11.19). Note that Eq. (2.11.14) defines a real function
of t, as α+ = α− and the coefficients of η0, ξ0 in Eq. (2.11.14) are therefore
real because of the second relation in Eq. (2.11.18). Since, by (2.11.19):

Re eα+t =e−
λ

2m t cos

√
k

m
(1− λ2

4mk
) t,

Im eα+t =e−
λ

2m t sin

√
k

m
(1 − λ2

4mk
) t,

(2.11.22)

Eq (2.11.6) follows from Eqs. (2.11.14) and (2.11.22) mbe

Observations

(1) Using the representation (2.11.14) and the complex exponentials, the two
cases λ2 > 4mk and λ2 < 4mk are formally unified. This is the first instance,
among several that we shall meet, where the use of complex valued functions
appears useful and simplifies formulae and calculations even in problems in
which one is eventually only interested in “real-valued results”.
(2) The formula:

ex+iy = ex (cos y + i sin y), ∀x, y ∈ R (2.11.23)

is called “Euler’s formula” and it will be widely used in the following.
It is remarkable that the polar representation of a complex number z =

̺(cos θ + i sin θ) becomes, because of Eq. (2.11.23):

z = ̺eiθ, (2.11.24)

and also |eiy| ≡ 1, ∀ y ∈ R is true and more generally:

|ex+iy| = ex, ∀x, y ∈ R (2.11.25)

so that ez 6= 0, ∀ z ∈ C.

2.11.1 Exercises and Problems

1. Through Euler’s formulae prove the “De Moivre formula”: i.e., show that for ∀n > 0
and n an integer, (cos θ + i sin sin θ)n = (cos nθ + i sinnθ).

2. Through Euler’s formulae and the Newton binomial, show that for n ≥ 0 and integer:
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(cos θ)n =
“ eiθ + e−iθ

2

”n
=

nX

k=0

“n
k

”
cos(n− 2k)θ.

3. Study the analogue to Problem 2 for (sin θ)n.

4. Via Euler’s formulae, compute
Pn
j=0 cos jθ using the addition formula for geometric

series.

5. Compute

Z 2π

0
einθ

dθ

2π
,

Z 2π

0
(cos θ)n

dθ

2π
, n ∈ Z+.

using Euler’s formulae and Problem 2.

6. Compute

Z 2π

0
(sin θ)n

dθ

2π
,

Z 2π

0
(sin θ)n(cos θ)m

dθ

2π
, n,m ∈ Z+.

7. Find two linearly independent solutions of ẍ+ ẋ+x = 0 and compute their determinant
w(t), t > 0 (see Problem 16 in §2.2).
8. Consider the system of equations in Rd: ẋ = Lx, where L is a d × d matrix L =
(ℓij)i,j=1,...,d with constant coefficients. Determine whether there are solutions having the
form x(t) = eαtx(0). Which algebraic equation does α satisfy? Which equation does x(0)
have to verify? (See also Appendices E and F).

9. Apply the method suggested in Problem 8 to find two linearly independent solutions of
ẋ = ax+ y, ẏ = −x+ ay and describe the flow (St)t≥0 in the data space as a varies.

10. Compute the time interval between the n-th and the (n + 1)-th passage through the

origin of the solutions of ẍ+ ẋ+ x = 0 and ẍ+ 1
2
ẋ+ x = 0, in the limit n→ +∞.

2.12 Forced Harmonic Oscillations in Presence of
Friction

We now consider Eq. (2.11.1) with ϕ 6= 0. Its motions are the “linearly damped
harmonic oscillations with forcing term ϕ”.

An obvious but important remark about Eq. (2.11.1) is that its most
general solution can be written as the sum of a particular solution t →
xpart(t), t ≥ 0 of Eq. (2.11.1) and of a solution of Eq. (2.11.4), i.e., of the
homogeneous equation associated with Eq. (2.11.1). In fact, the linearity of
this equation provides that the difference between two of its solutions is a
solution of Eq. (2.11.4). Hence, in formulae, a solution t→ x(t), t > 0, of Eq.
(2.11.1) can be written:

x(t) = xpart(t) + x0(t), (2.12.1)

where t→ x0(t) is a solution of Eq. (2.11.4).
In 2.11 we saw that limt→+∞ x0(t) = 0 and, furthermore, we found explicit

expressions for the most general solution t → x0(t). Hence, the discussion of
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the properties of the motions described by Eq. (2.11.1) is reduced to that of a
particular solution of the same equation which we can choose as convenience
suggests. This remark is particularly relevant whenever one is interested in
the “asymptotic behavior” as t→ +∞ , where t→ x0(t) is infinitesimal.

Let us now describe a method for the construction of a particular solution
to Eq. (2.11.1) valid in the interesting though special case when ϕ is periodic
with period T > 0.

18 Proposition. Let ϕ ∈ C∞(R) be a real-valued periodic function with
period T > 0. Then Eq. (2.11.1) admits a solution with the same period.

Observation. Consequently, we can say that all the motions described by Eq.
(2.11.1) with a periodic forcing term are “asymptotically periodic”: this means
that there is a periodic solution t→ xper(t), t ∈ R+ of Eq. (2.11.1) such that
any other solution t→ x(t) has the property |x(t) − xper(t)| −−−−→t→+∞ 0.

Proof. First consider the apparently special cases

ϕ(t) = ϕ̂ cos
2π

T
t or ϕ(t) = ϕ̂ sin

2π

T
t, ϕ̂ ∈ R (2.12.2)

and remark that they can be treated simultaneously by solving the equation

mẍ+ λẋ + kx = ϕ̂ ei
2π
T t (2.12.3)

In fact, the real and imaginary parts of a solution to Eq. (2.12.3) are
solutions to Eq. (2.11.1) with ϕ given, respectively, by the first or the second

solution of Eq. (2.11.2) as implied by Euler’s formulae Re ei
2π
T t = cos 2π

T t

Im ei
2π
T t = sin 2π

T t.
On the other hand, remembering the properties of the complex exponen-

tials (i.e., (d/dt)ezt = zezt), Eq. (2.12.3) admits a particular periodic solution

xper(t) =
ϕ̂ei

2π
T t

−m(2π
T )2 + iλ2π

T + k
. (2.12.4)

Hence, the particular cases (2.12.2) are solved by the real and imaginary parts
of Eq. (2.12.4), respectively.

To analyze more general cases, linearity of Eq. (2.11.1) can be used again.
If this equation is considered with right-hand side ϕ ∈ C∞(R) or ψ ∈ C∞(R)
and if t → xϕ(t) and t → xψ(t), t ∈ R+, are particular solutions of it, then
t→ xϕ(t) + xψ(t), t ∈ R+, is a particular solution of Eq. (2.11.1) with right-
hand side ϕ+ ψ. Consider, then, the case:

ϕ(t) =

N∑

n=0

ϕ̂(1)
n cos

2π

T
t+

N∑

n=0

ϕ̂(2)
n sin

2π

T
t, (2.12.5)

where f̂
(1)
n , f̂

(2)
n , n = 0, 1, 2, . . . , N , are real constants. By Euler’s formulae,

Eq. (2.11.5) can be written as:
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ϕ(t) =
N∑

n=−N
ϕ̂ne

i 2π
T n t, (2.12.6)

where ϕ̂n is defined by

ϕ̂n = ϕ̂−n =
ϕ̂

(1)
n + iϕ̂

(2)
n

2
, n > 0; ϕ̂0 = ϕ̂

(1)
0 . (2.12.7)

Hence, a particular solution of Eq. (2.11.1) with ϕ given by Eq. (2.12.5) [or
Eq. (2.12.6)] is

xper(t) =

N∑

n=−N

ϕ̂ne
i 2π

T n t

−m(n 2π
T )2 + iλn 2π

T + k
. (2.12.8)

which is real since the addends in Eq. (2.12.8) with index n and −n are
complex conjugates because of Eq. (2.12.7). So the proposition is proved when
ϕ is given by Eq. (2.12.5) or Eqs. (2.12.6) and (2.12.7). The same methods
can be applied to the case when ϕ is given by:

ϕ(t) =
∞∑

n=−∞
ϕ̂ne

i 2π
T n t, t ∈ R, with (2.12.9)

ϕ̂n = ϕ̂−n, n = 0, 1, . . . (2.12.10)

provided the series (2.12.9) converges well enough so that the function t →
xper(t), t ∈ R, defined by

xper(t) =

+∞∑

−∞

ϕ̂ne
i 2π

T n t

−m(n 2π
T )2 + iλn 2π

T + k
. (2.12.11)

is of class C∞ and its first and second derivatives (at least) can be computed
by summing the corresponding derivatives of the functions in Eq. (2.12.11).

A simple sufficient condition for these properties is that there is a constant
cp such that

|ϕ̂n| ≤
cp

(1 + |n|p) , n = 0,±1,±2, . . . (2.12.12)

for all p > 0 or, equivalently:

lim
n→∞

|ϕ̂n| (1 + |n|p) = 0, ∀ p ≥ 0 (2.12.13)

If Eq. (2.12.12) holds, the series (2.12.9) is uniformly convergent together with
the derivative series obtained by differentiating Eq. (2.12.9) term by term an
arbitrary number of times. For instance, the series of the k-th derivatives of
Eq. (2.12.9) is
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∞∑

n=−∞
ϕ̂n
(2πi
T

n
)k
ei

2π
T n t, (2.12.14)

and its n-th term has a modulus bounded by

|ϕ̂n|
(2π
T
n
)k ≤

(2π
T

)k
cp

|n|k
(1 + |n|)p (2.12.15)

by Eq. (2.12.12) and by |ei 2π
T n t| ≡ 1. The right-hand side of Eq. (2.12.15) is

t independent and can also be summed over n if one chooses the (arbitrary)
parameter p > k + 1. Then the series differentiation theorems guarantee that
Eq. (2.12.9) is a C∞ function whose derivatives can be computed by “series
differentiation”.

Hence, the proposition is proved also when ϕ is given by Eqs. (2.12.9) and
(2.12.10) with ϕ̂n verifying Eq. (2.12.12), ∀ p ≥ 0, i.e., with ϕ̂n decreasing
faster than any power as n→∞

The following very important proposition tells us that the last case con-
sidered is, actually, the most general and therefore completes our proof.

19 Proposition. Let T > 0 and ϕ ∈ C∞(R) be a periodic function with
period T . There exists a unique sequence (ϕ̂n)n∈Z of complex numbers such
that

(i) ϕ̂n = ϕ̂−n, n = 0, 1, 2, . . . ; (2.12.16)

(ii) lim
n→∞

(1 + |n|)p|ϕ̂n| = 0, ∀ p ∈ Z+; (2.12.17)

(iii) ϕ(t) =
∞∑

n=−∞
ϕ̂ne

i 2π
T n t, ∀ t ∈ R. (2.12.18)

The ϕ̂n are called the “harmonics” of ϕ with respect to the period T and

(iv)ϕ̂n =
1

T

∫ T

0

ϕ(t)ei
2π
T n tdt, ∀n ∈ Z, (2.12.19)

and, finally, ∀ s = 0, 1, . . .:

dsϕ

dts
=

∞∑

n=−∞
ϕ̂n
(2πi
T

n
)s
ei

2π
T n t, ∀ t ∈ R (2.12.20)

Observations.

(1) Equation (2.12.17) can also be read as: the sequence (ϕ̂n)n∈Z approaches
zero, as n→∞, “faster than any power”. It is equivalent to Eq. (2.12.12).
(2) Proposition 19 implies, via Eqs. (2.12.18) and (2.12.19), that two C∞

functions periodic with the same period T > 0 coincide if and only if all their
harmonics relative to the period T coincide.
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(3) Proposition 19 is a “structure theorem” on the C∞-periodic functions on
R: it is the “Fourier series theorem”.

The proof of this proposition will be given in the next section and it will
also conclude the proof of Proposition 18.

2.13 Fourier’s series for C∞-Periodic Functions

Preliminary to the proof of Proposition 19, p. 59, remark that if a function
t → ϕ(t), t ∈ R, is defined by Eq. (2.12.18) with (ϕ̂n)n∈Z verifying Eqs.
(2.12.16) and (2.12.17), then ϕ is necessarily a C∞ function, by the series
differentiation theorem [see, also, the considerations concerning Eqs. (2.12.14)
and (2.12.15)]. Furthermore, since Eq. (2.12.18) is, in this case, uniformly
convergent:

∫ T

0

e−i
2π
T n tϕ(t)

dt

T
=

+∞∑

k=−∞
ϕ̂k

∫ T

0

e−i
2π
T (n−k) t dt

T
(2.13.1)

by the interchangeability of the integration and the summation operations in
uniformly convergent series. However:

∫ T

0

e−i
2π
T (n−k) t dt

T
=

{
1 if n = k
0 if n 6= k

(2.13.2)

as seen by explicit calculation of the integral. Relation (2.13.2) is often written

∫ T

0

e−i
2π
T (n−k) t dt

T
= δnk (2.13.3)

n, k = 0, 1,±2, . . . with δnn ≡ 1, δnk ≡ 0 if k 6= n.
Substitution of Eq. (2.13.2) into Eq. (2.13.1) yields

∫ T

0

e−i
2π
T n tϕ(t)

dt

T
= ϕ̂n, n ∈ Z (2.13.4)

which shows that if ϕ has the form of Eq. (2.12.18) with (ϕ̂n)n∈Z verifying
Eq. (2.12.17), then the numbers ϕ̂n are uniquely determined by Eq. (2.12.19).
If ϕ is real, then Eq. (2.12.19) [or Eq. (2.13.4)] implies Eq. (2.12.16).

The above considerations show the validity of an “inverse” proposition to
Proposition 19 and motivate the validity of Eq. (2.12.19). They are also useful
since they allow the introduction of the fundamental relation (2.13.3).

We now give the proof of Proposition 19 §2.12, (“Fourier’s theorem”).

Proof.. Let ϕ ∈ C∞(R) be a real periodic function with period T > 0. Define

ϕ̂n =
1

T

∫ T

0

e−i
2π
T ntϕ(t) dt, n ∈ Z (2.13.5)
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It is ϕ̂n = ϕ̂−n because T is real. Hence, Eq (2.12.16) holds. To study the
asymptotic behavior of ϕ̂n as n→∞, integrate Eq. (2.13.5) by parts.

ϕ̂n =
1

T

[e−i 2π
T n t

−i 2πT n
ϕ(t)

]T
0
− 1

T

∫ T

0

e−i
2π
T n t

−i 2πT n
ϕ′(t) dt

=
1

T

∫ T

0

e−i
2π
T n t

i 2πT n
ϕ′(t) dt

(2.13.6)

where ϕ′ denotes the first derivative of ϕ, and the periodicity of ϕ has beer
used to eliminate the first term in the intermediate relation.

Since ϕ′ is also a T -periodic C∞ function, and so are the higher derivatives
ϕ′′, ϕ′′′, . . . , (dpϕ/dtp) ≡ ϕ(p), the relation Eq. (2.13.6) can be iterated by
again integrating by parts. After p such steps, p = 0, 1, 2, . . . one finds:

ϕ̂n =
1(

i 2πT n
)p

1

T

∫ T

0

e−i
2π
T n tϕP (p)(t) dt (2.13.7)

Hence, if

c̃p = max
0≤t≤T

|ϕ(p)(t)|, (2.13.8)

one has, ∀ p = 0, 1, . . .:

|ϕ̂n| ≤
( T

2π |n|
)p
c̃p, ∀n ∈ Z (2.13.9)

which is equivalent to Eq. (2.12.17).
It remains to prove Eq. (2.12.18) with ϕ̂n, n ∈ Z, given by Eq. (2.13.5).

In fact, the relation (2.12.20) is, as already remarked, a consequence of Eqs.
(2.12.18) and (2.12.17). Consider the order N approximation to the series
(2.12.18); we elaborate it by using Eq. (2.13.5):

N∑

n=−N
ei

2π
T n t ϕ̂n =

N∑

n=−N
ei

2π
T n t

∫ T

0

e−i
2π
T n τϕ(τ)

dτ

T

=

∫ T

0

( N∑

n=−N
ei

2π
T n (t−τ)ϕ(τ)

)dτ
T

(2.13.10)

which is an identity, ∀ϕ ∈ C∞(R).
The summation in the parenthesis in Eq. (2.13.10) is a C∞ function in t

and τ , periodic in both variables with period T , and it has the value 2N + 1
if τ = t+mT , with m an integer. It also has the property

1

T

∫ T

0

( N∑

n=−N
ei

2π
T n (t−τ))dτ ≡ 1, ∀ t ∈ R (2.13.11)
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which follows from Eq. (2.13.3) by changing t−τ into t′ and by using the men-
tioned periodicity. Furthermore, the function in parenthesis in Eqs. (2.13.11)
and (2.13.10) can be written as

1 +

N∑

n=1

ei
2π
T n (t−τ) +

N∑

n=1

e−i
2π
T n (t−τ) (2.13.12)

and the two sums can be “explicitly” summed as geometric sums with ratios
e±i

2π
T n (t−τ). After a few steps, the result is, for m integer,

N∑

n=−N
ei

2π
T n (t−τ) =

{
sin(N+ 1

2 ) 2π
T (t−τ)

sin 1
2

2π
T (t−τ) τ 6= t+mT

1 + 2N for τ = t+mT
(2.13.13)

Coming back to Eq. (2.13.10) and using Eqs. (2.13.13) and (2.13.11):

N∑

n=−N
f̂ne

i 2π
T n t =

1

T

∫ T

0

sin(N + 1
2 )2π

T (t− τ)
sin 1

2
2π
T (t− τ) ϕ(τ) dτ

≡ 1

T

∫ T

0

sin(N + 1
2 )2π

T (t− τ)
sin 1

2
2π
T (t− τ) (ϕ(t) + ϕ(τ) − ϕ(t)) dτ

= ϕ(t) +
1

T

∫ T

0

sin(N + 1
2 )2π

T (t− τ)
sin 1

2
2π
T (t− τ) (ϕ(τ) − ϕ(t)) dτ

(2.13.14)

Hence, to show Eq. (e2.13.8), we have to show that

lim
N→∞

1

T

∫ T

0

sin(N + 1
2 )2π

T (t− τ)
sin 1

2
2π
T (t− τ) (ϕ(τ) − ϕ(t)) dτ = 0 (2.13.15)

The reason why this is true is the remark that, at fixed t and ∀m integer, the
function

τ → ψt(τ) =

{
ϕ(τ)−ϕ(t)

sin 1
2

2π
T (t−τ) cos 1

2
2π
T (t− τ) if t 6= t+mT

T
πϕ
′(t) t = t+mT

(2.13.16)

is just a particular C∞ function periodic with period t, so that Eq. (2.13.9),
and Euler formulae, imply Eq. (2.13.15). The proof of periodicity property of
ψt(τ) is left as an exercise (see Problems 1-4 of this section).

By the trigonometric addition formulae, the integral E. (2.13.16) then
becomes

1

T

∫ T

0

(
ψt(τ) sin

2π

T
N (t− τ) + (ϕ(τ)− ϕ(t)) cos

2π

T
N (t− τ)

)
dτ (2.13.17)
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It appears that this expression, via Euler’s formulae, is a linear combina-
tion of four harmonics of order±N of the functions of the τ variable τ → ψt(τ)
and τ → ϕ(t) − ϕ(τ) which, as discussed above, are C∞ functions, periodic
with period T .

Hence, the integral in Eq. (2.13.17) must tend toward zero faster than any
power of N as N → ∞: in fact, the inequalities in Eq. (2.13.9) hold for an
arbitrary T -periodic C∞ function. The same, then, occurs for Eq. (2.13.15),
and (2.12.18) is proved. mbe

2.13.1 Exercises and Problems

1. Let f ∈ C∞(R), f(0) = 0. Define ψ(t) =
f(t)
t
, t 6= 0, and ψ(0) = f ′(0). By applying the

Taylor-Lagrange theorem (see Appendix B), show that ψ ∈ C∞(R).

2. In the context of problem 1, show that for k = 0, 1, . . . ,

ψ(k)(t) =

„ kX

h=0

(−t)h
h!

f(h)(t)

«
(−1)k

tk+1k!
, ∀ t 6= 0, ψ(k)(0) =

f(k+1)(0)

(k + 1)
,

where the superscript k denotes the kth derivative. (Hint: To check that ψ(k)(t) is continuous
at t = 0 (hence C∞) remark that the expression in parenthesis is the evaluation of f(0) = 0
by Taylor expansion to order k at the point t and evaluated at −t; hence vanishes to
O(tk+1)).

3. Show that if f, g ∈ C∞(R) and g(t0) = 0, g′(t0) 6= 0, the function

ψ(t) =
f(t) − f(t0)

g(t)
, t 6= t0, and ψ(t0) =

f ′(t0)

g′(t0)

is a C∞ function in the vicinity of t0.

4. If f ∈ C∞(R) and is periodic with period T , the function

ψt(τ) =
(f(τ) − f(t)) cos π

T
(t− τ)

sin π
T

(t − τ) , ifτ 6= t+mT

=
T

π
f ′(t), ifτ 6= t +mT

if m is any integer, is a C∞ function of τ and it is periodic with period T . (Hint: Use
Problem 3.)

5. Using Eq. (2.12.19), compute the Fourier coefficient of order 0, 1,−1 for the function
f(t) = (1− 1

2
cos t)−1, thinking of it as a periodic function with period 2π or 4π.

6. Using the Taylor series for the function (1− ξ)−a, compute the Fourier series coefficients
of the complex-valued functions with period 2π: f(t) = (1− 1

2
eit)−1 or f(t) = (1− 1

2
eit)−

m
n ,

with m,n ∈ Z. (Hint: (1 − z)−a =
P∞
k=0

`−a
k

´
(−z)k.)

7. Let, ∀ z ∈ C: sin z = eiz−e−iz

2i
, cos z = eiz+e−iz

2
. Using the Taylor series for the expo-

nential [see Eq. (2.11.17)], determine the Fourier Series coefficients of f(t) = sin eit or of
f(t) = cos eit, t ∈ R, as 2π-periodic functions or as 4π-periodic functions.
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8. Let, ∀ z ∈ C, |z| < 1: log(1 + z) =
P∞
k=1

(−1)n+1

n
zn.. By using the Series expansion for

the exponential, Eq. (2.11.17), show that exp(log(l + z)) = 1 + z and compute the Fourier
transform of the 2π-periodic function f(t) = − log(1− 1

2
eit).

9. Same as Problem 7 for f(t) = (1 − 1
2 cos t)−1, t ∈ R. Estimate f̂2 up to 10%, i.e.,

find an expression for f̂n, but estimate it only for n = 2.

10. Compute the Fourier transform of f(t) = − log(1 − 1
2 cos t) ass a 2π-periodic

function. Estimate f̂3 up to %30.

11. Same as Problem 10 for f(t) = ecos t. Estimate up to 1% the quantities f̂0, f̂±1.

12.* Show that a11 the functions in Problems 5-11 have an exponentially decaying Fourier
transform. In each case give an estimate of the decay constant.

13. Give an example of a C∞ function, periodic with period 2π whose Fourier transform
does not decay exponentially (Hint: First define the transform and then the function, as its
sum.)

14. Show that the function f(t) =
∑+∞

n=−∞
eint

(1+n4) is continuous, term by term differ-

entiable, periodic together with its derivative and with period 2π, but not C∞.

15.* Analyze critically the proof of §2.13 to deduce that if f is T -periodic continuous and
piecewise differentiable with continuous bounded derivatives in each piece, then

f(t) = lim
N→+∞

N∑

n=−n
f̂ne

2π
T int

with f̂n given by
∫ T
0
f(t)e−

2π
T int dt

T . If f is discontinuous but piecewise continuous with

derivatives bounded and continuous in each piece, the preceding formula holds in every

continuity point. In the discontinuity points, if f(t±)
def
= limτ→t± f(τ), the series sum is

f(t+)+f(t−)
2 (considering 0 and T as the same point from the point of view of the disconti-

nuities). (Hint: To reduce the second part to the first, show the truth of the second part in

the case of a function which takes just two values (i.e., which has only two discontinuities

being otherwise constant). Then show that any function of the second type is a sum of a

function of the first type plus a finite number of piecewise constant functions. Recall that a

function f defined on the interval [a, b] is piecewise continuous if a, b can be represented

as a union of n closed intervals [a1, b1], [a2, b2], . . . , [an, bn] and, for every i = 1, . . . , n
the function f coincides in the interior of [ai, bi] with a function fi continuous on the entire

interval [ai, bi]: f may take arbitrary values at the extremes of each interval [ai, bi]).

2.14 Nonlinear Oscillations. The Pendulum and its
Forced Oscillations. Existence of Small Oscillations

In the preceding sections we saw that the asymptotic period of a damped har-
monic oscillator is identical to that of the forcing (§2.12). However, the notion
of “linear” or “harmonic” oscillator is too rough a notion and, in applications,
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a linear oscillator can only appear as a simplified model of some more complex
entity.

For instance, very often a linear oscillator appears as a model for the “small
oscillations” of a system governed by a nonlinear equation: a prototype of these
nonlinear systems is the pendulum.

It is natural to ask the question of the stability of the properties of the
solutions to certain classes of equations with respect to the variations of the
equations themselves: in fact, it is clear that in applications one shall only
“trust” the predictions which do not change by “slightly” changing the models
themselves. This is because, as stressed in Chapter 1, there is no “absolutely
valid model”. As an example of a motion-stability problem in the above sense,
we shall now treat some questions concerning the pendulum forced motion;
i.e. the motion governed by the (normal) equation:

mẍ(t) + λẋ(t) + k sinx(t) = f(t), t ∈ R+ (2.14.1)

with λ,m, and k > 0 and where f ∈ C∞(R) is a periodic function of period
T > 0.

In the following, it will be necessary to compare several motions, functions
of t, and to fix the ideas we shall adopt, as a measure of magnitude on [a, b] ⊂ I
of a function ϕ ∈ C∞(I) the quantity6

||ϕ||[a,b] = sup
t∈[a,b]

|ϕ(t)| (2.14.2)

We now ask if the motions of Eq. (2.14.1) have the following properties
(1) If t → x(t), t ∈ R+, is a motion described by Eq. (2.14.1) and if
x(0), ẋ(0), ||f ||R+ are small enough, the motion has also oscillations of small
amplitude (“existence of small oscillations”).
(2) When ||f ||R+ is sufficiently small, Eq. (2.14.1) admits a solution with the
same period of f .
(3) As t → +∞, every solution can be asymptotically confused with the
periodic solution, in (2) above, provided such a solution exists and the data
x(0), ẋ(0) are small enough.

In other words, we ask if the above three properties, which have been
explicitly or implicitly checked for the forced linear oscillations without re-
strictions on ẋ(0), x(0), ||f ||R+ , are still true in a nonlinear case, at least in
the small oscillations regime. In this section we analyze problem (1) and in-
troduce the following proposition which “solves” it:

6 Obviously, there are other possible magnitude measures. Usually the “good” one is de-
termined from the needs of the particular applications. Examples of other measures are

Z b

a
|ϕ(t)|dt, sup

t∈[a,b]
(|ϕ(t)| + |ϕ̇(t)|),

“Z b

a
|ϕ(t)|2dt

” 1
2
.
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20 Proposition. There exist constants γ, γ′ > 0 such that if f ∈ C∞(R) (not
necessarily periodic) and (x0, v0) ∈ R2, the motion → x(t) described by Eq.
(2.14.1) and following the initial data x(0) = x0, ẋ(0) = v0, verifies

||x||R+ ≤ γ (|x0|+ |v0|+ ||f ||R+) if |x0|+ |v0|+ ||f ||R+ < γ′. (2.14.3)

Observations.

(1) Equation (2.14.1) is just one example of a nonlinear equation, chosen
among others for its historical and romantic importance. The results and
methods that follow apply to much more general equations. The reader will
recognize that, in the proof, the key point is that k sin ξ− kξ; is infinitesimal,
as ξ → 0, of higher order in ξ. As an exercise, the reader can, with the obvious
modifications, repeat the proof that follows to investigate the validity of the
statement identical to Proposition 20 for the equation mẍ + λẋ + kψ(x) =
f(t), l > 0, under the sole assumptions that ψ ∈ C∞(R), ψ(0) = 0, ψ′(0) =
(dψ/dξ)(0) > 0.
(2) To realize the necessity, in general, of the restriction on ||f ||R+ consider
the equation

m+̈λẋ+ sinx = λω + sinωt, (2.14.4)

whose solution, among others, t→ ωt is unbounded. However restrictions on
x0, v0 are not necessary. In other words, in Proposition 20, one could replace
|x0| + |v0| + ||f ||R+ < γ′ with ||f ||R+ < γ′. We have imposed them only for
the purpose of simplifying the proof.
(3) The idea behind the proof is to “compare” the solution of Eq. (2.14.1)
with the solution of a similar equation where sinx is replaced by its first-
order approximation, namely x. Such comparison will not be “direct”, but it
will take place by rewriting k sinx as kx + k(sinx − x) and considering the
function t → k(sinx(t) − x(t)) as a known function bounded by k|x(t)|3/6,
because of the inequality 0 < ξ − sin ξ ≤ ξ3/6, ∀ ξ ∈ R+.

In this way, one gets a linear equation with forcing term f(t)−k(sinx(t)−
x(t)). Solving it “explicitly” (see the following proof), one finds a t-independent
relation between the amplitude M(t) = max0≤τ≤t |x(t)| ≡ ||x||[0,t] and its
cube which, as we shall see, implies that M(t) must stay bounded, ∀ t ∈ R+.

This method of proof is a particular case of a general method to obtain a
priori estimates on solutions of nonlinear equations dose to linear ones and,
sometimes, it is called the “self-consistency” method. The reader should med-
itate on the reason for this name after reading the following proof. The self-
consistency method will be again used in this book, for instance in the proof
of the Lyapunov stability criterion (see §5.4).

Proof. Assume, for simplicity, λ2 6= 4mk. Before analyzing Eq. (2.14.1), it
is useful to remark that the equation
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mẍ+ λẋ + kx = F (t), t ∈ R+ (2.14.5)

with F ∈ C∞(R), admits, among its solutions defined for t > 0, the solution

p0(t) =

∫ t

0

eα+(t−τ) − eα−(t−τ)

α+ − α−
F (τ)

dτ

m
(2.14.6)

where α+ and α− are the two roots of mα2 + λα+ k = 0, i.e.,

α± = λ
2m

(
1±

√
1− 4mk

λ

)
. (2.14.7)

This property can be checked directly by inserting Eq. (2.14.6) into Eq.
(2.14.5), and it is a special case of a general property of the linear differential
equations which will be illustrated further through exercises and problems at
the end of this section.7

As already remarked in §2.12, the most general solution to Eq. (2.14.5)
will have the form

x(t) = x(t) + p0(t), (2.14.8)

where t → x(t), t ∈ R+ , solves Eq. (2.14.5) with F ≡ 0. Note also that Eq.
(2.14.6) implies that p0 is real valued, even when α±, are complex, provided
F is real; also,

p0(0) = 0, ṗ0(0) = 0 (2.14.9)

Coming back to Eq. (2.14.1) with initial conditions x(0) = x0, ẋ(0) = v0, we
rewrite it as

mẍ(t) + λẋ(t) + k(x(t) ≡ f(t) + k (x(t) − sinx(t))), (2.14.10)

and by the preceding remarks, pretending that the right-hand side is a “known
function” of t, it is

x(t) = x(t)+

∫ t

0

eα+(t−τ) − eα−(t−τ)

α+ − α−
[
f(τ)+k (x(τ)−sin x(τ))

]dτ
m
, (2.14.11)

where t→ x(t) is a solution to Eq. (2.14.5) with F ≡ 0 and verifying [see Eq.
(2.14.9)]

x(0) = x0, ẋ(0) = v0. (2.14.12)

From §2.12, it follows that ,

7 Note also that if F is periodic, Eq. (2.14.6) will not be so, in general. Hence, this method
for obtaining particular solutions to Eq. (2.14.5) is different from the one in §2.12, valid
for periodic F ’s and based on the Fourier series.
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x(t) =
v0 − α−x0

α+ − α−
eα+t − v0 − α+x0

α+ − α−
eα−t, (2.14.13)

and since Re α− ≤ Re α+ < 0, it is |eα±t| ≤ eRe α+t ≤ 1, ∀ t ≥ 0: hence,

||x||R+ ≤
( |α+|+ |α−|
|α+ − α−|

|x0|+
2

|α+ − α−|
|v0|
)
. (2.14.14)

Setting M(t) = ||x||[0,t], we deduce from Eq. (2.14.11), using the inequality

0 ≤ ξ − sin ξ ≤ ξ3

6
, ∀ ξ ∈ R+, (2.14.15)

that, ∀ t ≥ 0:

|x(t)| ≤ ||x||R+ + (||f ||R+ +
k

6
M(t)3)

∫ t

0

dτ

m
2
eRe α+ (t−τ)

|α+ − α−|
. (2.14.16)

Hence, by integration,

|x(t)| ≤ ||x||R+ + (||f ||R+ +
k

6
M(t)3)

2m−1

|Re α+| |α+ − α−|
. (2.14.17)

which implies, by Eq. (2.14.14),

|x(t)| ≤ A+BM(t)3, t ≥ 0 (2.14.18)

with

A =
( |α+|+ |α−|
|α+ − α−|

|x0|+
2

|α+ − α−|
|v0|+

2m−1||f ||R+

|Re α+| |α+ − α−|
)
, (2.14.19)

B =
2k

6m|Re α+| |α+ − α−|
. (2.14.20)

It is then immediately seen from Eq. (2.14.18) that the continuity and mono-
tonicity of M(t) = ||x||[0,t] and the arbitrariness of t ≥ 0 imply

M(t) ≤ A+BM(t)3, ∀ t ∈ R+, (2.14.21)

and from Eq. (2.14.19), it also follows that

M(0) = |x(0)| = |x0| < A (2.14.22)

To complete the proof remark that the graph of the function M → A+BM3−
M has the form illustrated in Fig. 2.5 if 27BA2 < 4. Hence, if |x0|, |v0|, ||f ||R+

are small enough so that the latter inequality involving A and B holds [see
Eqs. (2.14.19) and (2.14.20)], the equation A+BM3 −M = 0 has three real
roots µ1(A), µ2(A), µ3(A), with
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µ1(A)

−(3B)−
1
2 (3B)−

1
2

A+Bm3−m

µ2(A)
m

µ3(A)A

Fig.2.5: Illustration of the bound following from Eq. (2.14.21),(2.14.22).

µ1(A) < 0, 0 < µ2(A) < (3B)−
1
2 < µ3(A), see Fig.2.5. Furthermore, A +

BM3 −M > A −M for all M ≥ 0: hence, µ2(A) > A. Also, if M ≥ 0, M <

(3B)−
1
2 , it follows that 0 ≤ A+BM3−M ≤ A+B( 1

3B )M−M = A− 2
3M ,i.e.,

µ2(A) ≤ 3
2A. So, concluding:

A < µ2(A) <
3

2
A (2.14.23)

Since the function t → M(t), t ∈ R+, is continuous and verifies Eqs.
(2.14.21) and (2.14.22) and M(t) ≥ 0, it must be

M(t) ≤ µ2(A) ≤ 3

2
A (2.14.24)

which concludes the proof. The constant γ′ is determined by the condition
27BA2 < 4 and γ by Eq. (2.14.24) recalling Eq. (2.14.19). mbe

2.14.1 Exercises and Problems

1. Consider the differential equation ẋ = ax+ f(t) and show that p(t) =
R t
0 e

a (t−τ)f(τ)dτ
is a solution to it with initial datum p(0) = 0, ∀ f ∈ C∞(R), a ∈ R.

2. Let L be a d× d matrix with constant coefficients and consider the differential equation
ẋ = Lx + f(t), where f ∈ C∞(R) is an Rd-valued function. Assume that L has d distinct
eigenvalues λ1, . . . , λd with respective eigenvectors v(1),v(2), . . . ,v(d). Show that if for w ∈
Rd, we denote α1(w), . . . , αd(w) the components of w on the basis v(1), . . . ,v(d) (see
Appendix E), then

p(t) =

Z t

0

dX

j=1

eλj(t−τ) αj(f(τ))v(j) dτ

is a particular solution to the equation, with p(0) = 0. (Hint: Note that
Pd
j=1 αj(f(τ))v(j)

≡ f(t) and check the validity of the equation by substitution.)

3.* In the context of Problem 2, Let x(1), . . . ,x(d) be d linearly independent solutions of the

equation ẋ = Lx with initial data x
(i)
j (0) = δij , i, j = 1, . . . , d. Let Wij(t) = x

(i)
j (t), i, j =

1, . . . , d: show that it is the matrix already introduced in Problems 7-9, §2.2 (“wronskian
matrix”), verifying dW/dt = LW . (Hint: Use the differential equation verified by each row
of W .)
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4.* In the context of Problems 2 and 3, show that

t→ p(t) =

Z t

0
W (t− τ)f(τ)dτ

is a special solution to ẋ = Lx+ f(t) with initial datum x(0) = 0; i.e., it coincides with the
one in Problem 2.

5. Apply the method of Problem 2 to find particular solutions to the equation ẋ = −x +
y + f1(t), ẏ = −x− y + f2(t).

6. Same as Problem 4 for mẍ+ λẋ+ kx = f(t), after reducing it to a first-order system of
equations. Consider the case f(t) = t. Show that such solution verifies x(0) = 0, ẋ(0) = 0.

7. Same as Problem 4 for d4x/dt4 − −d2x/dt2 + x = t, after reducing it to a first-order

system. Show that such solution verifies x(0) = 0, ẋ(0) = 0, ẍ(0) = 0, x′′′(0) = 0.

2.15 Damped Pendulum: Small Forced Oscillations

We shall now show that the pendulum, as the damped linear oscillator, also
admits periodic motions isochronous with the forcing term, at least if the
oscillations are small. This solves the problem (2) posed in p. 65, §2.14 Again,
the pendulum is selected only for definiteness. The theory developed below
is valid for equations obtained from Eq. (2.14.1) by changing sinx into ψ(x),
where ψ is an arbitrary C∞ function such that ψ(0) = 0, ψ′(0) > 0.

Consider the normal equation

mẍ+ λẋ+ k sinx = γ f(t), t ∈ R+, (2.15.1)

γ ∈ R, λ,m, k > 0, λ2 6= 4mk (for sake of simplicity), then

21 Proposition. Let t→ f(t), t ∈ R , be a C∞ periodic function with period
T > 0. There exists a periodic motion with period T verifying Eq. (2.15.1),
provided γ is small enough.

Observation. The proof below is based on a very general method used to treat
such questions and relying on the implicit functions theorems. Together with
Eq. (2.15.1), one considers the “linearized equation”

mẍ+ λẋ + k x = γf, (2.15.2)

which, as shown in §2.12, admits a periodic solution isochronous with f :

t→ xγ(t) ≡ γx̃(t) = γ

+∞∑

n=−∞

f̂ne
2π
T int

−m(2π
T )2n2 + 2πi

T nλ+ k
, (2.15.3)

where (f̂n)n∈Z are the harmonics of f . Then look for a periodic solution to
Eq. (2.15.1) having the form
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t→ x(t) = γx̃(t) + y(t), t ∈ R (2.15.4)

with initial data:

y(0) = ε, ẏ(0) = η (2.15.5)

hoping to be able to show that ε, η, and y exist and are infinitesimal as γ → 0,
of higher order in γ (i.e., hoping that γx̃(t) is a very good approximation to
x(t) for small γ). The function t→ x(t), solution of Eqs. (2.15.1) and (2.15.5),
depends on ε, η, γ [in a C∞ way, by the regularity theorem (see Proposition
3 and Problem 17 of §2.5)]; set

x(T ) =γ x̃(T ) + a(ε, η, γ), ẋ(T ) = γ ˙̃x(T ) + b(ε, η.γ); (2.15.6)

i.e. y(T ) = a(ε, η, γ), ẏ(T ) = b(ε, η, γ) [see Eq. (2.15.4)]. Therefore, the condi-
tion that Eq. (2.15.1) admits a periodic solution with period T can be written
(see Proposition 12) as

a(ε, η, γ) = ε, b(ε, η, γ) = η, (2.15.7)

since x̃(0) = x̃(T ), ˙̃x(0) = ˙̃x(T ) by the periodicity of x̃.
So the problem of proving Proposition 21 is equivalent to proving the solubility
of the implicit functions problem of expressing, from Eq. (2.15.7), ε and η as
functions of γ for γ small.

Proof.. Note that the functions f1(ε, η, γ) = a(ε, η, γ) − ε and f2(ε, η, γ) =
b(ε, η, γ) − η are C∞ functions. To study Eq. (2.15.7), write the equation
verified by t→ y(t) defined in Eq. (2.15.4):

mÿ(t) + λẏ(t) + k y(t) = k(γx̃(t) + y(t)− sin(γx̃(t) + y(t))),

y(0) = ε, ẏ(0) = η
(2.15.8)

This equation and the uniqueness theorem for differential equations show that
if ε = 0, η = 0, γ = 0, it follows that y(t) ≡ 0, t ∈ R+ and, therefore,

f1(0, 0, 0) = 0, f2(0, 0, 0) = 0 (2.15.9)

It is then natural to look for solutions of Eq. (2.15.7) near γ = 0 through the
implicit functions theorem (see Appendix G). The solubility condition of Eq.
(2.15.7) for small γ is that the Jacobian matrix

J =

( ∂f1
∂ε (0, 0, 0) ∂f1

∂η (0, 0, 0)
∂f2
∂ε (0, 0, 0) ∂f2

∂η (0, 0, 0)

)
(2.15.10)

has non vanishing determinant. To compute the derivatives in Eq. (2.15.10),
recall that
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a(ε, η, γ) = y(T ), b(ε, η, γ) = ẏ(T ), (2.15.11)

where t→ y(t) solves Eq. (2.15.8). Pretending that the right-hand side of Eq.
(2.15.8) is a known function of t ∈ R+, write

y(t) =y(t) +

∫ t

0

eα+(t−τ) − eα−(t−τ)

α+ − α−
·

· k (γx̃(t) + y(τ)− sin(γx̃(τ) + y(τ)))
dτ

m
,

(2.15.12)

along the same lines as the proof in the preceding section, where t → ỹ(t) is
a solution to

mÿ + λẏ + k y = 0, y(0) = ε, ẏ(0) = η, (2.15.13)

[see Eq. (2.14.13)]:

y(t) =
η − α−ε
α+ − α−

eα+t +
α+ε− η
α+ − α−

eα−t. (2.15.14)

Hence,

a(ε, η, γ) = η
eα+T − eα−t

α+ − α−
+ ε

α+e
α−T − α−eα+t

α+ − α−
(2.15.15)

+

∫ T

0

eα+(t−τ) − eα−(t−τ)

α+ − α−
k (γx̃(t) + y(τ)− sin(γx̃(τ) + y(τ)))

dτ

m
,

and a similar expression can be found for b by differentiating Eq. (2.15.12)
with respect to t and setting t = T . From Eq. (2.15.15), we can compute
the partial derivatives of a with respect to ε, η, γ in (0, 0, 0), without really
knowing y(t) (remarkably enough). For instance:

∂a

∂ε
(0, 0, 0) =

α+e
α−T − α−eα+T

α+ − α−
+

∫ T

0

dτ

m

{α+e
α−(T−τ) − α−eα+(T−τ)

α+ − α−
·

(2.15.16)

·k(1 − cos y(τ))
∂y

∂ε
(τ)
}
≡ α+e

α−T − α−eα+T

α+ − α−
where τ → y(τ), τ ≥ 0, is the solution to Eq. (2.15.8) with ε = η = γ = 0.
Note that ∂y

∂ε (τ) is unknown but is multiplied by zero and, therefore, it is not
necessary to know it. Similarly:

∂a

∂η
(0, 0, 0) =

eα+T − eα−T

α+ − α−
, (2.15.17)
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∂b

∂ε
(0, 0, 0) = α+α−

eα−T − eα+T

α+ − α−
,

∂b

∂η
(0, 0, 0) =

α+e
α+−T − α−eα−T

α+ − α−
,

hence, it is possible to write the matrix J and, with some patience, the alge-
braic calculations lead to

det J = (α+e
α+T − 1)(eα−T − 1) 6= 0. (2.15.18)

This completes the proof since the implicit functions theorem (Appendix G)
implies that Eq. (2.15.7) can be uniquely solved for small γ with ε(γ), η(γ) of
the order O(γ).

Actually, the implicit functions theorem implies that the derivatives of
ε(γ), η(γ), with respect to γ at γ = 0 are proportional to the derivatives of
f1, and f2 with respect to γ in ε = η = γ = 0. Since such derivatives can be
computed in the same way as those in Eqs. (2.15.16) and (2.15.17) and they
turn out to be zero, it also follows that ε(γ), η(γ) are of the order O(γ2) as
expected. mbe

2.15.1 Problems

1. Show that the oscillator ẍ+ ẋ+x+x3 = f(t), f ∈ C∞, has small oscillations in the sense

of Proposition 20. Show that if f has the form f(t) = γ ϕ(t), g ∈ R, and ϕ periodic with
period T > 0, then for γ small enough the equation admits a periodic solution with period
T . (Hint.: Go through the proof of Proposition 21, replacing sin x by x+ x3 everywhere.)

2. Show that the motion ẍ + ẋ + x3 = 0, x(0) = 1, ẋ(0) = 0 never goes through the
origin as t → +∞. How does this result depend on the datum? (Hint: From ẍ + ẋ +
x = x(1 − x2) write x(t) as in Eq. (2.15.12) which will imply x(t) ≥ 0. To study other

initial data x0 use dE
dx

= −
q

2(E(x)− x4

4
), see problem 1, §2.9, and supposing that the

first passage time is t0 = +∞ deduce that this implies E(0) =
R x0
0

q
2(E(x) − x4

4
)dx ≤

R x0
0

q
2(E(0) − x4

4
)dx ≤

p
2E(0) x0, i.e. x0 ≤ 2

√
2 and infer that if x0 > 2

√
2 the point

passes through the origin).

3. Same as Problem 2 for ẍ+3ẋ+x+x3 = O, x(0) = 1
2
, ẋ(0) = 0. (Hint: Write the equation

as ẍ+ 3ẋ+ 2x = x(1− x2) and follow the hint to problem 2).

4.* Consider the oscillator ẍ + ẋ + x3 = 0 and find the limit T∞, as t → +∞, of the
time T (t) elapsing between the two consecutive passages through the origin with positive
speed taking place after t. Show that it does not depend on the initial datum (Answer:

T = 4π/
√

3).(Hint: Let x1, x2, . . . be the successive maxima of the motion and let t1, t2, . . .
be the corresponding times; call t1, t2, . . . the first passage times through the origin following
t1, t2, . . ., respectively; then use Eq. (2.15.12) in the intervals [t1, t1], [t2, t2] and the fact
that xi−−−−→i→∞ 0.)

5.* Same as Problem 4 for ẍ + ẋ + tanh x = 0; discover why T∞ is the same as that in
Problem 4.

6. Examine critically the proof of Proposition 21 to see under which assumptions its con-

clusions remain valid when λ = 0. (Answer: If and only if det J 6= 0, i.e., if and only if the

forcing period T is not an integer multiple of the “proper period T0 = 2π
p
m/k.)
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2.16 Small Damping: Resonances

We shall not study the problem (3), p.65, in detail since, in the next few
sections, we shall conclude our analysis of the damped motions (in one di-
mension) by an application where a similar, but more difficult, problem is
analyzed. Let us simply formulate a result about problem (3), without proof:

22 Proposition. Let f ∈ C∞(R) be a periodic function with period T > 0
and consider the forced pendulum of Eq. (2.15.1). If γ is small enough, the
equation admits one periodic solution t → xp(t), t ∈ R+ , with period T,
and every other solution t → x(t), t ∈ R+, with initial datum (x0, v0) with
|x0|+ |v0| small enough approaches, exponentially fast, the periodic solution:
i.e., there are C > 0, µ > 0 such that

|x(t)− xp(t)| ≤ C e−µt, ∀ t ∈ R+. (2.16.1)

Observations.

(1) The proof of this proposition is very similar to that of Proposition 25 on
the theory of the clock. The reader will reconstruct it from that proof.
(2) Hence, the small oscillations of nonlinear damped oscillators are qualita-
tively very similar to those of damped linear oscillators, at least if one is only
concerned with properties (1), (2), and (3) selected for discussion at §2.14.

So far, the presence of friction has revealed itself to be essential to the
theory (see, however, Problem 6, §2.15). In fact something “goes wrong” as
λ→ 0. This can be seen for the linear oscillators, as it will be briefly discussed
in the following. This time, however, consideration of only harmonic oscillators
will not just be “for simplicity”, but because only in this case will it be possible
to obtain something without excessive conceptual and technical difficulties.

In the nonlinear case, the discussion is, surprisingly at first sight, much
more involved (and interesting) and, also, the results are unfortunately less
detailed and complete than desirable for applications. Some basic ideas and
technical tools will be developed in §5.9-§5.12 of Chapter 5.

Actually, contrary to what is sometimes believed, the motion of mechanical
systems is much simpler and stable when friction is present than when it
is absent. When friction vanishes, the motion becomes very sensitive to the
details of the equations of motion and to the initial data, as far as asymptotic
behavior is concerned, in this way introducing new difficulties and peculiarly
new phenomena. Also, from the mathematical point of view, the frictionless
motion theory appears to be deep and rich with connections to the most
diverse fundamental problems in analysis and geometry:8 from number theory
to topology to probability theory.

8 However, at a deeper level of understanding, similar statements could also be made for
dissipative systems: a glimpse of how complex they may become is given in §5.8.
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Our discussion of the small friction case will be based on the following two
linear (normal) equations:

mẍ+ λẋ + kx = f (2.16.2)

with λ > 0, k > 0,m > 0 and

mẍ+ k x = f, (2.16.3)

where f is a C∞ function periodic with period T > 0. The discussion will be
restricted to the following simple proposition (for the time being).

23 Proposition. Given x0, v0 ∈ R, let t → xλ(t), t ∈ R+ be the solution to
Eq. (2.16.2) with initial data xλ(0) = x0, ẋλ(0) = v0. Let t → x0(t), t ∈ R+,
be the solution to Eq. (2.16.3) with data x(0) = x0, ẋ(0) = v0, the following
results hold:

(i) lim
λ→0

xλ(t) = x0(t), ∀ t ∈ R+. (2.16.4)

(ii) The preceding limit is “uniform as λt → 0”: i.e., given ε > 0, there exist
δε > 0, λε > 0 such that

|xλ(t)− x0(t)| < ε ∀λ < λε, ∀ t < δελ
−1 (2.16.5)

(iii) If T is not an integer multiple of the “proper period” T0 = 2π
√
m/k of

the undamped free harmonic oscillator, one has

x0(t) = A0 cos(
2π

T0
t+ ϕ0) +

∞∑

n=−∞

f̂ne
2
π T

−m
(

2π
T

)2
n2 + k

, (2.16.6)

where A0, ϕ0 are suitable constants and (f̂n)n∈Z are the harmonics of f on
the period T : this is the “non resonant case”.
(iv) If T = nT0 for some integer n:

x0(t) =A0 cos(
2π

T0
t+ ϕ0) +

+∞∑

n=−∞
n 6=±n

f̂ne
2πi
T nt

−m
(

2π
T

)2
n2 + k

+ 2tRe
f̂ne

2πi
T nt

2i (2π
T0

)m

(2.16.7)

This is the “resonant case”.

Observations.

(1) (ii) is particularly significant and says that the smaller the friction, the
longer the time during which the friction-driven motion coincides, within a
given approximation ε, with the frictionless motion (this time being at least
δε/λ). Hence, (ii) strengthens and implies (i).
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(2) The above proposition also illustrates the “resonance phenomenon”. By
what has been seen in §2.12, the solution to Eq. (2.16.2) of interest to us is

xλ(t) = A+e
α+t +A−e

α−t +

+∞∑

n=−∞

f̃ne
2π
T int

−m(2π
T )2n2 + 2πi

T nλ+ k
, (2.16.8)

where v0 = ẋλ(0), x0 = xλ(0) will determine the constants A+, A− and

α± = − λ

2m

(
1± i

√
4mk

λ2
− 1
)

(2.16.9)

From Eq. (2.16.8), it immediately follows that as t → +∞, the asymptotic
motion is T periodic and it is given by

xλ(t) =
+∞∑

n=−∞

f̃ne
2π
T int

−m(2π
T )2n2 + 2πi

T nλ+ k
, (2.16.10)

provided the first two “transient terms” in Eq. (2.16.8) are very small: i.e.,
provided λt/2m≫ 1.

If there is n such that T = nT0, select the two terms in Eq. (2.16.10) with
n = ±n and rewrite them as

xλ = 2Re
f̂ne

2πi
T nt

2i (2π
T0

)m
+
∑

|n|6=n

f̃ne
2π
T int

−m(2π
T )2n2 + 2πi

T nλ+ k
. (2.16.11)

Setting f̂n = ̺n e
iθn , ̺n ≥ 0, θn ∈ R, the first term becomes

2̺n
sin(2π

T0
t+ δn)

2πλ/T0
, (2.16.12)

while the series in Eq. (2.16.11) can be bounded above uniformly in λ by

∑

|n|6=n

|f̃n|
| −m(2π

T )2n2 + k| . (2.16.13)

So if T = nT0, for some integer n, and if the force f is arbitrarily small
but such that f̂n 6= 0, the motion impressed by f to the oscillator may attain
an enormous amplitude, as Eqs. (2.16.11)-(2.16.13) show, for small λ.

If T/T0 is not integer but almost such, (T/T0 ≃ n ∈ Z), it will happen
that the series of Eq. (2.16.10) will contain terms (those with n = ±n) with
denominators which, even though not vanishing as λ → 0, will become very
small producing two contributions to Eq. (2.16.10) that could “dominate” the
others.
(3) It should be stressed that resonance manifests itself only when the terms
λeα±t in Eq. (2.16.8) are small and, therefore, only if λt/2m ≫ 1. Hence,
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although it is true that in the resonating linear oscillator (T = nT0, n ∈ Z+)
a very small force can produce huge oscillations (proportional to λ−1), it is
also true that the time it takes for this to happen is very large (proportional
to λ−1). Note also that

A+ = A− =
(v0 − ẋλ(0))− α−(x0 − xλ(0))

α+ − α−
(2.16.14)

becomes singular as λ→ 0, in resonance cases, because such are xλ(0), ẋλ(0)
[see Eqs. (2.16.10) and (2.16.12)].
(4) Equations (2.16.6) and (2.16.7) give the most general solutions to Eq.
(2.16.3) as A0, ϕ0 vary arbitrarily. They show that when λ = 0, the linear os-
cillator motions are not longer periodic but, rather, are “sums” of two periodic
motions with respective periods T0 and T equal to the “proper” period of the
free oscillator and to the period of the forcing force provided that T/T0 is not
an integer. If T/T0 is integer, and if the harmonic component of order T/T0

of the force f does not vanish, the asymptotic motion is even unbounded:
“undamped resonance”.
Furthermore, in every case, the asymptotic motion depends on the initial da-
tum (through A0, ϕ0). It is clear that the initial datum dependence surviving
in the asymptotic regime is due to the absence of friction: analytically this
appears via the fact that eα±t 6→ 0, since Re α± = 0 if λ = 0.
(5) The proof of Proposition 23 is a simple discussion of the limit as λ → 0
of the expressions (2.16.8) and (2.16.14). No problem arises in the absence of
resonance. In the resonant case, the limit is most conveniently discussed by
collecting together the first two terms in Eq. (2.16.8) and the two resonant
terms in the series (2.16.8) (i.e., those with n = ±T/T0). The calculations are
straightforward and are left to the reader.9.

2.16.1 Exercises and Problems

1. Determine up to 20%, the asymptotic amplitude of the oscillations of the motions of
ẍ + λẋ + x = f(t), f(t) = (1 − cos 2πt/T )−1 for T = 1, 4π,

√
2. Which, in each case,

are the resonant harmonics? (Call “resonance” a harmonic of order n ∈ Z if the function
ξ → ( 2π

T
)2ξ2 − ( 2π

T0
)2 takes its minimum between n and n+ 1.)

2. Determine the asymptotic amplitude of the motion described by ẍ + x = f(t) with f
given as in Problem 1.

3. Estimate how small λ has to be taken so that the amplitude of the asymptotic oscillations
described by ẍ + λẋ + x = f(t), with f(t) = 10−3(1 − 10−2 cos t)−1, is not smaller than
A = 1, 10, 102, 106.

4. Same as Problem 3 with f(t) = 10−3(1 − 0.99 cos t)−1.

9 Note that (i) would also directly follow from the regularity theorem (Proposition 3,p.
22, and problem 17, p. 32)
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5. Write a computer program for the empirical solution (i.e., without error estimates) of

the equation in Problem 1 with the purpose of drawing graphs, in the data space, of the

trajectories corresponding to the various choices of the initial datum (using the computer

screen and always avoiding tabulation of results).

2.17 An Application: Construction of a Rigorously
Periodic Oscillator in the Presence of Friction. The
Anchor Escapement, Feedback Phenomena

Che l’una parte l’altra tira e urge
Tin tin sonando con s̀ı dolce nota
Che ’l ben disposto spirto d’amor turge 10

In §2.12 we saw that a damped harmonic oscillator can move exactly pe-
riodically with a period equal to that of the forcing term. Furthermore, any
of its motions differs from this periodic one by an amount which becomes
exponentially small as t → +∞. It is natural to try to use this property to
build a clock, i.e., a mechanism moving in a rigorously periodic fashion despite
friction. However, the difficulty of producing a rigorously periodic force seems
to be, at least, of the same order of magnitude as that of producing a periodic
motion.

The anchor escapement is a contrivance in a timepiece which controls the
motion of the train of wheel work and through which the energy of the weight
is delivered to the pendulum by means of impulses which keep the latter in
vibration (see: Webster).

This mechanism simultaneously solves the two problems of building a rig-
orously periodic force and of inducing a rigorously periodic motion. It takes
advantage of the presence of friction to cause the oscillator to move asymp-
totically in a periodic way in the sense that the difference between the actual
oscillator’s position x(t), at time t, and the position of a certain ideal peri-
odic motion xper(t) tends exponentially to zero as t→ +∞. A very schematic
empirical description of the anchor escapement is the following.

The “anchor” is a device set in motion by the oscillator as it passes through
the point x0 = 0, for instance, with positive velocity. At this instant, a notched
wheel connected to a weight is liberated from a brake and starts moving. A
little later, the notch of the wheel reaches the oscillator and accompanies
it for a short while, exerting a push on it. Then the notched wheel loses
contact with the oscillator, which remains free, allowing the wheel to return

10 In basic English:
That every part pulls another
tin tin singing, so sweetly:
that the well inclined spirit is filled with love.

(Dante, Paradiso, Canto X).
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to its original position by continuing its rotation. In this simplified scheme, the
wheel has just one notch instead of the usual few dozens. In the meantime, the
oscillator, now free, continues its (damped) oscillation, and the entire process
starts afresh at the new passage through x0 with positive speed.

An attempt to schematize the just-described mechanical system is a motion
governed by the equation:

mẍ+ λẋ+ kx = 0, x < 0, (2.17.1)

mẍ+ λẋ + kx = f(ẋ0, τ) x ≥ 0 (2.17.2)

where the action of the notched wheel is schematized by a force f(ẋ0, τ)
depending upon the velocity ẋ0 of the last passage through x0 = 0 with
positive speed and upon the time τ elapsed since then.

Note that Eqs. (2.17.1) and (2.17.2) are equations of motion quite different
from the ones considered in the preceding sections. The force appearing in Eq.
(2.17.2) not only depends on time but also upon the past history of the motion
itself. Therefore it is not a differential equation in the sense of §2.2, Definition
1. Consequently, we do not even know yet whether Eqs. (2.17.1) and (2.17.2)
have a solution, i.e., a C∞ function t → x(t), t ∈ R+, which turns Eqs.
(2.17.1) and (2.17.2) into an identity (not even if f is a C∞ function of its
arguments).

To study Eqs. (2.17.1) and (2.17.2), it is useful to place some restrictions on
the form of f which we intend to consider: i.e., it is useful to further specialize
the model. This is done to avoid problems too complex from a technical point
of view, as well as to avoid developing a theory for too general an f , which
may not correspond to a force law that is reasonable for our problem.

For the sake of example, let us assume that f(ẋ0, τ) vanishes whenever ẋ0

does not belong to an interval [v−, v+], 0 < v− < v+:

ẋ0 6∈ [v−, v+] → f(ẋ0, τ) = 0. (2.17.3)

The assumption corresponds to the fact that when the oscillator sweeps
through x0 = 0 too fast, it is never reached by the wheel’s notch; while if
it sweeps too slowly, the amplitude of oscillation is too small to allow the
oscillator to touch the notch.

Assume, also, that once ẋ0 ∈ [v−, v+], the force on the oscillator only
depends on the time τ elapsed since the last passage through x0 = 0 with
positive speed; i.e.,

f(ẋ0, τ) = P χ(ẋ0) g(τ) (2.17.4)

where χ(ẋ0) = 1 if ẋ0 ∈ [v−, v+], and χ(ẋ0) = 0 otherwise, and t → g(t) ≥ 0
is a C∞(R) function vanishing outside an interval [a, Tg], a > 0, Tg > 0 with
a maximum equal to 1. The constant P , which we shall take as a positive
adjustable parameter, models the “intensity” of the force. Physically, one can
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imagine that P depends on the weight moving the notched wheel, while g is
a detailed description of the wheel action.

Therefore, Eq. (2.17.4) will be considered a mathematical model of the
force generated by the anchor escapement. Such a model is only a schema-
tization, where some of the properties of any real mechanism are certainly
oversimplified. Nevertheless, as it will be shown, it is a model presenting some
interesting characteristics such as, primarily, the “self-control” or “feedback”
mechanism providing that the system (2.17.1), (2.17.2), and (2.17.4) “searches
automatically”, in certain circumstances, for a situation of motion that allows
it to move periodically. The function g has a graph like that in Fig.2.6.

Some further properties which we must impose on g should be that g
vanishes for τ < α, for some α > 0, or for T > Tg > α > 0, and Tg should be
small compared to the time necessary for an elongation of the oscillator from
the position x0 = 0 to the position of maximum distance from x0 = 0.

The time α > 0 is a mechanical constant representing the delay between
the beginning of the wheel motion and the actual oscillator-notch contact.
The ẋ0 independence of α is a strong idealization.

g(τ)

α Tg

τ

Fig.2.6: The force “per unit weight” due to the notch engagement of the oscillator as a

function of time elapsed since the last sweep through the origin.

The physically obvious requirement on Tg can be translated into math-

ematical terms by requiring Tg ≪ T0/4, where T0 = 2π
√
m/k is the ideal

oscillator period. This attempts to translate the fact that the notch has to
detach itself from the oscillator before the latter starts swinging back toward
the origin. Empirically, the condition Tg ≪ T0/4 should guarantee this fact,
at least if the friction is small so that it produces negligible effects for times
of the order of T0; i.e., as we saw in §2.12, if λ2 < 4mk.

As a conclusion to the above considerations, assume as a model for the
anchor escapement Eqs. (2.17.1), (2.17.2), and (2.17.4) with g as in Fig.2.6
with 0 < α < Tg < T0/4 and with λ22 < 4mk, and let us prove th following
proposition, which begins the theory of the model.

24 Proposition. Under suitable compatibility conditions between the param-
eters P, v−, v+ , Eqs. (2.17.1), (2.17.2), and (2.17.4) admit a periodic C∞

solution defined for t ∈ R+.

Observation. In the upcoming section we shall discuss the compatibility con-
ditions by showing that they can be satisfied at least when λ is small enough.
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Later, in §2.19 we shall also show that when λ is small enough and the com-
patibility conditions are fulfilled, the motions with initial data close enough
to those of the periodic motion become close to such motion exponentially
fast (see Figs.2.7 and 2.8).

Proof. Let t→ x(t) be a given periodic motion with period T > Tg and such
that x(0) = 0. Then the function defined, for t ≥ 0, by

ϕ(t) = f(v0, τ) = P χ(v0)g(τ) (2.17.5)

where v0 is the velocity of the given motion at its last passage through the
origin, with positive speed and before time t, and τ is the time elapsed since
such time, is a C∞-periodic function of t, provided the time necessary to
return to 0 with positive speed is equal to T itself.11

Assuming, then, that t→ x(t), t ∈ R+, is a C∞-periodic motion verifying
Eqs. (2.17.1), (2.17.2), and (2.17.4) and period T equal to its first return time
to the origin with positive speed and assuming that v0 = ẋ(0) ∈ [v−, v+] we
shall have, ∀ t ≥ 0,

mẋ(t) + λẋ(t) + k x(t) = ϕ(t). (2.17.6)

Since ϕ(t) ≡ P g(t), ∀ t ∈ [0, Tg], and if

ĝn
def
=

∫ T

0

g(τ) e−
2π
T inτ dτ

T
≡
∫ Tg

0

g(τ) e−
2π
T inτ dτ

T
, (2.17.7)

recalling that Tg < T , it follows (see §2.12)

x(t) = P
+∞∑

n=−∞

ĝn e
2π
T int

−m(2π
T )2n2 + 2π

T inλ+ k
, (2.17.8)

ẋ

x Figure 2.7

Figure 2.7. Graph of a periodic solution t → (x(t), ẋ(t)) of Eqs. (2.14.1), (2.14.2), and

(2.14.4) with convenient choices of the arbitrary parameters and of the function g.

and the series is uniformly convergent because ĝn approaches zero as n →
∞ faster than any power (being the Fourier transform of the C∞-periodic

11 It could a priori happen that the motion sweeps through the origin more than twice
(even infinitely many times) in an interval of time equal to the period T .
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function ϕ). Of course, we still have to determine T and to check that for such
T , Eq. (2.17.8) is really a solution to Eqs. (2.17.1), (2.17.2), and (2.17.4). In
other words, we must impose the condition that Eq. (2.17.8) is such that

(i) x(0) = 0; (2.17.9)

(ii) ẋ(0) ∈ [v−, v+]; (2.17.10)

(iii) T > Tg.; (2.17.11)

(iv) T is the first return time in 0 with positive velocity. (2.17.12)

Relation (2.17.9) is an equation for the period T :

0 =

+∞∑

n=−∞

ĝn

−m(2π
T )2n2 + 2π

T inλ+ k
, (2.17.13)

and it should be noted that in this equation, T also appears in the coefficients
ĝn [see Eq. (2.17.7)].

Then if the parameters v−, v+, P, T are such that Eq. (2.17.13) admits at
least one solution T and if with this choice of T Eq. (2.14.8) verifies the

ẋ

x Figure 2.8

Figure 2.8. Graph of a solution t → (x(t), ẋ(t)) with initial datum chosen arbitrarily: it

becomes indistinguishable from the periodic solution of Fig.2.7 within a few oscillations

(three in the precision of the drawing).

compatibility conditions Eq. (2.17.10)-(2.17.12), it follows that Eq. (2.17.8) is
a T -periodic solution to Eqs. (2.17.1), (2.17.2), and (2.17.4). mbe

2.17.1 Exercises

1. Choose arbitrarily a function g and m, k, λ, v−, v+ > 0 and write a computer program
providing a heuristic (i.e., without error estimate) solution to Eqs. (2.17.1), (2.17.2), and
(2.17.4) in which P and the datum ẋ(0) are left as free parameters. The output of the
program should be a graph like those in Figs. 2.7 and 2.8.

2. Run the above program on a desk computer plotting on the screen the results and finding,

by trial and error, a value of P yielding a nontrivial periodic motion.
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2.18 Compatibility Conditions for the Anchor
Escapement

This section, as well as the next, will suppose some maturity on the reader’s
part and, therefore, on first reading it would be appropriate to skip the proof
of this section and to read the next section only up to the beginning of the
proof of Proposition 26.

As promised in the previous section, it will now be shown that if λ is
small enough, given v−, v+, g with Tg < T0/4, it is possible to fix P so that
Eq. (2.17.8) actually verifies the four compatibility conditions Eq. (2.17.9)-
2.17.12) and, therefore, is a periodic solution to Eqs. (2.17.1), (2.17.2), and
(2.17.4), i.e., to the equation for the anchor-escapement model.

Consider Eq. (2.17.13) as an equation for T−1 parameterized by λ > 0,
and let us find some of its solutions having the form

T−1 = T−1
0 (1 + λβ) (2.18.1)

suggested by the idea that for small λ the oscillator may oscillate with a
periodic motion with period close to the period T0 = 2π

√
m/k of the fric-

tionless oscillator. The equation for T , Eq. (2.17.13), then becomes, after
explicitly separating out of the series sum the two complex conjugate terms
with n = ±1:

0 =2Re
{ ĝ1

−m(2π
T0

)2(1 + λβ)2 + 2π
T0
iλ (1 + λβ) + k

}

+
+∞∑

n=−∞
n 6=±1

ĝn

−m(2π
T )2n2 + 2π

T inλ+ k

(2.18.2)

which, using T0 = 2π
√
m/k, becomes

0 =2Re
{ ĝ1

−k(2β + β2λ)λ + 2π
T0
iλ (1 + λβ)

}

+
+∞∑

n=−∞
n 6=±1

ĝn

−m(2π
T )2n2 + 2π

T inλ+ k
.

(2.18.3)

We see that for small λ the first of the above two addends shows a small
denominator. To avoid having to study an equation with small denominators,
multiply Eq. (2.18.3) by λ. Then, ∀ (λ, β), λβ ≥ − 1

2 (so that T−1
0 (1+λβ) > 0),

it is possible to define
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Φ(λ, β)
def
= 2Re

{ ĝ1

−k(2β + β2λ)λ+ 2π
T0
iλ (1 + λβ)

}

+ λ

+∞∑

n=−∞
n 6=±1

ĝn

−m(2π
T )2n2 + 2π

T inλ+ k
.

(2.18.4)

where T−1 = T−1
0 (1 + λβ) and it is perhaps worth recalling that ĝn are also

T dependent. Rewrite Eq. (2.18.3) as

Φ(λ, β) = 0 (2.18.5)

with the additional restriction λβ > − 1
2 [to be amply sure that the denom-

inators in Eq. (2.18.4) do not vanish]. To study Eq. (2.18.5), note that the
equation Φ(0, β) = 0 leads to

2Re
ĝ1

−2kβ + 2π
T0
i

= 0 (2.18.6)

which, defining

b(T−1)
def
= Re ĝ1, c(T−1)

def
= Im ĝ1, (2.18.7)

has as a solution the quantity β0:

β0 =
1

2k

2π

T0

c(T−1
0 )

b(T−1
0 )

, (2.18.8)

provided that b(T−1
0 ) 6= 0. Note also that b(T−1

0 ) 6= 0 as it follows from [see
Eq. (2.17.7)]

b(T−1
0 ) =

∫ Tg

0

dτ

T0
g(τ) cos

2π

T0
τ, c(T−1

0 ) =

∫ Tg

0

dτ

T0
g(τ) sin

2π

T0
τ, (2.18.9)

thanks to the assumption Tg < T0/4 which implies that for T ∈ (0, Tg), the
sine and cosine in Eq. (2.18.9) are positive.
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The above remarks give hope for the existence of a solution to Eq. (2.18.5)
having the form

β(λ) = β0 +O(λ), (2.18.10)

at least if λ is small. If this were true, the velocity ẋ(0) could be computed
from Eq. (2.17.8):

ẋ(0) =P

+∞∑

n=−∞

2πin

T

ĝn

−m(2π
T )2n2 + 2π

T inλ+ k
,

=
P

λ

[
2Re

ĝ1

−k(2β + λβ2) + 2π
T i

+

+∞∑

n=−∞
n 6=±1

2πi

T
n

ĝn

−m(2π
T )2n2 + 2π

T inλ+ k

]
.

(2.18.11)

Hence, Eqs. (2.18.11) and (2.18.10) would imply, with some algebra (and
patience),

ẋ(0) =
P

λ

[
2Re

{2π

T0

ib(T−1
0 )− c(T−1

0 )

−2kβ0 + 2πi
T0

}
+O(λ)

]
=

2P

λ

(
b(T−1

0 ) +O(λ)
)
,

(2.18.12)
having used Eq. (2.18.8).

Therefore, if λ is so small that in Eq. (2.18.12) |O(λ)| < b(T−1
0 ), it is

ẋ(0) 6= 0, and P can be so chosen that ẋ(0) ∈ [v−, v+]. Note that P → 0
proportionally to λ, as λ→ 0, if one imposes ẋ(0) ∈ [v−, v+]: this agrees with
the obvious empirical observation that the “weight” necessary to move the
oscillator must be small in proportion to friction.

Similarly, starting from Eqs. (2.18.7) and (2.18.10), one could check Eq.
(2.17.12) for small λ. It can in fact be seen that it is enough to verify Eq.
(2.17.12) by replacing x(t) in Eq. (2.17.8) with the only contributions to the
series (2.17.8) coming from the n = ±1 terms (which in the preceding discus-
sion seem to be the only important ones for small λ, as far as the computation
of T and of ẋ(0) are concerned). For such an approximation to x(t), the state-
ment of Eq. (2.17.12) is, however, obvious since such an approximate motion
is a harmonic motion with period T . Elaboration of the details is left to the
reader.

Finally, Eq. (2.17.11) would also immediately follow from Eqs. (2.18.1)
and (2.18.10) for small λ.

The above analysis can be summarized in the following proposition.

25 Proposition. If Eq. (2.18.5), as an equation for β parameterized by λ,
admits a solution having the form of Eq. (2.18.10) for λ small enough, then
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the equation for the anchor-escapement model [Eqs. (2.17.1), (2.17.2), and
(2.17.4)] admits a periodic solution with period T such that:

T−1 = T−1
0 (1 + β0λ+O(λ)) (2.18.13)

if λ is sufficiently small and if P is suitably chosen.

Therefore, to complete the solution of our question, it only remains to
verity that Eq. (2.18.5) does indeed admit a solution β like Eq. (2.18.10) for
small λ.

A pair (λ, β) verifying Eq. (2.18.5) is already known, namely the pair
(0, β0); hence it is natural to try to treat Eq. (2.18.5) through the implicit
function theorem (see Appendix G). By this theorem, it will be enough to
check that the function Φ, Eq. (2.18.4), defined in the open set ofR2 containing
the points (λ, β) such that λβ > − 1

2 , is of class C∞ in its domain of definition
and has a first-order derivative with respect to β such that

∂Φ

∂β
(0, β0) 6= 0. (2.18.14)

In this case, Eq. (2.18.5) will admit a solution β for λ small enough, like

β = β0 −
(∂Φ/∂λ)(0, β0)

(∂Φ/∂β)(0, β0)
λ+ o(λ) (2.18.15)

To see that Φ is a C∞ function near (0, β0), one shows that from expression
in Eq. (2.17.7) and from estimates in Eq. (2.13.7) it follows that

ĝn =
1

(
(2πi/T )n

)k
∫ Tg

0

dkg

dτk
(τ) e−

2πi
T nτ dτ

T
(2.18.16)

and, by Newton’s formula for the p-th derivative of a product:

∂pĝn
∂(T−1)p

=
1

(2πin)k

∫ Tg

0

dτ
dkg

dτk
(τ) e−

2π
T inτ

·
p∑

j=0

(−2pni)p−j(−k + 1)(−k) . . . (−k − j + 2)(T−1)−k+1−j ;

(2.18.17)
hence

| ∂pĝn
∂(T−1)p

| ≤ max
0≤τ≤Tg
0≤j≤p

[ (k + p)j(2π|n|Tg)p−j
T k−1+j

|d
kg

dτk
(τ)|

]
(2.18.18)

which implies that as long as T < +∞ (i.e., 1 + βλ > 0), the function in Eq.
(2.18.4) is a C∞ function of β and λ.

The last three relations also imply that the derivatives of Φ with respect
to λ and P can be computed by term-by-term differentiation of the series
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defining Φ in the region λβ > − 1
2 . After a brief computation, such a term-by-

term differentiation evaluated at (0, β0) yields:

∂Φ

∂β
(0, β0) =

(T0

π

)2 b(T−1
0 )3

b(T−1
0 )2 + c(T−1

0 )2
(2.18.19)

and this check of Eq. (2.18.14) concludes the discussion of the compatibility
conditions showing that they can indeed be satisfied for small enough λ.

2.19 Encore on Anchor Escapement: Stability of the
Periodic motion

In the preceding sections we showed that the anchor-escapement model [Eqs.
(2.17.1), (2.17.2), and (2.17.4)] admits a periodic solution for small enough
friction if the intensity of weight P is suitably chosen.

Imagining to have fixed P conveniently in terms of λ, such a periodic
motion will be denoted t → x(t), t ∈ R+. However existence of the motion x
is not interesting in itself for applications. In fact, to put the system in this
state of motion, one would have to impress exactly the velocity v0 at t = 0,
with v0 defined by Eq. (2.18.11) after putting the oscillator in x0 = 0. In fact,
these are the initial data of the periodic motion corresponding to the a priori
given λ and P .12

The periodic motion studied in the preceding sections is interesting for
applications only if it is “stable”, i.e., only if starting the system in an initial
state x(0) = 0, ẋ(0) = v0 + η, perturbed with respect to that which would
generate a periodic motion, would produce a motion t → xη(t), t ∈ R+ ,
according to Eqs. (2.17.1), (2.17.2), and (2.17.4), which exists and is unique,
at least for small η, and, furthermore,

|xη(t)− x(t− τη)| −−−−→t→+∞ 0 (2.19.1)

if τη is suitably chosen.
In applications, one would like to require more: for instance, one would

wish that the limit (2.19.1) is attained with an exponential speed with a
halving time of the order of the period T of the periodic motion. In such a
case, after a “few” oscillations, the motion would be identical to the rigorously
periodic one, for all practical purposes. This is what actually occurs in the
pendulum clock.

12 One should also show that to such an initial datum an actually periodic motion does
follow: i.e., one should prove a uniqueness theorem, at least for the initial data under
examination. This is possible, as well as it is also possible to show a uniqueness property
on the perturbed motions that will be met in this section. However, we shall not enter
into the proof of the validity of the uniqueness properties that interest us: the reader
should do this as a problem. Note that Proposition 1, p. 14, does not directly apply here,
since the equations do not have the form contemplated in §2.2.
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To examine the stability problem, the following proposition will be proved.

26 Proposition. The periodic motion of the anchor-escapement model, t →
x(t), t ∈ R+, built in §2.17 and §2.18, is stable in the sense expressed in Eq.
(2.19.1) if λ is small enough. The limit (2.19.1) is reached exponentially with
a halving time T1/2 of the order of magnitude

T1/2 ≃ max(T, 2mλ−1) (2.19.2)

Observations.
(1) During the proof, the role of friction and its importance will clearly ap-
pear. It is a rather general rule that the dissipative motions are more stable
than the corresponding frictionless motions, as long as the friction is not too
strong. The price paid for this stability, of obvious and essential importance
in applications, is naturally the necessity of the action of a force to maintain
the motion itself.
(2) One could require, and prove, stability with respect to initial data that
are more general and realistic than those considered in Proposition 26. For
instance, with respect to initial data like x(0) = ε, x(0) = v0 + η, the theory
and results would be essentially the same.
(3) Proposition 26 concludes our theory of the anchor escapement. One should
clearly bear in mind that the mathematical equations (2.17.1), (2.17.2), and
(2.17.4) are just a model, in some respects not very satisfactory. For instance,
ẋ0 independence of the force f(ẋ0, τ), once ẋ0 ∈ [v−, v+], is unrealistic.
(4) However, the model considered performs perfectly one of the typical func-
tions of models and clarifies the possibility of the existence of an important
mechanism which would also have to be present in more refined models: the
possibility of a motion controlling itself via a feedback reaction inducing it to
move periodically after a short while. This self-control, understood and practi-
cally realized at a time when the field of mechanics was new, is a phenomenon
which appears in many models concerning the most diverse physical systems.
The design and construction of the most precise machines are based on it, as
well as the very possibility of their existence.

Proof. Define [see Eq. (2.19.1) and the preceding lines for notation]:

xη(t) = x(t) + ξ(t) (2.19.3)

and let us show the existence of a C∞ solution of Eqs. (2.17.1), (2.17.2), and
(2.17.4) verifying the initial conditions xη(0) = 0, ẋη(0) = ẋ(0)++η, provided
η is small enough and the values of P, λ are such that the periodic motion
t→ x(t), t > 0, exists. Call T the period of x. First, note that if t → ξ1(t) is
the solution of the equation

mξ̈1 + λξ̇1 + kξ1 = 0, ξ1(0) = 0, ξ̇1(0) = η, t ∈ R+ (2.19.4)
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and if T 1, is the first positive time when the motion t → x(t) + ξ1(t) passes
through the origin with positive speed, then the motion solves Eqs. (2.17.1),
(2.17.2), and (2.17.4) for τ ∈ [0, T 1] if η is small. To understand this property,
note that the solution of Eq. (2.19.4) is

ξ1(t) = η e−
λ

2m t sin
√
k/m− λ2/4m2 t√
k/m− λ2/4m2

(2.19.5)

hence, ∀ t ≥ 0:

|ξ1(t)| ≤
|η|√

k/m− λ2/4m2
,

|ξ̇1(t)| ≤
|η|√

k/m− λ2/4m2
(1 +

1√
k/m− λ2/4m2

)

(2.19.6)

Then, if |η| is small enough, to fix the ideas |η| < δλ with δλ suitably chosen,
it is clear that Eq. (2.19.3) with ξ1(t) replacing ξ(t) verifies Eqs. (2.17.1),
(2.17.2), and (2.17.4).

To estimate a choice for δλ, the following conditions must be imposed:
(1) Tg < T 1 < T + α, ∀ |η| < δλ;
(2) the velocity at the first passage through the origin is negative and at the
second passage is positive.

Such conditions are true for the reference motions x if λ is small enough
since, in such a case, as already mentioned and used in §2.18, the reference
motion is almost a harmonic motion of period ∼ T0 for which the conditions
under analysis manifestly hold. Therefore, by continuity, they must remain
true for the motion t→ x(t) + ξ1(t) if η is small. We leave the elaboration of
the details to the reader.

The fact that t → x(t) + ξ1(t) is a solution for t ∈ [0, T 1] will not, in
general, remain true for t > T 1, because in Eq. (2.17.4) the time τ is now
counted beginning at T 1, and T 6= T 1, in general.

To study the motions for times following T 1, define

η1
def
= ẋ(T 1) + ξ̇1(T 1)− ẋ(0); (2.19.7)

then if |η1| < δλ, we can define, as we already saw, the function t → (x(t) −
x(t)−T 1) = ξ2(t) where ξ2(t) is defined for t between T 1, and the first instant
T 2 successive to T 1, when the motion sweeps through 0 with positive speed
for the first time, as the solution of Eq. (2.19.4) with initial datum:

ξ2(T 1) = 0, ξ̇2(T 1) = η1. (2.19.8)

Repeating indefinitely the argument, it is possible to define η2, η3, . . . provided
|ηi| < δλ, i = 1, 2, . . ., thus obtaining the definition of the times T 1, T 2, T 3, . . .
corresponding to the successive passages through 0 with positive speed.
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The stability property asserted in the proposition will have been proven
once will have been shown the existence of two constants cλ > 0, 0 < θλ < 1
such that for all η, |η| < δλ:

|T p+1 − (T p + T )| ≤ cλ θpλ, p = 1, 2. . . . (2.19.9)

and

|ηp| ≤ θpλ|η| (2.19.10)

at least for small λ. Setting T 0 = 0, the constant τη [see Eq. (2.19.1)] will
then be

τη =

∞∑

i=1

(T i − (T + T i−1)). (2.19.11)

Let us then show the validity of Eqs. (2.19.9) and (2.19.10). If T0 = 2π
√
m/k,

the value for θλ that we shall find will have the form

θλ = e−
λT0
2m (1 + o(λ)). T0 = 2π

√
m

k
(2.19.12)

for λ small enough (note that θλ < 1 as soon as λ is so small that
(−λT0/2m + 1

2λ
2T 2

0 /4m
2 + e−λT0/2m o(λ) < 0, as it is seen by expanding

the exponential to second order). This will also prove Eq. (2.19.2) and, ne-
glecting the infinitesimal o(λ) in Eq. (2.19.12), it is seen that the larger the
friction (compatibly with the supposed λ2 < 4mk and with the existence of
x), the faster the motion tends to become periodic.

To discuss Eqs. (2.19.9) and (2.19.10), one has to find a more concrete
expression for T 1, and, in general, for T i, i ≥ 1. Let T 1 = T+κ1: the equation
for κ1 is

xη(T + κ1) = 0, (2.19.13)

with the added condition that T + κ1 should be the first positive time when
the oscillator passes again through the origin with positive speed.

For κ, η ∈ R2, κ > −T , define

ψ(κ, η) = x(T + κ) + ξ1(T + κ) (2.19.14)

and Eq. (2.19.13) becomes

ψ(κ, η) = 0. (2.19.15)

Since, as seen in the preceding sections, t → x(t), t ∈ R+, is a C∞ function
and, obviously, so is (η, t)→ x(t), we can say that ψ is a C∞ function on its
domain of definition, κ > −T .

Furthermore, by Eqs. (2.19.14) and (2.19.5), it is
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ψ(0, 0) = 0, and
∂ψ

∂κ
(0, 0) = v0,

∂ψ

∂η
(0, 0) = e−

λ
2mT sin(k/m− λ2/4m2)

1
2T

(k/m− λ2/4m2)
1
2

(2.19.16)

Then, by the implicit function theorem (see Appendix G), there is, for small
η, a unique small solution of Eq. (2.19.15) which we denote κ1(η), and

κ1(η) = −e
− λ

2mT

v0

sin(k/m− λ2/4m2)
1
2T

(k/m− λ2/4m2)
1
2

η + oλ(η), (2.19.17)

where the index λ in oλ(η) recalls that the infinitesimal depends also on λ.
By taking Eq. (2.18.13) into account:

T = T0 (1− β0λ+ o(λ)), (2.19.18)

and using sin
√

k
mT0 = 0, one finds, with simple steps, from Eqs. (2.19.17)

and (2.19.18), that

κ1(η) =
β0T0

v0
(λ+ o′(λ) + oλ(η)) (2.19.19)

where o′(λ) is a suitable infinitesimal of order λ2.
It then becomes possible to compute η1:

h1 = ẋ(T + κ1) + ξ̇1(T + κ1)− v0 = ẍ(T )κ1 + ξ̇1(T + κ1) + õλ(κ1) (2.19.20)

where õλ(κ1), is a λ-dependent second-order infinitesimal: this expression
arises just by expanding ẋ in Taylor series near T and using ẋ(T ) = v0.

The equations of motion (2.17.1) imply that ẍ(T ) = ẍ(0) = − λ
mv0 and

Eq. (2.19.20) implies [via Eqs. (2.19.18) and (2.19.19) and some patience]:

η1 = η e−
λT0
2m (1 + õ(λ) + Õλ(η)), (2.19.21)

where õ is an infinitesimal of higher order in λ while Õλ(η) is a λ-dependent
infinitesimal of the same order as η. Therefore there is a δ′λ < δλ sufficiently

small so that |Õλ(η)| ≤ |õ(λ)|, ∀ |η| < δ′λ; then Eq. (2.19.21) implies that

|η1| ≤ θλ |η|, ∀ |η| < δ′λ (2.19.22)

with θλ, given by Eq. (2.19.12).
Hence, if λ is small enough one finds that |η| < δ′λ implies |η1| < δ′λ and the

argument can be indefinitely repeated to estimate successively |η1|, |η2|, . . ..
Then from Eqs. (2.19.22) and (2.19.19), the Eqs. (2.19.9) and (2.19.10) follow,
and Proposition 26 is thus proved. mbe



92 2 Qualitative Aspects of One-Dimensional Motion

2.19.1 Problems

1. Investigate heuristically the stability of the solutions of Eqs. (2.17.1), (2.17.2), and
(2.17.4), using the computer program of problem 1, §2.17. For each value of λ let v0, x0 be
the data, at time zero, of a periodic motion verifying Eqs. (2.17.1), (2.17.2) and (2.17.4);
let the computer draw on the screen the graph of the periodic motion superimposed with
the graph of the motion of a harmonic oscillator with the same mass and elastic constant
(but no friction nor forcing term). Repeat this operation as λ varies using it to compare
visually the two motions.

2. Same as Problem 1, replacing kx by k sinx in Eqs. (2.17.1) and (2.17.2) (i.e., replacing

the basic oscillator with a pendulum).

2.20 Frictionless Forced Oscillations: Quasi-Periodic
Motions

In §2.16 it has been shown that, under the action of a periodic force, a fric-
tionless harmonic oscillator moves with a motion “sum” (or “superposition”)
of two periodic motions with respective periods equal to the proper oscillator
period T0 and to the forcing term period T , provided T/T0 is not an integer.

The proposition in this section will help to visualize some remarkable prop-
erties of such motions. One of them appears by representing them as motions
on the data space (see §2.6), i.e., on the plane R2 thought of as the space
of the initial velocities and positions. This means that the motion t → x(t),
t ∈ R+, solution of Eq. (2.16.3), i.e. of mẍ + k x = f , is represented by a
curve t → (ẋ(t), x(t)), t ∈ R+. This is a representation of the motion which
we have not yet used: it is somewhat redundant because once t → x(t) is
given, its t-derivative is automatically given. On the other hand, every point
of the curve t→ (ẋ(t), x(t)), t ∈ R+, completely determines the motion. Also
it may sometimes be useful to know which are the pairs (ẋ, x) which can
appear during the evolution of a given motion. In such a case, this informa-
tion can be directly extracted from the geometric locus described in R2 by
t → (ẋ(t), x(t)), t ∈ R+, without having to know explicitly which values of t
correspond to the various points of the locus.

Therefore, in the data space, a periodic motions appears as a closed curve.
A motion like those met in §2.12, asymptotically periodic, appears as a curve
spiraling around the closed curve representing the periodic motion and be-
coming indefinitely closer to it.

The structure of a superposition of two periodic motions in the data space
representation is of particular interest: it is elucidated by the following well-
known proposition (Euler theorem).

27 Proposition. Let f, g ∈ C∞(R) be two periodic functions with minimal
period 2π and let f ′, g′ be their first derivatives. Given ω, ω0 > 0, consider the
motion in R2 described by t→ (η(t), ξ(t)):
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η(t) = ωf ′(ωt) + ω0g
′(ω0t), ξ(t) = f(ωt) + g(ω0t) (2.20.1)

Such a motion13 is periodic if and only if ω/ω0 is a rational number. If ω/ω0

is irrational, the curve t → (η(t), ξ(t)), t > t0, ∀ t0 ∈ R+ densely fills the
region Ωgf,g:

Ωf,g ={(η, ξ) | (η, ξ) ∈ R2 :

η = ωf ′(α) + ω0g
′(β), ξ = f(α) + g(β), α, β ∈ [0, 2π]}. (2.20.2)

Observations.

(1) The region Ωf,g can be easily visualized. Consider the curve Γf in the
(η, ξ) plane, having equations

η = ωf ′(α), ξ = f(α), α ∈ [0, 2π] (2.20.3)

By the periodicity of f , this is a closed curve [see Fig. 2.9]. Given α ∈ [0, 2π],
consider the curve Γg(α) with equations

η = ωf ′(α) + ω0g
′(β), ξ = f(α) + g(β), β ∈ [0, 2π] (2.20.4)

which, since g, too, is periodic, is a closed curve “around” (ωf ′(α), f(α)).
As α varies in [0, 2π], the curve Γg(α) “glides along Φf and “sweeps” the

region Ωf,g. A simple case is illustrated in Fig. 2.9.
(2) The relevance of this proposition for the harmonic non resonant forced
oscillations is obvious after the discussion of §2.16 (see (iii) in

ξ

Γg(α)
Γf

η

α

Fig.2.9.: The region swept densely by the quasi periodic motion with irrational ratio of the

periods is the region swept by the curve Γg(α) as α varies.

Proposition 23). It shows that such oscillations, when T and T0 have an irra-
tional ratio, are not periodic although they come back as close as desired to
the initial datum, provided one waits long enough.
(3) Also, for the purpose of future applications, it is interesting to give a
geometric interpretation to Proposition 27 when ω/ω0 is irrational. In this

13 Remark that η(t) = ξ̇(t).
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case, the analytic expression of the trajectory density in Ωf.g is: given σ > 0
and t0 ∈ R+, for all (α, β) ∈ [0, 2π], there is tσ(α, β) > t0 to such that

|(α− ωtσ(α, β))mod 2π| < σ, |(β − ω0tσ(α, β))mod 2π| < σ, (2.20.5)

i.e., there are two integers mσ(α, β) and nσ(α, β) such that

|α−ωtσ(α, β)−2πmσ(α, β)| < σ, |β−ω0tσ(α, β)−2πnσ(α, β)| < σ, (2.20.6)

Now think of the plane R2 as being paved with squares with side size 2π and
with corners at (2πr, 2πs), r and s being integers. In this plane, consider the
straight line through the origin with slope ω0/ω:

y = ω0t, x = ωt, t ∈ R (2.20.7)

and the half-line corresponding to t ≥ t0.
Next, identify the points of the plane whose coordinates differ by integer

multiples of 2π (see Fig. 2.10). The just-described line can now be thought
of as a set of segments in the square [0, 2π]2, where corresponding points
on opposite sites are identified (topologically, we can say that we regard the
square [0, 2π]2 as a two dimensional torus).

x

yFigure 2.10

(α,β)

P0=(ωt,ω0t) P0

α

β

Figure 2.11

The figures represent a quasi periodic motion in the plane and its image on the torus

Equation (2.20.6) says that at least one of the segments associated with
the line of Eq. (2.20.7) with t ≥ t0 cuts the square neighborhood of side 2σ
around (α, β) (see Fig. 2.11).

In other words, the half-line of Eq. (2.20.7) with t ≥ t0, brought back
inside [0, 2π]2 through the identification of the points of the plane mod 2π
(i.e., thought of as a coil around the torus) densely fills [0, 2π]2.

Proof. If ω/ω0 ≡ T0/T = p/q = (ratio of two relatively prime integers),

where T
def
= 2π/ω, T0

def
= 2π/ω0, then the motion of Eq. (2.20.1) is periodic
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with period T ′ = pT = qT0. As an exercise, the reader can show that in the
geometric interpretation of Fig. 2.11, this means that the line becomes a finite
set of segments (forming a closed curve if [0, 2π]2 is thought of as a torus).

Suppose now that ω/ω0 is irrational. Define for every integer n the number
τn as

α− ωτn + 2πn = 0 ←→ τn =
α+ 2πn

ω
(2.20.8)

To check Eq. (2.20.5) and, therefore, the validity of the Proposition, it will
suffice to show that given n0 ∈ Z and σ > 0 arbitrarily, there exists n ∈
Z, n ≥ n0, and m(n) ∈ Z such that

|β − ω0τn − 2πm(n)| < σ. (2.20.9)

It is useful for the reader to understand (along the lines of observation 3) the
geometrical meaning of Eqs. (2.20.8) and (2.20.9) (exercise).

By substituting τn, given by Eq. (2.20.8), in Eq. (2.20.9) one finds

|β − ω0

ω
α− 2π

ω0

ω
n− 2πm(n)| < σ, (2.20.10)

i.e. setting ϕ0 = β − ω0

ω α:

|ϕ0 − 2π
ω0

ω
n− 2πm(n)| < σ (2.20.11)

Eq. (2.20.11) has a geometric interpretation which is convenient to illustrate:
consider the unit circle and its rotation R by an angle θ = 2π(ω0/ω) (see Fig.
2.12). The point with angular coordinate 2π(ω0/ω)n can be interpreted as the
image of a point 0 on the circle under the action of the rotation Rn, i.e., of n
successive rotations R. If ϕ0 is also interpreted as a point on the circle, Eq.
(2.20.11) means that the rotation Rn brings the origin to an angular distance
from ϕ0 less than σ.

Then our problem is to show the existence, given σ > 0, of infinitely many
integers n > 0 such that the rotation Rn brings 0 to an angular

σ

ϕ0 Figure 2.12

distance of less than σ from ϕ0. In order to show this, it will be enough to

show that there is ñ > 0 such that Rñ displaces the point 0 by a non vanishing
quantity ε with modulus less than σ. In fact, when this happens, it is manifest
that with a rotation Rn, n = kñ, k = 0, 1, 2, . . ., one successively displaces 0
by ε, 2ε, 3ε, . . . , kε, and therefore, sooner or later (and infinitely often), one
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arrives at the situation that the origin falls inside a neighborhood of ϕ0 with
angular amplitude σ.

To show the existence of ñ, note that the sequence (2π ω0

ω k)k∈Z= , thought
of as a sequence of angular coordinates on the circle, corresponds to a family
of points which are pairwise distinct since

2π
ω0

ω
k1 = 2π

ω0

ω
k2 + 2πµ (2.20.12)

with k2, k2, µ integers would imply, if k1 6= k2, that ω0/ω = µ/(k1 − k2) =
(rational number). Then, if ϕ is an accumulation point of the above family of
points on the circle, there must exist two distinct points in such a sequence
closer to ϕ than σ/2; i.e., there exist k1, k2 > 0 such that

∣∣(2πω0

ω
k1 − 2π

ω0

ω
k2)mod 2π

∣∣ < σ, (2.20.13)

and this means that the rotation Rk1−k2 displaces the point 0 on the circle at
a point whose angular distance from 0 is ε and 0 < |ε| < σ [note that ε 6= 0,
by the remark related to Eq. (2.20.12)]. Hence, one can take ñ = k1 − k2 if
k1 > k2 or ñ = k2 − k1 if k2 > k1. mbe

2.20.1 Exercises and Problems

Problems (1)-(9) are inspired by [26] and they aim at providing tools for
studying the remaining problems.

1. Let r > 0 be an irrational number represented by its continued fraction

r = a0 +
1

a1 + 1
a2+ 1

a3+...

≡ {a0, a1, a2, . . .}

defined by setting [x] = (integral part of x) and a0 = [r], r1 = (r − a0)−1, a1 = [r1], r2 =
(r1−a1)−1, a2 = [r2], etc. Show that aj > 0, ∀ j > 0. Compute a0, a1, a2, . . . for r = golden
section = (

√
5− 1)/2 (note that r = 1/(1 + r)),or r = (1 +

√
5)/2 (note that r = 1 + 1/r),

or r =
√

2 (note that r = 1 + 1/(1 + r)), or r = π (recall π = 3.141592653589 . . . and using
a pocket computer to find empirically (i.e., without error estimates) a0, a1, a2, . . . , a8, one
finds a0 = 3, a1 = 7, a2 = 15, a3 = 1, a=291, . . .).

2. In the context of problem 1 let

Rk = a0 +
1

a1 + 1
a2+ 1

a3+...
...+ 1

ak

def
= {a0, a1, a2, . . . , ak}

Show that R2k < r < R2k+1 for all k ≥ 0.

3. In the context of problems 1 and 2 note that if {a1, . . . , ak} = p′

q′
then {a0, a1, . . . , ak} =

a0p
′+q′

p′
. Deduce from this that a vector vk = (pk, qk) ∈ Z2

+ such that Rk = pk
qk

can be

taken



2.20 Frictionless Forced Oscillations: Quasi-Periodic Motions 97

vk =

„
a0 1

1 0

«„
a1 1

1 0

«
. . .

„
ak 1

1 0

«„
1

0

«

4. Deduce from problem 3 that vk = akvk−1 + vk−2, i.e.

pk = akpk−1 + pk−2, k > 1

qk = akqk−1 + qk−2, k > 1

(Hint:

„
ak 1

1 0

«
=

„
ak

1

«
= ak

„
1

0

«
+

„
0

1

«
and

„
ak−1 1

1 0

«„
0

1

«
=

„
1

0

«
; then elimi-

nate the last matrix in the product of matrices appearing in problem 3).

5. From the recursion relation in problem 4 deduce that

qkpk−1 − pkqk−1 = −(qk−1pk−2 − pk−1qk−2) = (−1)k , k ≥ 2

qkpk−2 − pkqk−2 = ak(qk−1pk−2 − pk−1qk−2) = (−1)k−1ak , k ≥ 2

so that
pk−1

qk−1
− pk

qk
=

(−1)k

qkqk−1
,

pk−12

qk−2
− pk

qk
=

(−1)k−1

qkqk−2
ak

(Hint: Multiply the first equation in the recursive formula in problem 4 by qk−1 and the
second by pk−1 and subtract, etc.)

6. From problem (5) deduce that

p0

q0
<
p2

q2
. . . < r < . . .

p3

q3
<
p1

q1
, and

˛̨
˛r − pk

qk

˛̨
˛ < 1

qkqk+1

7. Show that qk ≥ 2(k−1)/2, k ≥ 0 and pk ≥ 2(k−2)/2, k ≥ 1. (Hint: Note that ak ≥ 1 for
all k ≥ 1 and use the recursive relation in problem 4 and pj , qj ≥ 1.)

8. Show that

1

qk(qk + qk+1)
<
˛̨
˛r − pk

qk

˛̨
˛ < 1

qkqk+1

(Hint: If a
b
< c

d
then a+s c

b+s d
increases with s for s ≥ 0, while if a

b
> c

d
it decreases. Hence

if k is even
pk−2+s pk−1

qk−2+s qk−1
increases with s and for s = ak it becomes pk

qk
which is such that

pk
qk

< r <
pk−1

qk−1
. Therefore

pk−2

qk−2
≤ pk−2 + pk−1

qk−2 + qk−1
< r

hence ˛̨
˛r − pk−2

qk−2

˛̨
˛ >

˛̨
˛pk−2 + pk−1

qk−2 + qk−1
− pk−2

qk−2

˛̨
˛ ≡ 1

qk−2(qk−2 + qk−1)
)

9. Show that the numbers pn, qn are relatively prime for all n. (Hint: this is obvious for

p0, q0; suppose it is true for pk, qk, k = 0, 1, 2, . . . , n and remark that if p′, q′ are the

last convergents of the continued fraction [a1, a2, . . . , an] then they are by the inductive

assumption relatively prime and pn = a0p′ + q′, qn = p′; hence if j divided qn and pn, it

would divide p′ and q′, against the assumption on p′, q′).

The following definition will be used below: a rational number p/q is a best
approximation for r if for any pair p′, q′ with q′ < q it is |q′r− p′| > |qr− p|.
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10. Let p, q be positive integers and assume r irrational. Let j be odd, α = p/q, αj = pj/qj ,
and suppose that αj−1 < α < αj+1; then q > qj . (Hint: αj−1 > α > αj+1 > r > αj so
that (qjqj−1)−1 > |αj−1 − r| > |αj−1 − α| = |pj−1q − qj−1p|/qqj−1 ≥ 1/qqj−1, because
|pj−1q− qj−1p| ≥ 1). State and check the analogous result for j odd, showing that the two
results can be summarized by saying that if p/q is between two convergents of orders j − 1
and j + 1 then q > qj .

11. In the context of problem (10) show that if α is not a convergent and αj−1 < α < αj+1

then qj |r−αj | < q |r−α|; a similar result holds for j even. (Hint: q|α− r| > q|α−αj+1| =
q|pqj+1 − qpj+1|/qqj+1 ≥ 1/qj+1 ≥ qj |αj − r|).

12. Show that problems (9),(10,(11) imply that if p/q us an approximation to r such that
|q′r− p′| > |qr− p| for all q′ < q then q = qj , p = pj for some j. In other words every best
approximant is a convergent.

13. Show that if r is irrational every convergent is a best approximant. (Hint: if not it
must be that that for some n there exists q < qn with |rq − p| < |rqn − pn| = εn;
let p̄, q̄ minimize the expression |q′r − p′| for q′ < qn; if ε̄ is the minimum value, it is
ε̄ < εn; hence p̄/q̄ is a best approximation: so that p̄ = ps, q̄ = qs for some s < qn and
1/(qs + q(s+1) ≤ |qsr− ps| ≤ |qnr− pn| < 1/qn+1, i.e. qs + qs+1 > qn+1 which contradicts
qn+1 = an+1qn + qn−1).

14. A necessary and sufficient condition in order that a rational approximation to an irra-
tional number be a best approximation is that it is a convergent of the continued fraction
of r. (Hint: just a summary of Problems (9)-(13)).

15. Show that if qn−1 < q < qn then |qr − p| > |qn−1r − pn−1|. (Hint: if not and if
ε̄ = min |qr − p| over qn−1 < q < qn and over p is reached at some q̄, p̄ then p̄/q̄ would
be a best approximation). Show that this can be interpreted as saying that the graph of
the function η(q) = minp |qr − p| is above that of the function η0(q) = εn = |qnr − pn| for
qn <≤ q < qn+1.

16. Suppose n even and think the interval [0, 1] as a circle of radius 1/2π: the point
qnr mod 1 can be represented as a point displaced by εn to the right of 0, while qn−1r can
be viewed as a point to the left of 0 by εn−1. Show that the points qr with qn < q < qn+1

are not in the interval [0, εn−1] unless q/qn is an integer ≤ an+1. Furthermore show that
the point an+1qnr is closer than εn to εn−1, and that the next position closest to 0 occurs
when the rotation by (qnan+1 + qn−1)r ≡ qn+1r is considered and it is to the left of 0 and
at a distance εn+1 from it. Show that this provides a natural interpretation of the meaning
of the numbers aj in the continued fraction of r regarded as a rotation of the circle [0, 1],
as well as a geometric interpretation of the relation an+1qn + qn−1 = qn+1.

17. Show that the function ε(T ) = maximum gap between points of the form nr mod 1, n =
1, 0, . . . , T depends on T as

qn ≤ T < qn + qn−1 ⇒ ε(T ) = εn−1

qn + qn−1 ≤ T < 2qn + qn−1 ⇒ ε(T ) = εn−1 − εn
. . . ⇒ . . .

(an+1 − 1)qn ≤ T < an+1qn + qn−1 ≡ qn+1 ⇒ ε(T ) = εn−1 − (an+1 − 1)εn

and apply this to draw the diagram of ε(T ) and its inverse T (ε) for the golden number, i.e.
the number with aj ≡ 1. Plot − log ε(T ) in terms of log T ). (Hint: this is simply another
interpretation of problem (16)).

18. Show that if the entries aj of the irrational number r are uniformly bounded by N then
the growth of qn is bounded by an exponential (and one can estimate qn by a constant
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times [(N + (N2 + 4)1/2)/2]n). Vice-versa an exponential bound can hold if and only if the
entries of the continued fraction are uniformly bounded. (Hint: it is bounded by the qn of
the number with continued fraction with entries all equal to N).

19. Show that if the inequality: |qnr − pn| > 1/Cqn holds for all n and for a suitable C
then qn cannot grow faster than exponential. (Hint: Problem (8) implies the inequality
1/Cqn < 1/qn+1.)

20. Show that if a number has a continued fraction with entries which eventually are
periodically repeated, then it is a number verifying a quadratic equation, i.e. it is a quadratic

irrational. Vice-versa it can also be shown that all quadratic irrationals have a continued
fraction with entries eventually periodic repeated. (See problems (21),(22) below).

21. Suppose that for some integers a, b, c it is ar2 + br + c = 0. Remark that the argu-
ment in Problem (3) shows that the number rn = [an, an+1, . . .] verifies r = (pn−1rn +
pn−2)/(qn−1rn + qn−2). Substituting the latter expression in the equation for r one finds
that rn verifies an equation like Anr2n + Bnrn + Cn = 0. Check, by direct calculation of
An, Bn, Cn that:

An = a p2n−1 + b pn−1qn−1 + c q2n−1

Cn = An−1

B2
n − 4An Cn = b2 − 4a c

Show that |An|, |Bn|, |Cn| are uniformly bounded by H = 2(2|a|r + |b| + |a)) + |b|.(Hint:

it suffices to find a bound for |An|. Write An = q2n−1(a(pn−1/qn−1)2 + b(pn−1/qn−1) + c)

and use that |r − pn−1/qn−1| < 1/q2n−1 and ar2 + br + c = 0).

22. Show that a quadratic irrational has an eventually periodic continued fraction because,
as a consequence of the results of the previous problem, the numbers rn can only take
finitely many values. Show that, if H is the constant introduced in problem (21), the period
length can be bounded by 2(2H + 1)3 and that the periodic part has to start from the j-th
entry with j ≤ 2(2H + 1)3.

23. Let ω = {a0, a1, . . . , ak}, ai ≥ 1, i > 0, be a rational number and let ω = (ω, 1).
Consider the periodic motion on T 2 given by α0+tω. Estimate (from below) the maximum
distance that a point can have from the trajectory of α0.

24. Determine the region Ω densely covered by the data-space trajectory of the motion
ẍ+ x = 3 cosωt, ẋ(0) = x(0) = 0, when ω is irrational.

25. For ω = golden section (see Problem (1)) estimate the minimum time τ necessary for
the trajectory of the oscillator in Problem (24) to cover Ω so that any point in Ω has a
distance from the trajectory t→ (ẋ(t), x(t)), t ∈ [0, T ], not exceeding σ = 2π/24.

26. Same as Problem (25) for ω =
√

2 and for ω = π; (use for π an empirically computed
continued fraction; see Problem (1)).

27. Let eω = {a0, a1, . . . , ak}, ai ≥ 1, i > 0, be a rational number. In terms of k, estimate

the maximum distance of a point in Ω from the trajectory of the oscillator in Problem (24)

with eω replacing ω.

2.21 Quasi-Periodic Functions. Multi Periodic Functions.
Tori and the Multidimensional Fourier Theorem

The considerations of 2.20 suggest the following definition.
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11 Definition. A function f ∈ C∞(R) is “quasi-periodic with pulsations
ω1, . . . , ωd” if there exists a ϕ ∈ C∞(Rd) such that

ϕ(α1, . . . , αi, . . . , αd) = ϕ(α1, . . . , αi + 2π, . . . , αd), (2.21.1)

α ∈ Rd, i = 1, 2, . . . , d, and

f(t) = ϕ(ω1t, . . . , ωdt), t ∈ R. (2.21.2)

The numbers T1 = 2π/ω1, . . . , 2π/ωd, are called the “periods” of f , while
ν1 = T−1

1 , . . . , νd = T−1
d are the “frequencies” of f .

Observations.
(1) Therefore the motion of a harmonic oscillator with pulsation ω0 forced by
a periodic force with pulsation ω is, in absence of resonances, a quasi-periodic
function with pulsations ω0 and ω [see Eq. (2.16.6) and §2.20].
(2) The above definition of a quasi-periodic function is more restrictive than
the one sometimes found in mathematical literature: it is, however, sufficiently
general for our purposes.
(3) It is useful to note that given f , there exist several choices of d, ω1, . . . , ωd
and ϕ allowing us to represent f as in Eq. (2.21.2). A trivial example is
provided by the consideration of a function ϕ ∈ C∞(R), periodic with period
2π, and of the functions of ξ ∈ R or of (ξ1, ξ2) ∈ R2 defined as ψ(ξ) or

ψ̃(ξ1, ξ2) = ϕ(2ξ1 + 3ξ2) which, via the formulae

f(t) = ψ(
ω

2
t) ≡ ϕ(ωt), (2.21.3)

f(t) = ψ̃(
ω

4
t,
ω

6
t) ≡ ϕ(ωt), (2.21.4)

allow a representation of f as a quasi-periodic function with angular velocities
ω/2 or ω or (ω/4, ω/6).
(4) The pulsations (or “angular velocities”) in Definition 11 need not neces-
sarily all be positive: some may be zero or negative.

The functions ϕ used to introduce the notion of quasi-periodic function
are remarkable in themselves, and it is convenient to set up the following
definition.

12 Definition. Given L1, . . . , Ld > 0, consider the pavement of Rd whose
tesserae are the parallelepiped [0, L1] × [0, L2] × . . . × [0, Ld] and the paral-
lelepipeds obtained by translating it by (n1L1, . . . , ndLd), n1, . . . nd integers.
Two points ξ,η ∈ Rd will be declared equivalent if they are “equally located”
in the pavements tesserae, i.e., if there are d integers n1, . . . , nd such that
ξi − ηi = niLi, i = 1, . . . , d. Then T d(L1, . . . , Ld) will denote the set of the
equivalence classes thus obtained and a “distance” will be defined as
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d({ξ}, {η}) def= min
ξ′∈{ξ}

η′∈{η}

|ξ′ − η′| (2.21.5)

if {ξ}, {η} ∈ T d(L1, . . . , Ld) and {ξ} denotes the equivalence class contain-
ing ξ. The set T d(L1, . . . , Ld), regarded as a metric space with the distance
function defined by Eq. (2.21.5) (“distance on the torus”), will be called a
“d-dimensional torus” with sides L1, . . . , Ld. If L1 = L2, . . . = Ld = 2π, this
torus will be denoted T d, simply, and called “standard torus”.

Observations.

(1) The above definition, in spite of its apparent complexity, is simple and can
be informally summarized by saying that the torus T d(L1, . . . , Ld) is obtained
by “identifying the opposite sides” of the parallelepiped [0, L1]× . . .× [0, Ld]
of Rd. For this reason it is customary to describe points of T d(L1, . . . , Ld)
through the Cartesian coordinates in Rd of one of the corresponding repre-
sentatives without explicit mention of the equivalence relation: when L1 =
. . . = Ld = 2π, such coordinates are called the “natural angular coordinates”
or “flat coordinates” on T d. In general, the distance [Eq. (2.21.5)] is called
the distance between ξ and η on the torus T d(L1, . . . , Ld).
(2) Clearly T d can be regarded as the product of d unit circles. If (ϕ1, . . . , ϕd)
are the natural angular coordinates ofϕ ∈ T d, a natural one-to-one continuous
mapping of T d into S × S × . . . × S, where S = (unit circle in the complex
plane), is

ϕ = (ϕ1, . . . , ϕd)←→z = (z1, . . . , zd) = (eiϕ1 , . . . , eiϕd) (2.21.6)

and the distance (2.21.5) turns out to be equivalent to the distance on S×S×
. . .×S as a subset of Cd. Therefore, the d-dimensional torus T d can be regarded
as a subset of the d-dimensional complex space Cd. This representation is more
intrinsic since it does not involve coordinates defined mod 2π. It will turn out
to be a deep and very useful representation (see Chapter V, §5.10-5.12).

13 Definition. C∞(T d(L1, . . . , Ld)) is, by definition, the set of the functions
f defined on T d(L1, . . . , Ld) such that setting (notations of Definition 12)

f̃(ξ) = f({ξ}), ∀ ξ ∈ Rd (2.21.7)

the function f̃ is in C∞(Rd). The set of functions on Rd having the form of
Eq. (2.21.7) is the set of the “multi periodic functions on Rd” with periods
L1, . . . , Ld.
When f̃ has the form of Eq. (2.21.7) with f ∈ C∞(T d(L1, . . . , Ld)), the same
happens for the partial derivatives of f since the derivatives of a C∞-multi
periodic function are still multi periodic; i.e., given d nonnegative integers
n1, . . . , nd, there is ϕn1,...,nd

∈ C∞(T dd(L1, . . . .Ld)) such that
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∂n1+...+nd f̃

∂ξn1
1 , . . . , ξnd

d

(ξ) = ϕn1,...,nd
({ξ}) (2.21.8)

and it is natural to set

∂n1+...+ndf

∂ξn1
1 , . . . , ξnd

d

(ξ) = ϕn1,...,nd
({ξ}) (2.21.9)

Depending on the circumstances, it is possible to think or not to think of a
C∞-multi periodic function with periods L1, . . . , Ld and its partial derivatives
as an element of C∞(T d(L1, . . . , Ld)).

Observations.

(1) Another natural definition of C∞(T d), for L1 = . . . = Ld = 2π, could be
related to observation (2) to Definition 12: one could say that f ∈ C∞(T d)
if f(ϕ) = F (z), where F is a C∞-function on Cd14 and z is given by Eq.
(2.21.6). This would in fact be an equivalent definition, as could be shown;
see Problems (6)-(10) at the end of this section.
(2) Along the same lines, after Definition 13, one can define the classesC∞(V ×
T d), where V is an open set in Rq, and the derivatives of their elements. One
can also define W×T ℓ-valued functions in C∞(V ×T d), and their derivatives,
as the C∞(V ×T d) functions with values in Rs×Rℓ whose last ℓ components
are thought of as angular coordinates on T ℓ (for W ⊂ Rs, V ⊂ Rq open sets).
(3) An example of a multi periodic function on Rd with periods 2π

ω1
, . . . , 2π

ωp
is

the sum of the series

f(ξ1, . . . , ξd) =

nj∈Z∑

n1,...,nd

cn1,...,nd
ei(n1ω1ξ1+...+ndωdξd); (2.21.10)

provided the coefficients cn1,...,nd
∈ C verify (“reality condition”)

cn1,...,nd
= c−n1,...,−nd

(2.21.11)

and if, ∀ s = 0, 1, . . ., there exists γs > 0 such that (“regularity condition”)

(1 + |n1|)s . . . (1 + |nd|)s|cn1,...,nd
| ≤ γs (2.21.12)

The partial derivatives of f , in the sense of Definition 12, can be computed
by series differentiation, as a result of Eq. (2.21.12).

It is important to realize that, vice versa, Eqs. (2.21.10), (2.21.11), and
(2.21.12) provide the most general example. This is essentially the content of
the following proposition (“multidimensional Fourier theorem”).

14 A C∞-function on Cd is a function on Cd which is C∞ in the real and imaginary parts
of the coordinates.
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28 Proposition. Let f is a C∞-multi periodic function on Rd with periods
L1, . . . , Ld > 0, then it is possible to represent f by formula (2.21.10) with
coefficients cn1,...,nd

verifying Eqs. (2.21.11) and (2.21.12) and given by

cn1,...,nd
=

∫ L1

0

dξ1
L1

∫ L2

0

dξ2
L2

. . .

∫ Ld

0

dξd
Ld

· e− i (ω1n1ξ1+...+ωdndξd) f(ξ1, . . . , ξd),

(2.21.13)

where ωj = 2π/Lj, j = 1, . . . , d.

Observations.

(1) If d = 1, this proposition coincides with the Fourier development theorem
for periodic functions (see Proposition 19).

(2) Since f̃(ξ1, . . . , ξd) = f(ξ1/ω1, . . . , ξd/ωd) is multi periodic with periods
2π, it will suffice to prove the above proposition when ω1 = . . . = ωd = 1.

Proof (Case ω1 = . . . = ωd = 1). The proof can be developed by induction.
For d = 1 it holds (see Proposition 19, §2.12); hence assume its validity for
d = 1, 2, . . . , k and consider the case d = k + 1.

Let f ∈ C∞(T k+l) and contemplate the function ψξk+1
, parameterized by

ξk+1 ∈ R and defined on Rk:

ψξk+1
(ξ1, . . . , ξk) = f(ξ1, . . . , ξk, ξk+1), (2.21.14)

which, ∀ ξk+1 ∈ R, is a C∞-2π-multi periodic function on Rk. The inductive
hypothesis implies

f(ξ1, . . . , ξk, ξk+1) =
∑

(n1,...,nk)∈Zk

ψ̂n1,...,nk
(ξk+1)e

i (n1ξ1+...+nkξk) (2.21.15)

with

ψ̂n1,...,nk
(ξk+1) =

∫ 2π

0

dξ1 . . . dξk
(2π)k

f(ξ1, . . . , ξk, ξk+1)e
− i (n1ξ1+...+nkξk))

(2.21.16)

On the other hand, Eq. (2.21.16) immediately implies that ψ̂n1,...,nk
(ξk+1) is

a C∞-function, periodic with period 2π, of ξk+1, for all choices of (n1, . . . , nk)
∈ Zk. Via the Fourier theorem for d = 1 it follows

ψ̂n1,...,nk
(ξk+1) =

∑

nk+1∈Z
eink+1ξk+1

∫ 2π

0

ψ̂n1,...,nk
(ξ′)e−ink+1ξ

′ dξ′

2π
(2.21.17)

i.e., using Eq. (2.21.13) as definition of cn1,...,nk+1
and inserting Eq. (2.21.16)

in the right-hand side of Eq. (2.21.17), we find
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ψ̂n1,...,nk
(ξk+1) =

∑

nk+1∈Z
cn1,...,nk+1

eink+1ξk+1 (2.21.18)

Substituting Eq. (2.21.18) into Eq. (2.21.15), one obtains Eq. (2.21.10), pro-
vided Eq. (2.21.12) holds (which implies that the series on nk+1, and on
n1, . . . , nk can be unconditionally summed and interchanged since they are
absolutely convergent).

It is therefore necessary to check Eq. (2.21.12) in order to complete the
proof. In fact, Eq. (2.21.11) follows from Eq. (2.21.13) which has now become,
temporarily, a definition of cn1,...,nk+1

. One can proceed as in the analogous
situation met in the one-dimensional case: one integrates Eq. (2.21.13) by
parts. By integrating σ times with respect to ξj by parts, we find, if nj 6= 0:

cn1,...,nk+1
=

1

(inj)σ

∫ 2π

0

dξ1 . . . dξk+1

(2π)k+1
· ∂

σf(ξ1, . . . , ξk, ξk+1)

∂ξσj
e−i
∑

r
nrξr

(2.21.19)

and, if F ′σ = maxξ,j |∂
σf
∂ξσ

j
(ξ)|, this yields

|cn1,...,nk+1
| ≤ F ′σ
|nj|σ

(2.21.20)

For nj = 0, from Eq. (2.21.13), and ∀n1, . . . , nk+1, (zero or not), cn1,...,nk+1
is

bounded by the maximum F ′0 of |f |, Eq. (2.21.20) implies the existence of some
Fσ > 0 such that for ∀ j = 1, . . . , k + 1, ∀σ ∈ Z+, ∀ (n1, . . . , nk+1) ∈ Zk+1:

|cn1,...,nk+1
| ≤ Fσ

(1 + |nj |)σ
(2.21.21)

(take, for instance, F0 = F ′0 +F ′σ). Hence, multiplying Eq. (2.21.21) on j as j
varies between 1 and k + 1 and then taking the (k + 1)-th root, side by side,
of the result, it is

|cn1,...,nk+1
| ≤ Fϕ

[(1 + |n1|) . . . (1 + |nk+1|)]−σ/(k+1)
, (2.21.22)

implying Eq. (2.21.12) by the arbitrariness of σ > 0. mbe

It is useful to explicitly state the following obvious corollary of Proposition
28 and Definition 11.

29 Corollary. If f is a C∞-quasi-periodic function with pulsations ω1, . . . ,
ωd > 0, then it admits a representation of the type

f(t) =
∑

n∈Zd

cne
in·ω t, (2.21.23)

where ω = (ω1, . . . , ωd), n = (n1, . . . , nd), and the constants cn1,...,nd
verify

Eqs. (2.21.11) and (2.21.12).
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It is remarkable that in some cases, given ω1, . . . , ωd, the representation
Eq. (2.21.23) is unique.

30 Proposition. Let f ∈ C∞(R) be quasi periodic with pulsations ω1, . . . , ωd
> 0. If the pulsations are rationally independent,15 the coefficients of the rep-
resentation (2.21.23) are given by

cn = lim
t→+∞

t−1

∫ t

0

e−in·ω τf(τ)dτ (2.21.24)

and, therefore, the representation (2.21.23) is unique, given ω = (ω1, . . . , ωd).

Proof. Taking into account the decay properties of cn as n → ∞ expressed
by Eq. (2.21.12), the integral in Eq. (2.21.24) can be computed via the series
in Eq. (2.21.23):

t−1

∫ t

0

e−in·ω τf(τ)dτ =
∑

m∈Zd

cmt
−1

∫ t

0

e−i(n−m)·ωτdτ. (2.21.25)

The right-hand integral divided by t has a modulus ≤ 1 (as an average of a
function with modulus 1). Therefore, Eq. (2.21.12) shows that the series in
Eq. (2.21.25) is a series uniformly convergent with respect to t and that the
limit of Eq. (2.21.24) can be computed in Eq. (2.21.25) by interchanging it
with the series. If n 6= m, the integral in Eq. (2.21.25) is

1

t

e−i(n−m)·ωt − 1

−i(n−m)
−−−→t→∞ 0 (2.21.26)

because (n−m) · ω 6= 0 by the rational independence assumption on ω.
Hence all the terms in Eq. (2.21.25) with 6=m do not contribute to the

limit, as t→ +∞, of Eq. (2.21.15) itself. The term with n = m, on the other
hand, only contributes cn; hence, the proposition is proved. mbe

For the sake of completeness, we also wonder about what can be said in
the other cases when ω1, . . . , ωd are rationally dependent. As an example, the
following proposition will be discussed,

31 Proposition. Let f ∈ C∞(R) be quasi-periodic with rationally dependent
pulsations ω1, . . . , ωd > 0. There exist p < d and p rationally independent
numbers õ1, . . . , ω̃p and a multi periodic function ϕ̃ ∈ C∞(T p) such that

f(t) = ϕ̃(ω̃1t, . . . , ω̃p), ∀ t ∈ R. (2.21.27)

15 A family Ω = (ω1, ω2, . . .) of real numbers is said to consist of rationally indepen-
dent numbers when every finite subset (ωj1 , . . . , ωjp ) has the property that the relationPp
k=1 nkωjk = 0, with n1, . . . , np integers, implies n1 = . . . = np = 0.
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Observation. Therefore, if ω1, . . . , ωd are rationally dependent, it is possible
to reduce the complexity of the representation Eq. (2.21.23) by reducing the
dimension of the multiple series appearing in it.

Proof. Consider all the subsets of ω1, . . . , ωd built with rationally indepen-
dent numbers and let (ω1, . . . , ωp) be a maximal one among them (i.e., such
that (ω1, . . . , ωp, ω

′) is not built with rationally independent numbers no mat-
ter which ω′ ∈ (ω1, . . . , ωd) is chosen).

Without loss of generality, suppose ω1 = ω1, . . . , ωp = ωp: then for every

j = p+1, . . . , d, there are p rational numbers Γ
(j)
1 , . . . , Γ

(j)
p , all with the same

denominator N , as it can and and shall be assumed, such that

ωj =

p∑

k=1

Γ
(j)
k ωk, j = p+ 1, . . . , d. (2.21.28)

Hence, setting Γ
(j)
k = m

(j)
k /N , m

(j)
k integer, j = p+1, . . . , d, k = 1, . . . , p, and

ω̃jωj/N , we see that

ωj =

p∑

k=1

m
(j)
k ω̃k, j = p+ 1, . . . , d. (2.21.29)

defining m
(j)
k = Nδjk for j ≤ p. Now make use of Proposition 29 to get

f(t) =
∑

n1,...,nd

cn1,...,nd
ei
∑

nkωk t

=
∑

n1,...,nd

cn1,...,nd
ei
∑

d

h=1
nh(
∑

p

k=1
m

(h)

k
ω̃k) t

=
∑

n1,...,nd

cn1,...,nd
ei
∑

p

k=1
ω̃k(
∑

d

h=1
m

(h)

k
nh) t

=
∑

q1,...,qp

( ∑
n1,...,nd∑

h
m

(h)

k
nh=qk

cn1,...,nd

)
ei
∑

p

k=1
ω̃kqk t,

(2.21.30)

Therefore, we set

c̃q1,...,qp =
∑

n1,...,nd∑
h

m
(h)

k
nh=qk

cn1,...,nd
, (2.21.31)

and, from Eq. (2.21.11), t is seen that cq1,...,qp = c−q1,...,−qp . Furthermore,

since |qj | ≤M(
∑d

k=1 |nk|) with M = maxk,j |m(k)
j | ≥ 1, we see that
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(1 + |q1|)s . . . (1 + |qp|)s|c̃q1,...,qp |
≤Mps

∑
n1,...,nd∑

h
m

(h)

k
nh=qk

(1 + |q1|)sp . . . (1 + |qp|)sp|cn1,...,nd
| (2.21.32)

The series on the right-hand side of Eq. (2.21.32) can be bounded, with the
help of Eq. (2.21.12), as

∑
n1,...,nd∑

h
m

(h)

k
nh=qk

(1 + |q1|)sp . . . (1 + |qp|)sp γsp+2

(1 + |q1|)sp+2 . . . (1 + |qp|)sp+2
≤
( +∞∑

n=−∞

2

(1 + |n|)2
)d
γsp+2

(2.21.33)
Hence, Eqs. (2.21.32) and (2.21.33) mean that the constants c′′ verify an
inequality like Eq. (2.21.12) (with p instead of d) and the proposition is now
proved since, by Eq. (2.21.30), we can define

ϕ̃(ξ1, . . . , ξp) =
∑

q1,...,qp

c̃q1,...,qpe
i
∑

p

kj=1
ω̃j qj ξj (2.21.34)

mbe

2.21.1 Exercises and Problems

1. Compute the Fourier coefficients ef0,0, ef0,1, ef1,0 of the function f(ξ1, ξ2) = 1− 1
4
(cos ξ1 +

cos ξ2)−1 with an approximation of 50%.

2. Same as Problem 1 for f(ξ1, ξ2) = 1− log(cos ξ1 + cos ξ2).

3. Show that if f(ξ1, ξ2) =
P∞
k=0 4−kCk(cos ξ1 + cos ξ2)k with |Ck| < D, there exist

C > 0, ε > 0 such that |efn1,n2 | ≤ Ce−ε(|n1|+|n2|). Estimate C and ε in terms of D.

4. If ω1/ω2 is irrational, show that, for ∀ϕ ∈ C∞(T 2), the closure of the set of the values
taken as t ∈ R+, by f(t) = ϕ(ω1t, ω2t) coincides with ϕ(T 2) = ϕ-image of T 2. (Hint:: See
Proposition 27.)

5.* Same as Problem 4 when ϕ ∈ C∞(T d), f(t) = ϕ(ω1t, . . . , ωdt) and ω1, . . . , ωd are
rationally independent.

6. On the complex plane C/{0}, define the function I(z) = eiϕ if z = ̺eiϕ 6= 0, ̺ > 0, ϕ ∈ R.
Show that I is a C∞ function of Re z = x and Im z = y.

7. In the context of Problem 6, show that

| ∂
kI(zn)

∂xh∂yk−h
| ≤ |n|kCk

For a suitably chosen Ck, for all z such that 1
2
≤ |z| ≤ 2.

8. If f ∈ C∞(R) and f is 2π-periodic and if efn are the Fourier coefficients of f , consider
the function of z = x+ iy, x, y ∈ R defined for 1

2
< |z| < 2 and by
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F (z) =

+∞X

n=−∞

efn I(zn).

Using Problem 7, show that F , as a function of x, y, is C∞ in the region 1
2
< |z| < 2 and

on the unit circle coincides with f(ϕ) = F (eiϕ).

9. Using Problem 8, show the validity of the equivalence claimed in observation (1) to
Definition 13, p. 102, in the case d = 1.

10. Same as Problem 9 in the case d > 1. (Hint:: If f ∈ C∞(T d) and if efn1,...,nd are its
Fourier coefficients, let z = (z1, . . . , zd) ∈ Cd and

F (z) =
X

n1,...,nd∈Zd

efn1,...,ndI(z
n1
1 ) · · · I(znd

d );

then show that F is a C∞ function of xi = Re zi and yi = Im zi, i = 1, . . . , d, in a

neighborhood of the torus S × . . .× S where S = {unit circle in C} identified with T d via

Eq. (2.21.6).)

2.22 Observables and Their Time Averages

Observables and time averages play an important role in qualitative as well
as quantitative developments in Mechanics. It is therefore useful to look more
closely at them. For the purpose, consider an autonomous differential equation

mẍ = f(ẋ, x), (2.22.1)

where (η, ξ) → f(η, ξ) is in C∞(R2) and m > 0. Suppose, also, that Eq.
(2.22.1) is normal. According to Definition 7, we shall denote by (St)t∈R+ ,
the flow which solves Eq. (2.22.1); i.e., if (η, ξ) ∈ R2, the function

t→ (ẋ(t), x(t)) = St(η, ξ), t ∈ R+ (2.22.2)

will be such that t → x(t), t ∈ R+, is a solution of Eq. (2.22.1) with initial
datum (η, ξ). Recall, also, that the map defined on R+ × R × R and with
values in R×R is a C∞ map and

St+t′ = St St′ , ∀ t, t′ ∈ R+; (2.22.3)

see Corollary 9. In the above context, introduce the following concepts.

14 Definition. The set of C∞ functions on R2, thought of as the space of the
initial data of Eq. (2.22.1), will be called the set of instantaneous “observables”
for the point mass described by Eq. (2.22.1).

If t→ St(η, ξ), t ≥ 0, is a motion of Eq. (2.22.1) and if F is an observable,
let the “value” of the observable at time t ∈ R+ on the motion with initial
datum (η, ξ) be

F (ẋ(t), x(t)) = F (St(η, ξ)). (2.22.4)
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The function t→ F (St(η, ξ)), t ∈ R+, is the “history” of the observable F on
the motion with data (η, ξ).

Observations.
(1) The motivation for the above terminology is clear. What perhaps needs
a few words of comment is why one defines an observable as a function of
velocity and position only, see Eq. (2.22.4), rather than, more generally, as a
function of acceleration and higher derivatives as well.
Actually, such a definition would not be more general since, via Eq. (2.22.1)
and by what it has been observed in §2.4, it is possible to compute all the
derivatives of t → x(t) successive to the first by repeatedly differentiating
both sides of Eq. (2.22.1), once x(t) and ẋ(t) are known.
(2) Therefore, the observables correspond to physical entities measurable by
observing velocity and position of the point mass at a given instant: they are
a mathematical model of such entities.

Given an observable F and a motion t → St(η, ξ), t ∈ R+, one can raise
several questions about the observations of F at various times. As an example,
the notion of average value of an observable on a given motion will be discussed
below.

It is important to remember and to stress that, concerning the notion of
the average value of an observable, it is possible to repeat what has already
been said about the notion of the stability of equilibrium. It makes no sense
to provide an absolute definition of average value of an observable as time
elapses. In fact, it is possible to give several meanings to this concept, each
corresponding to different needs that may naturally emerge in applications.

Here and in the following sections, only a few interesting examples of
definition of time averages will be examined, leaving it to the reader to imagine
applications in which a particular definition may appear as a relevant one.
The reader should also try to imagine other definitions and the corresponding
situations to which they could naturally apply: the methods explained below
could then be used to elucidate their properties.

15 Definition. Let F ∈ C∞(R2) be an observable for the motions described
by (2.22.1) and let T > 0. We define the continuous average value of F on
the motion with initial datum (η, ξ) ∈ R2 and on the time interval [0, T ] as

MT (F ; η, ξ) =
1

T

∫ T

0

F (St(η, ξ)) dt (2.22.5)

The “continuous average value” of F on the motion with initial datum (η, ξ)
will be, whenever it exists, the limit

F (η, ξ) = lim
T→+∞

MT (F ; η, ξ). (2.22.6)

Similarly, one could define the average value with observation step a > 0:
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16 Definition. If F ∈ C∞(R2) is an observable for the motions described
by Eq. (2.22.1) and if N is a positive integer, the discrete average value with
time step a of F on the motion with initial datum (η, ξ) and relative to N
observations, is defined as

M
(a)
N (F ; η, ξ) =

1

N

N−1∑

j=0

F (Sja(η, ξ)). (2.22.7)

The “discrete average value” with step a of F on the motion t→ St(η, ξ), t ∈
R+, is defined by the limit, whenever it exists,

F
(a)

(η, ξ) = lim
N→+∞

M
(a)
N (F ; η, ξ). (2.22.8)

Why should one refrain from considering a more general notion?

17 Definition. If ϕ ∈ C∞(R+) and if T > 0, N ∈ Z+, a > 0 let

MT (ϕ) =
1

T

∫ T

0

ϕ(t)dt, ϕ = lim
T→+∞

MT (ϕ)

M(a)
N (ϕ) =

1

N

N−1∑

j=0

ϕ(ja), ϕ(a) = lim
N→+∞

M(a)
N (ϕ)

(2.22.9)

whenever the limits exist. The quantities defined in Eq. (2.22.9) will be called
the “continuous average of ϕ on [0, T ]”, the “continuous average of ϕ”, the
“discrete average of ϕ on N observations with time step a”, and the “discrete
average of ϕ with time step a”.

Observations.
(1) If ϕ is constant, ϕ = ϕ(a) ≡ ϕ.
(2) If λ = limt→+∞ ϕ(t) exists, then ϕ = ϕ(a) = λ: in fact, note thatMT (ϕ)−
λ =MT (ϕ− λ) and if Tε is such that, ∀ t ≥ Tε, |ϕ(t)− λ| < ε, one has

MT (ϕ− λ) =
1

T

∫ Tε

0

(ϕ(τ) − λ) dτ +
1

T

∫ T

Tε

(ϕ(τ) − λ) dτ (2.22.10)

and the first term in the right-hand side of Eq. (2.22.10) goes to zero as T →
∞, while the second is bounded by T−1(T−Tε)ε < ε. Hence limT→∞MT (ϕ−
λ) = 0 by the arbitrariness of ε, and ϕ = λ. Similarly, one checks that ϕ(a) = λ.
(3) If ϕ ∈ C∞(R) is periodic with period Tϕ > 0,

lim
T→∞

MT (ϕ) = ϕ =
1

Tϕ

∫ Tϕ

0

ϕ(τ)dτ. (2.22.11)
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In fact, if T = nTϕ,+θ with n integer and θ ∈ [0, Tϕ], it follows that T →
∞←→n→∞ and

MT (ϕ) =
1

nTϕ + η

(
n

∫ Tϕ

0

ϕ(τ) dτ +

∫ θ

0

ϕ(τ) dτ
)

(2.22.12)

implying Eq. (2.22.11).
(4) If ϕ ∈ C∞(R) is periodic with period Tϕ > 0 and if a > 0 is such that
Tϕ/a = p/q with p and q relatively prime integers (i.e., if Tϕ/a is rational), it
follows that

ϕ(a) =

+∞∑

m=−∞
ϕ̂mp, and ϕ(a) =

1

p

p−1∑

j=0

ϕ(ja) (2.22.13)

where ϕ̂n are the harmonics of ϕ relative to the period Tϕ. The first relation
in Eq. (2.22.13) can be proved as in (3) above. To prove the second, note that

M(a)
N (ϕ) =

1

N

N−1∑

j=0

ϕ(ja) =
1

N

N−1∑

j=0

∑

n∈Z
ϕ̂ne

2π i
Tϕ

ja

=
∑

n∈Z
ϕ̂n
( 1

N

N−1∑

j=0

e
2π i
Tϕ

ja)
(2.22.14)

and the term in brackets has modulus < 1 (as an average of numbers with
modulus not exceeding 1). Hence, the series in Eq. (2.22.14) is uniformly
convergent in N and the limit as N → ∞ can be taken term by term. As
already remarked (see Eq. (2.21.26)) if e2π i na/Tϕ 6= 1, one finds

1

N

N−1∑

j=0

e
2π in a

Tϕ
j

=
1

N

e
2π i n a

Tϕ
N − 1

e
2π i n a

Tϕ − 1
−−−−−→
N→+∞ 0, (2.22.15)

while if e2π i na/Tϕ ≡ 1, i.e., if na/Tϕ is an integer (i.e., n = mp for some
m ∈ Z), the sum (2.22.15) is clearly 1, identically, ∀N . Hence, by taking the
limit as N →∞ in Eq. (2.22.14), Eq. (2.22.13) follows.
(5) If ϕ ∈ C∞(R) is Tϕ-periodic, Tϕ > 0, and if Tϕ/a is irrational, then

ϕ(a) = ϕ =
1

Tϕ

∫ Tϕ

0

ϕ(τ) dτ. (2.22.16)

This is true because, in the present case, in the series (2.22.14), all the terms
tend to zero except the one with n = 0 (as exp(2πina/Tϕ) 6= 1, ∀n 6= 0 [see,
also, Eq. (2.22.15)]).
(6) If ϕ ∈ C∞(R) is periodic with period Tϕ > 0, let a > 0 vary so that Tϕ/a
is rational, but if Tϕ/a = p/q, with p and q relatively prime integers, then
p→∞.16 Then it follows from Eq. (2.22.13) and from the decay 112 properties

16 The number p measures the number of times it is necessary to repeat a to reach a multiple
of Tϕ, i.e. it measures the “commensurability” of Tϕ with respect to a.
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of the Fourier coefficients of of the Fourier coefficients of ϕ that ϕ(a) → ϕ.
Hence, the “less Tϕ is commensurable with a”, the closer the discrete average
ϕ(a) is to the continuous average ϕ.

The following proposition is a consequence of the above remarks and an
example of questions related to the corresponding definitions,

32 Proposition. Let V ∈ C∞(R) be bounded below and consider the motions
associated with Eq. (2.22.17):

mẍ(t) = −∂V
∂ξ

(x(t)), t ∈ R+. (2.22.17)

If F is an observable “with bounded support” (i.e., if F (η, ξ) ≡ 0 when |η| +
|ξ| is large enough), every initial datum (η, ξ) ∈ R2 gives rise to a motion
on which both the continuous and the discrete averages with step a > 0 are
defined.
If limξ→±∞ V (ξ) = +∞, every observable (whether with bounded support or
not) has well-defined average values, continuous and discrete. In this case the
continuous and discrete averages with step a > 0 coincide on all motions, with
the possible exception of the periodic motions with period commensurable with
a.

Proof. From Proposition 11, p. 37, it follows that the motions described by
Eq. (2.22.17) either approach infinity or tend toward a well-defined limit (i.e.,
limt→+∞ St(η, ξ) = (0, ξ0)) or are periodic.

In the first two cases, the above proposition follows from observation 2 to
Definition 17, while in the third case, it follows from Observations 3 and 4.
The assumption on the support of F is needed to deal with the case when
St(η, ξ)→∞ : this case cannot occur, according to the law of conservation of
energy, when V diverges at infinity; hence, in this case, no restriction on F is
necessary. mbe

2.22.1 Exercises and Problems

1. Compute the continuous average along the motions ẍ+ x = 0, x(0) = 0, and ẋ(0) = 1 of
the kinetic energy and of the squared elongation (Le., of the observables f(η, ξ) = 1

2
η2 or

g(ξ, η) = ξ2).

2. Compute the difference between the continuous average of the kinetic energy and that of
the potential energy in the oscillations of mẍ = −kx with energy E. Compute their values
as functions of E.

3. Compute the discrete average of the kinetic energy for the motion ẍ + x = 0, x(0) =
0, ẋ(0) = 1 for a = 2π, 4π, π

2
, 1, 2, 17

13
.

4. Same as Problem 1 for the motion z̈ + sinx = 0, x(0) = 0, ẋ(0) = 1
2

with 60% accuracy.

5. Same as Problem 3 for the motion in Problem 4 with 60% accuracy.

6. Same as Problems 4 and 5 with 1% accuracy (using a computer).
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7. Same as Problem 1 for the motion in Problem 4. Estimate the accuracy needed in the
computations to see a difference between the linear-oscillator and pendulum results.

8. Compute the average value of the elongation, and of the square of the elongation, in the
motion ẍ + x = cosπt, x(0) = 0, ẋ(0) = 0 in the continuous case and in the discrete case
with step a = π, 17

13
,
√

2.

9. Show that if ϕ,ψ ∈ C∞(R) and limt→+∞ |ϕ(t)−ψ(t)| = 0 and if ϕ has an average value
of any type, then ψ has the same average value.

10. Apply Problem 9 to calculate the continuous average of the squared elongation in the
motion of the oscillator ẍ+ ẋ+ x = cos t, x(0) = 0, ẋ(0) = 0. How does this average change
by changing the initial datum? (Answer: It does not change.)

11. Define work per unit time of a force f on a point with velocity v the quantity v · f :
see p.144 for the general definition. Arbitrarily choose a definition of average and estimate

the average work done by the friction force (“dissipation per unit time”, i.e., average of the
observable. w(η, ξ) = −η2) in the motions of the oscillator in Problem 10.

12. In the context of Problem 11, compare the average work per unit time done by the
friction force and that done by the forcing force. Interpret the value of their difference.

13. Compute, in general, the continuous average value of the work done by the forcing
force and by the friction force in the motions of the oscillators mẍ + λẋ + kx = f(t) with
m, λ, k > 0 and f(t) = F cos ωt, F,ω ∈ R. Also compute the continuous average value of
the potential or kinetic energy.

14.* Same as Problem 13 but with a generic 2π/ω-periodic C∞ forcing force f . Express
the results by means of the harmonics of f and of the parameters m, λ, k.

15. In the context of Problem 13, find the value of ω to which corresponds maximum average
work done by the forcing term (“resonant pulsation”).

16.* If f ∈ C∞R is a quasi-periodic function in the sense of Definition 11, then the average
values of f exist both in the continuous and the discrete sense. Find expressions for such
quantities and show that if the pulsations of f are ω1, . . . , ωd and if {ω1, . . . , ωd, 2π/a} are
(d+ 1) rationally independent numbers, then the discrete average of f with step a > 0 and
the continuous average of f coincide. (Hint:: Use the representation of Eq. (2.21.23) and
proceed as in Observation 4, Eq. (2.22.14).)

17. Find an example of a function in C∞(R) which does not have a continuous average.

18. Estimate within 60% the average kinetic energy in the motion with energy E = 10 of
the oscillator ẍ+ x3 = 0.

19.* Same as Problem 18 with 1% accuracy (using a computer).

20.* Show that if a potential energy produces periodic motions with period T (E) which,
as E varies in [E0, E1], is such that T ′(E) > 0, then the discrete average with step a = 1
and the continuous average of an arbitrary observable coincide for a dense set of values of
R ∈ [E0, E1], while they do not coincide, in general, on another dense set. The second set
is, however, denumerable. (Hint:: By the implicit functions theorem, deduce that T (E)/a
is irrational for all but countably many values of E ∈ [E0, E1]).

21. Show that the same results of Problem 20 hold if T (E) is strictly monotonically in-

creasing in [E0, E1]. They also hold if T ′(E) = 0 only finitely many times in [E0, E1].
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2.23 Time Averages on Sequences of Times known up to
Errors. Probability and Stochastic Phenomena

... or mi di’ anche:
Questa Fortuna di che tu mi tocche,
Che è, che i ben del mondo ha s̀ı tra branche? 17

The continuous averages as well as the step-a discrete averages are, as is
easily understood, very idealized mathematical notions, even when T or N
are < +∞. To be really measured, the continuous averages would demand
an infinity of measurements of f , one per each time, and there is no need to
underline the degree of abstraction that must be assumed in order to imagine
such a sequence of measurements.

Only at first sight are the discrete averages “more concrete“ notions. It
is in fact unthinkable to be able to perform measurements at time intervals
exactly equal to a, because of the unavoidable errors of time measurement.

Obviously, considerations of measurement errors could have been brought
up in correspondence with almost every question studied so far or it could be
brought up in correspondence with any future question. Arbitrarily, we decide
to discuss it now in connection with the analysis of the averages of functions
or observables.

The methods and ideas involved in the effort of making precise the notion
of error in the time average computations present the greatest interest and
are very general: they could be applied to the consideration of errors in the
context of other problems, and the reader could try some of these applications
by himself.

A very naive schematization of the data accumulation process for calculat-
inb an average is the following: one measures18 f , the function that we want to
average, at the initial time τ0 ≃ 0; then we wait a time interval τ1 ≃ a and re-
peat, again, the measurement of f , and subsequently the operation is repeated
after waiting times τ2, τ3, . . . etc: every τi, i = 1, 2, . . . is approximately equal
to a, though not exactly because of the errors made in the measurement of the
time intervals. Afterwards, the average of f will be defined as the “average of
the results thus obtained”. Such an average, instead of being

M(a)
N (f), will be (2.23.1)

lim
N→∞

1

N

N−1∑

j=0

f(τ0 + τ1 + . . .+ τj) (2.23.2)

17 In basic English:
... now tell me also:
This Fortune of whom you speak
What is she, that the world’s goods holds so firmly in her hands?

(Dante, Inferno, Canto VII).

18 For the sake of simplicity, ability to perform exact measurements of f will be supposed
so that the only source of error comes from the measurement of the time intervals.
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Time measurement errors will be further idealized by imagining that

τ0 = ε0, τ1 = a+ ε1, i = 1, 2, . . . , (2.23.3)

and εj = ±ε with ε > 0 fixed, ε≪ a, and the sign of εj is “randomly chosen”.
One can think of a simple mechanism producing a sequence of errors like

those in Eq. (2.23.3). Assume that to be also able to perform perfect time
measurements, but to proceed deliberately as follows: at the initial time toss
a coin and perform a measurement of f at time τ0 = ε0, where ε0 = ε if the
result is “heads”, while ε0 = −ε if the result is “tails”.

At time τ0 we again toss the coin and perform the measurement of f at
time τ0 + τ1, where τ1 = a+ ε1 and ε1 = ±ε according to the result,19 etc.

One can debate at length on which would be the best mathematical model
allowing a satisfactory translation into mathematically clear terms of the just-
described sequence of operations. The most interesting mathematical scheme
is based on the notion of probability.

18 Definition. Let E be a finite set of elements which will be called “possible
events”. On E, let p be a function on E with p(e) ≥ 0 such that

∑

e∈E
p(e) = 1. (2.23.4)

The pair (E , p) will be called a “probability distribution” on E. If A ⊂ E is a
subset of E, we set

p(A) =
∑

e∈A
p(e) (2.23.5)

and we say that p(A) is the probability of A with respect to the distribution
(E , p).

The above notion of probability is precise from a mathematical point of
view, but its connection with reality is far less evident. A relation between
this definition and the empirical world cannot be established on a deductive
basis in the same way as it is not possible to establish deductively the relation
between solutions to differential equations and motions of point masses.

The theory of a point mass motion, if identified with the theory of a class
of differential equations, appears to us as natural only after long practice
and experience in comparing the relations between the mathematical model
and the corresponding empirical, i.e., experimental, properties of “real” point
masses. In this comparison, one refines both the mathematical intuition on
the structure of the solutions of some differential equations and the physical
intuition about the nature of motion.

Even a superficial knowledge of the theory of differential equations has the
consequence that one cannot avoid observing motions, perhaps unconsciously,

19 In other words, instead of leaving the “coin tossing” to the measurement instruments,
we “do it ourselves”.
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more and more closely to unveil in them those properties which are suggested
by their analytical model as solutions of a differential equation.

Similarly, the notion of probability allows the formulation of mathematical
models of stochastic (i.e. random) phenomena and the quantitative evaluation
of the probability of classes of events, reaching results such as “that class of
events has large probability” or “probability 1

7”, etc. In terms of empirical
interpretation, the meaning to attribute to such results becomes clearer and
more refined while one proceeds in the applications, and this allows us to
think of them again in more intuitive terms, more immediately expressible in
an empirical language and in empirical prescriptions.

The key to the empirical interpretation of the notion of probability is
the following: consider a “stochastic phenomenon” developing “following the
judgement of Her, which is as hidden as a snake in the grass”,20 which we
imagine “reproducible” and whose possible events form a certain set E . To say
that a mathematical model for such a phenomenon is given by the probability
distribution (E , p) means to formulate a law (on an empirical basis) stating
that the number of times that in “n trials”, or “repetitions of the production of
the event”, the event e ∈ E21 will happen about p(e)n times, if n is large, and
the deviations from this value are very small,≪ p(e)n, except in “particularly
unlucky” situations which can be disregarded “for all practical purposes”.

One can wonder about what could be the predictive power of such a law.
This power, in fact, is enormous when it is formulated a priori, i.e., without
having first measured the occurrence frequencies of every event of E over a
large number of “trials”. The laws of dynamics have the same extent of power
when they are applied to cases to which they are believed to be applicable,
but for which the actual applicability has not been checked a priori and will
be checked only a posteriori (think of the microscopic theory of gases, or of
the planetary system theory).

Obviously sometimes a formulated law may be wrong, i.e., the distribution
(E , p) may not be a good model of the stochastic phenomenon in the preceding
sense. This may happen for two reasons.

First, the phenomenon may be stochastic but the empirical law on the
existence of a well-defined frequency of realization of every possible event may
not hold, in the limit of a large number of trials. In mechanics an analogous
situation would occur in discovering a point mass for which one could find,
after a few direct measurements of force and corresponding acceleration, that
the two physical entities are not proportional.

Alternatively, it might happen that the probability law (E , p), assumed
as modelling the phenomenon under analysis, foresees occurrence frequencies
different from the observed ones: this circumstance would have the analogue,

20 “Seguendo lo giudicio di costei/ che occulto come in erba l’angue” (Dante, Inferno,
Canto VII).

21 E could be the six faces of a dice and a “try” could be one tossing of the dice (after
suitably “shaking” it); and the produced event would be the upper face of the dice after
tossing: if the dice is “fair” then p(e) = 1

6
.
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in the mechanics of a point mass, of a case where we had “forgotten” to list
some force f among the forces acting on the point.

The discussion on the notion of probability and on its empirical interpre-
tation will be stopped here. One could continue it for much longer, at the risk
of making the issue and the content of the analysis increasingly nebulous. In
fact it is more useful and constructive to illustrate the content of Definition
18 via a few applications to the problems which interest us.

To have at hand a more flexible language, it is convenient to agree on a
few more “simple” definitions. First comes the notion of “random variable”.

19 Definition. Let (E , p) be a probability distribution.
(i) Any real function f on E will be called a “random variable”.
(ii) If a1, a2, . . . , an(f), are the pairwise distinct values taken by f(e) as e
varies in E, we shall call E1, E2, . . . , En(f) the corresponding sets of events
of E; i.e., for i = 1, 2, . . . , n(f) the set Ei consists of those elements e ∈ E
such that f(e) = ai. The sets (E1, . . . , En(f)) are pairwise disjoint and their
union is E. Therefore, they form a “partition” Pf of E, which will be called
“partition of E associated with f”.
(iii) The “probability distribution” of the random variable f is the probability
distribution (If , Pf ), where If has as elements the n(f) sets E1, . . . , En(f) and

Pf (Ei) = p(Ei) =
∑

e∈Ei

p(e) (2.23.6)

(iv) More generally, if P is a partition of E into n sets (E1, . . . , En), we shall
define (EP , pP) the “probability distribution associated with P” as being the
probability distribution in which the elements of EP are the sets constituting
the partition P and, if E ∈ P,

pP(E) = p(E) =
∑

e∈E
p(e) (2.23.7)

Observation. The notion of the probability distribution of a random variable is
a relevant one when we are only interested in the random event e ∈ E via the
value f(e). It is in fact clear that we can identify all the events e ∈ P giving
rise to the same value of f(e) and call “event” such a collection of events.
Suppose, for instance, performing a measurement of a quantity g and that
such a measurement is affected by an error which can be thought of as due to
N “causes”, all independent from each other and each producing an additive
error on the value of g which is ±ε with equal probability. A complete de-
scription of the error is therefore a N -tuple ε = (ε1, . . . , εN) of numbers which
take the values εi = ±ε; the hypothesis of independence and equal probabil-
ity of the various errors will be translated into a model by saying that all
the N -tuples ε are equally probable; i.e., on the space E of the 2N sequences



118 2 Qualitative Aspects of One-Dimensional Motion

ε = (ε1, . . . , εN ), with εi = ±ε, the probability distribution22 p(ε) = 2−N is
defined.
Suppose, however, that we are not interested in knowing the details of the
individual errors occurrences but just in the total error:

f(ε) =

N∑

i=1

εi (2.23.8)

This is a random variable on E . It can take the values Nε, (N − 2)ε, (−N +
2)ε,−Nε, and the value (N − 2k)ε is taken on all the sequences ε containing
exactly k minus signs: call Ek the set of all such sequences. Then the set If ,
in this example, consists of N + 1 elements E0, E1, . . . , EN and

pf (Ei) = p(Ei) =
∑

e∈Ei

1

2N
=

1

2N

(
N

i

)
(2.23.9)

The probability distribution (If , Pf ) can be regarded as a model for the total
error without explicit reference to the elementary errors εi.

The preceding definition provides a method for building new probability
distributions, starting from a given probability distribution. It is useful, in
this respect, also to give the following definition providing another way of
constructing new probability distributions starting from a given one (E , p), as
suggested by the above observation.

20 Definition. Let (E , p) be a probability distribution. Let N be a positive in-
teger. We shall denote (E , p)N as the probability distribution on EN associating
with the event e = (e1, . . . , eN ) ∈ EN the probability p(N)(e):

p(N)(e) = p(e1)p(e2) . . . p(eN ). (2.23.10)

The distribution (E , p)Nwill be called the “distribution of N events indepen-
dently extracted with distribution (E , p)”.

This series of definitions, necessary to establish a concise and suggestive
language for the formulation of some interesting propositions, will be con-
cluded by describing the important notion of a sequence of random variables
converging in probability to a constant limit.

21 Definition. Let (EN , pN ), N = 1, 2, . . ., be a sequence of probability dis-
tributions and let fN be a random variable defined on EN , N = 1, 2, . . .. The
sequence (fN )∞N=1 of random variables is said to “converge in probability” to
a limit ℓ ∈ R as N →∞, if 23

22 This is a celebrated error model. It was used by Gauss for his mathematical theory of
errors, one of the first grandiose applications of probability theory.

23 We use the convention that {e|e ∈ A, f(e) ∈ B} means “subset of A consisting in those
e’s such that f(e) ∈ B.
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lim
N→∞

pN ({e|e ∈ EN , |f(e)− ℓ > ε}) = 0 (2.23.11)

for all ε > 0.

Let us provide some examples.

33 Proposition. Let (E , p) be a probability distribution and let f be a random
variable on (E , p). Define the random variable fN on (E , p)N as

fN(e) =
1

N

N∑

i=1

f(ei) (2.23.12)

if e = (e1, . . . , eN) ∈ EN . Then the sequence fN converges in probability to
f =

∑
e∈E p(e) f(e) as N →∞.

Observations.
(1) This proposition (“law of large numbers”) tells us that the average value
of a sum of N independent random variables is “almost constant” if N is
large or, better, that the probability that such an average value differs from a
certain constant f by more than a given quantity ε approaches 0 as N → ∞
[see Eq. (2.23.12)].
(2) This proposition clarifies why the quantity

∑
e∈E p(e)f(e) is called the

“average value” of the random variable f with respect to the probability
distribution (E , p).

The proof of Proposition 33 relies on a very elementary but very important
inequality (“the Chebysčev inequality”) which underlies many probabilistic
estimates.

34 Proposition. Let f be a random variable with respect to the probability
distribution (E , p). Define the “k-th moment” of f as

µk(f) =
∑

s∈E
|f(e)|kp(e), k ∈ Z+ (2.23.13)

Then for k ∈ Z+ and δ > 0,

P ({e | e ∈ E , |f(e)| > δ}) ≤ µk(f)

δk
(2.23.14)

Proof. By Eq. (2.22.13),

µk(f) ≥
∑

e∈E
|f(e)|>δ

|f(e)|p(e) ≥ δk
∑

e∈E
|f(e)>δ

p(e) = δkp({e | e ∈ E , |f(e)| > δ}).

(2.23.15)
mbe
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Proof of Proposition 33. By applying the Chebysčev inequality to the
random variable fN − f , one finds

pN ({e | e ∈ EN , |fN(e)− f | > δ}) ≤ µ2

δ2
(2.23.16)

where

µ2 =
∑

e∈EN

pN(e)(fN (e)− f)2 =
∑

e1,...,eN

( N∏

i=1

p(ei)
)( 1

N

N∑

j=1

(f(ej)− f)
)2

=
1

N2

N∑

j,k=1

∑

e1,...,eN

( N∏

i=1

p(ei)
)
· (f(ej)− f)(f(ek)− f)

=
1

N2

N∑

j=1

∑

e1,...,eN

( N∏

i=1

p(ei)
)
(f(ei)− f)2 (2.23.17)

since all the terms with j 6= k vanish because, via
∑

e p(e) = 1, it is

∑

e1,...,eN

( N∏

i=1

p(ei)
)
(f(ej)− f)(f(ek)− f) (2.23.18)

=
∑

ej ,ek

p(ej)p(ek)(f(ej)− f)(f(ek)− f) = (
∑

e

p(e)(f(e)− f))2 = 0

by the definition of f =
∑

e∈E p(e)f(e), if j 6= k.
The last member of Eq. (2.23.17) can be similarly computed yielding

µ2 =
1

N2
N (
∑

e

p(e)(f(e)− f)2) =
σ2

N
, (2.23.19)

where σ2 =
∑
e p(e)(f(e) − f)2 and the proposition is proved as µ2−−−−→N→∞ 0

[see Eq. (2.23.16)]. mbe

Observation. Note that Eqs. (2.23.16) and (2.23.19) show more: they imply
that the probability of the event |fN (e)− f | > δN tends to zero as N → ∞.
provided the sequence δN is such that Nδ2N −−−−→N→∞ 0, i.e. provided δN does

not go to zero faster or as N−
1
2 .

Also the problem of the determination of the average value of an observable
over a sequence of times succeeding each other at time intervals a± ε, where
the choice of the sign ± is a random choice in the sense informally discussed at
the beginning of this section, can be easily dealt with by the above techniques.

35 Proposition. Let f ∈ C∞(R) be a periodic function with period T > 0.
Consider the probability distribution (EN , pN) on the space EN of the N -tuples
ε = (e0, . . . , eN−1), εi = ±ε, i = 0, . . . , N − 1 where
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pN (ε) = 2−N , ∀ ε ∈ EN . (2.23.20)

Given a > ε with a/ε irrational, consider the random variable on (EN , pN )

M̃N (ε) =
1

N

N−1∑

j=0

f(ja+ ε1 + . . .+ εN−1). (2.23.21)

Then

lim
N→∞

M̃N (ε) =
1

T

∫ T

0

f(τ) dτ = f (2.23.22)

in probability.

Observations.
(1) The interest of the proposition is that, even if some measurement errors in-
volving the successive timing of the observations are present, the average value
of f , computed using the data successively obtained, has a large probability
of being close to the “ideal” average value, i.e., to the continuous average,
independent of a and ε, provided a/ε is irrational.
(2) The coincidence of the stochastic average with the continuous average
depends upon the irrationality of a/ε, but not on the value of T : it is therefore
a property of the structure of the measurement (through the parameters a
and ε) and does not depend on the characteristic properties of the observable
f ; unlike in the comparison between the two ideal notions of the average
(continuous and discrete with step a) where the rationality of T/a was relevant
(see Proposition 32).
(3) With the same methods of proof, the above proposition could be extended
to the case when ε; takes more than two values: ε1 = ±α1, . . . ,±αk, and
p(αj) ≡ p(−αj). In this case, the condition “ε/a irrational” will be replaced
by the condition “there is at least one value α among the values of αj such
that α/a is irrational”.
(4) Finally, always with the same technique of proof, one could treat the case

ε/a rational, and this would lead one to conclude that M̃N(ε) still converges in
probability to a well-defined limit expressible in terms of the Fourier transform
of f [with a result analogous to Eq. (2.22.13) generally involving T as well; see
Problem. 17 at the end of this section]. The difference between this new limit
and the continuous average could be measured by “the commensurability of a
with respect to ε” [see observation 6 to Definition 17, p. 111 (for an analogous
comment) and Problem 18 at the end of this section].
When the error takes more than one value, as in Observation 3 above, this
difference depends on the maximum degree of commensurability between a
and the values of the various errors. It is sufficient that among the various
errors there is one with respect to which a is “little” commensurable to imply
that M̃N (ε) converges in probability to a value very close to the continuous
average of f .
For this reason, it is rare that the stochastic average sensibly deviates from
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the continuous average: in the concrete situations, there are always several
causes of errors and, correspondingly, αj can take very many different values.
Necessarily, a will not be too commensurable with respect to many of them.

Proof. The proof is basically a check, relying on the Chebysčev inequality.
Consider the Fourier representation of f :

f(t) =
∑

n∈Z
f̂n e

2π i
|
T nt, (2.23.23)

and take into account that f̂0 = f = T−1
∫ T
0
f(τ)dτ :

M̃N (ε)− f =
1

N

(N−1∑

j=0

f(ja+ ε0 + . . .+ εj)
)
− f

≡ 1

N

N−1∑

j=0

(f(ja+ ε0 + . . .+ εj)− f)

=
∑

n∈Z
n 6=0

f̂n

( 1

N

N−1∑

j=0

e
2π i
T n (ja+ε1+...+εj)

)
.

(2.23.24)

Hence, to apply the Chebysčev inequality, compute the second moment of
M̃N (ε)− f using Eq. (2.23.24):

µ2(N) =
∑

ε

(M̃N (ε)− f)2pN (ε) =
1

2N

∑

ε

(M̃N (ε)− f)2

∑

n1,n2∈Z
n1,n2 6=0

f̂n1 f̂n2

{ 1

N2

0,N−1∑

j1,j2

1

2N
e

2π i
T (j1n1a+j2n2a)

e
2π i
T (ε0+...+εj1 )n1+

2π i
T (ε0+...+εj2 )n2

}
.

(2.23.25)

The series over n1, n2 is term-by-term bounded by the convergent series∑
n1,n2

|f̂n1 | |f̂n2 |: in fact, the factor within curly brackets is a sum of N22N

addends each with modulus 1/N22N and, therefore, its modulus does not ex-
ceed 1. Hence, the series in Eq. (2.23.25) is uniformly convergent in N and its
limit as N → ∞ can be computed under the summation sign (i.e., term by
term). It will turn out that all the terms in curly brackets in Eq. (2.23.25) tend
to zero as N →∞; hence, µ2(N)−−−−→

N→∞ 0 which, by the Chebysčev inequality,
will imply Proposition 35.

The contribution to the sum inside the curly brackets in Eq. (2.23.25) com-
ing from the terms with j1 = j2 involves N2N terms with modulus 1/N22N .
Hence, it tends to zero as N → ∞. Therefore, it will be enough to consider
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the terms with j1 < j2 and to show that their contribution to the sum is also
infinitesimal as N →∞. The terms with j1 > j2 can be similarly treated.

Suppose j2 > j1: the contribution to the curly bracket term from such
addends is

1

N2

N−2∑

j1=0

N−1∑

j2=j1+1

e
2π i
T (j1n1a+j2n2a)

· 1

2N

{∑

ε

e
2π i
T (ε0+...+εj1 )(n1+n2)+

2π i
T (εj1+1+...+εj2 )n2

}
,

(2.23.26)

which, by successively performing the summations over εN−1, . . . , ε0, becomes

1

N2

N−2∑

j1=0

N−1∑

j2=j1+1

e
2π i
T (j1n1a+j2n2a)(cos

2π

T
εn2)

j2−j1(cos
2π

T
ε(n1 + n2))

j1

=
1

N2

N−2∑

j1=0

N−1∑

j2=j1+1

(
e

2π i
T (n1+n2)a cos

2π

T
ε(n1 + n2)

)j1(
e

2π i
T n2 cos

2π

T
εn2

)j2−j1
.

(2.23.27)
The summation over j2 can now be performed, noting that if n2 6= 0,

λ = e
2π i
T n2 cos

2π

T
εn2 6= 1 (2.23.28)

because |λ| =≤ 1 and if λ = 1 the number ε/a would have to be rational,
regardless of T . The result of the sum in Eq. (2.23.27) over j2 is then

1

N2

N−2∑

j1=0

(
e

2π i
T (n1+n2)a cos

2π

T
ε(n1 + n2)

)j1
λ
λN−j1−1 − 1

λ− 1
, (2.23.29)

and this sum involves (N − 1) addends each with modulus bounded by
N−2 2

λ−1 . Hence, it tends to zero as N →∞. mbe

2.23.1 Exercises and Problems

1. Consider the “fair probability” distribution (E, p) on a set of six events E = {1, 2, . . . , 6},
p(j) = 1

6
(“perfect dice”). Compute the probability distribution for the following random

variables (see Definition 20):

f1(i) =


1 if i is even,

−1 if i is odd,
f2(i) =


1 if i = 1, 2, 3,

−1 if i = 4, 5, 6..

2. Let E consist of two elements +1 and −1 and let p(±1) = 1
2
. Compute, in (E, p)N , the

moment µ2 of the random variables f(ε) = (ε1 + . . . + εN ), ε = (ε1, . . . , εN ) ∈ EN , and
f(ε) = sin (ε1 + . . .+ εN ).
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3. Same as Problem 2 with p(+1) = 2
3
, p(−1) = 1

3
.

4. Compute the limit in probability of the random variables (ε1+ . . .+εN )/N , as N → +∞,
in (E, p)N , where E = {−1,+1}, p(−1) = 1

3
, p(+1) = 2

3
.

5. Consider the stochastic average with step a =
√

2 with respect to an error distribution
with the scheme E = {−ε, ε}, p(±ε) = 1

2
, ε = 1

10
for the observable “kinetic energy” on the

energy 1 motion of the oscillator ẍ+x = 0. Estimate the number of measurements N needed
for finding that the average over N observations deviates from the stochastic average (i.e.,
from the case N = +∞) by 10% at most with a probability of 99%.

6. Same as Problem 5 with error scheme E = {−ε, 0, ε}, p(±ε) = 1
3
, p(0) = 1

3
, using the

observable “potential energy.”

7. Same as Problem 5 for the motions of the oscillators ẍ + .ẋ + x = (1 − cos t)2 for the
observable “work done per unit time by the forcing force.“

8. Interpret
PN
i=1 log i ≡ logn! as an approximation for the integral between 1 and n+ 1

of the function ξ → log ξ and, using this interpretation, show that

0 < logn!− n(logn− 1) ≤ 1 +
1

n
+ logn, i.e. 1 ≤ n!

nne−n
≤ n e1+ 1

n .

9.* Using the “Stirling formula” (see Problem 14):

n! = nne−n
√

2πn
“
1 + O(

1

n
)
”
,

show that the probability that

fn(ε) =
ε1 + . . .+ εN√

N
∈ [a, b]

with respect to the probability distribution (E, p)N , where E = {−1,+1}, p(±1) = 1
2
,

converges to

Z b

a
e−

x2

2
dx√
2π

as N → +∞ (”Gauss’ theorem“). (Hint: Recall Eq. (2.23.9) to see that the probability
that ε1+...+εN√

N
takes the value (N − 2k)/

√
N , k = 0, 1, . . . , N , is given by 2−N

`N
k

´
; then

express the factorials in
`N
k

´
via the Stirling formula, recalling that k must be such that

a ≤ (N − 2k)/
√
N ≤ b, etc.)

10.* Show that the statement in Problem 9 implies that the sequence of random variables
fN considered there does not converge in probability as N →∞.

11. Assuming the result in Problem 9, show that the sequence

f
(a)
N (ε) =

ε1 + . . .+ εN

Nα/2

of random variables with respect to the probability distribution considered in Problem 9
converges to zero in probability if α > 1, does not converge if α = 1 (see Problem 10), and

diverges if α < 1 (in the sense that the probability that |f(a)
N (ε)| < a approaches zero, as

N →∞.)

12. Show that the probability pN that the random variable fN (ε) introduced in Problem
9 is positive approaches 1

2
as N → +∞ (Hint: Distinguish N even and N odd.)
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13. In the context of Problems 9 and 12, estimate how fast |pN − 1
2
| → 0 as N →∞.

14.* Prove Stirling’s formula with a constant Γ instead of 2π, leaving aside the determina-
tion of Γ , refining the argument in Problem 8. (Hint:

logn!1 =
nX

i=2

log i =
nX

i=2

Z i

i−1
log i dx =

nX

i=2

Z i

i−1
log(x− (x− i)) dx

=
nX

i=2

Z i

i−1

h
log x+ log(1 − x− i

x
)
i
dx =

Z n

1
log xdx

+
nX

i=2

Z i

i−1

h
log(1− x− i

x
) +

x− i
x

i
dx+

nX

i=2

Z i

i−1

−(x− i)
x

dx

=n(logn− 1) +
nX

i=2

γi +
nX

i=2

−(1− i log i

i− 1
).

where γi denotes the second integral in the intermediate step. Then |γi| ≤ const i−2 and

−1 + i log i
i−1

= 1
2i

+ 1
3i2

+ . . . so that

logn! = n(logn− 1) +
1

2

nX

i=2

1

i
+

nX

i=2

eγi

with eγi ≤ const i−2. Since
Pn
i=2

1
i

= logn − eC + O( 1
n

) with eC suitably chosen (see next
exercise), it follows that

logn! = n(logn− 1) + log
√
n− eC −

nX

i=2

eγi +O(
1

n
);

so if Γ = exp(eC +
Pn
i=2 eγi), it follows that n! = nne−n

√
nΓ (1 +O( 1

n
)).)

15. Show that
Pn
i=1

1
i

= logn − C + O( 1
n

), where C is a suitable constant (“Euler-
Mascheroni constant”) (Hint:

nX

i=1

1

i
=

nX

i=1

Z i+1

i

1

i
dx =

nX

i=1

Z i+1

i

1

x+ (i− x) dx =
nX

i=1

Z i+1

i

1

1 + (i−x)
x

dx

x

=
nX

i=1

Z i+1

i

dx

x

h 1

1 + i−x
x

− 1 +
i− x
x

i
+

nX

i=1

Z i+1

i

dx

x
(1− i− x

x
) =

nX

i=1

γi + log(n+ 1)

and show that |γi| ≤ consti−2.

16.* Complete the derivation of the Stirling formula begun in Problem 14 by showing
that Γ =

√
2π. (Hint: Use Problem 9, with Γ instead of 2π, which says that the random

variables fNε) lie in [−A,A] with a probability converging to
RA
−A e

− x2

2 dx/
√
Γ (if one does

not suppose Γ =
√

2π yet). Then, by estimating the factorials in
`N
k

´
2−N by using the

Stirling formula with Γ instead of
√

2π, see Problem 14, show that

X

|N−2k|/
√
N>A

“N
k

”
2−N −−−−−−→

N→+∞ 0

uniformly in N : this implies that
R+∞
−∞ e−

x2

2 dx/
√
Γ = 1; hence, Γ =

√
π. The estimate on

the
P

2−N
`N
k

´
is quite delicate and should be decomposed into two estimates: for instance

the first for | k
N
− 1

2
| ∈ [ A√

N
, 1

10
] and the second for | k

N
− 1

2
| ∈ [ 1

10
, 1
10

].)
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17. Show that if a/ε is not assumed to be irrational, Eq. (2.23.22) becomes limN→∞ fMN (ε)
=
P∗
n
bfn = ef , where bfn are the harmonics of f and

P∗
n is a sum running over the n’s such

that
“

exp( 2πi
T
na)
”

cos 2π
T
nε = 1

18. Deduce from Problem 17 that the limit in Eq. (2.23.22) coincides in probability with

the continuous average not only if a/ε is irrational, but also if T is irrational with respect

to either ε or a. Also if ε/a = p/q, with p and q relatively prime integers, and if a is varied

so that p→∞, a→ a > 0, then ef → f .

2.24 Extremal Properties of Conservative Motion:
Action and Variational Principle

Since the construction of the entire universe is absolutely perfect and is due to
a Creator with infinite knowledge, nothing exists in the world which does not
exhibit some property of maximum or minimum. Therefore, there cannot be
any doubt whatsoever about the possibility that all the effects are determined
by their final aims with the help of the maxima method, in the same way in
which they are also determined by the initial causes.

Equilibrium positions of a point mass on a line are identified with the
points where the potential energy is stationary. Thinking of equilibrium as a
particular form of motion, one can ask whether the other possible motions
of a point mass, developing under the action of a conservative force with
potential energy V , can be characterized by similar stationarity properties.
This analysis will also be useful as a first illustration of the content of the
above quoted proposition of Euler. A deeper analysis will be the object of
Chapter 3.

Consider a point with mass m > 0 moving in the time interval [t1, t2] from
the position ξ1 to the position ξ2: such a motion is a C∞ function t→ x(t), t ∈
[t1, t2], such that x(t1) = ξ1, x(t2) = ξ2.

Let Mt1,t2(ξ1, ξ2) be the set of all C∞ motions t → x(t), t ∈ [t1, t2], such
that x(t1) = ξ1, x(t2) = ξ2. If V ∈ C∞(R) is a given function bounded from
below, it makes sense to consider the motions of the point taking place under
the influence of the force generated by the potential energy V . Such motions
are a very restricted class in Mt1,t2(ξ1, ξ2) possibly empty.

The inquiry subject will be whether there is a real-valued function A de-
fined onMt1,t2(ξ1, ξ2) which takes a minimum value or, at least, is stationary
on the motions which, under the influence of the force with potential energy
V go from ξ1, to ξ2 as t goes from t1, to t2 .

The meaning of this question has to be clarified by a preliminary discussion
on the meaning of “extremality” of a function defined on a set of motions, i.e.,
on a set of other functions. Attention will focus on special functions defined
onMt1,t2(ξ1, ξ2): those having the form



2.24 Action Principle 127

A(x) =

∫ t2

t1

L(ẋ(t), x(t), t) dt (2.24.1)

where L ∈ C∞(R3) associates (η, ξ, t) with L(η, ξ, t).
Eq. (2.24.1) associates a real number with every x ∈ Mt1,t2(ξ1, ξ2). This

number is called the “action of the motion x with respect to the Lagrangian
function L.24. The notion of “stationarity” or “extremality” of A is very
natural in terms of the related notion of “varied motions“.

22 Definition. Given x ∈ Mt1,t2(ξ1, ξ2) and a real function (t, ε) → y(t, ε)
in C∞([t1, t2]× (−1, 1)) such that

(i) y(t, 0) = x(t), ∀ t ∈ [t1, t2], (2.24.2)

(ii) y(t1, ε) = ξ1, y(t2, ε) = ξ2, ∀ ε ∈ (−1, 1), (2.24.3)

The function y is said a “variation of x” inside Mt1,t2(ξ1, ξ2) parameterized
by ε ∈ (−1, 1). The set of all variations will be denoted by Vx.

More generally, if M is a subset of Mt1,t2(ξ1, ξ2) we shall denote Vx(M)
the set of the variations of x such that, ∀ ε ∈ (−1, 1), the function

t→ yε(t) = y(t, ε), t ∈ [t1, t2] (2.24.4)

is in M.

Observations.
(1) We can imagine that a varied motion y is a bundle of motions with equal
initial and final data (see Fig. 2.13).

x

t

t1 t2

yε2
yε1

yε3

ξ2

ξ1

Fig.2.13: Illustration of the variations (dashed curves) of a motion x (solid curve).

(2) Occasionally it will be useful to think of a variation of x ∈ M ⊂
Mt1,t2(ξ1, ξ2) as a “regular curve” in the space M: for every ε ∈ (−1, 1)
one has a point yε ∈ M and y0 = x [see Eq. (2.24.4)].

24 For the origin of this name, see the remarks on p. 164 and 241



128 2 Qualitative Aspects of One-Dimensional Motion

(3) If F is a function on M ⊂ Mt1,t2(ξ1, ξ2) and y ∈ Vx(M), it will make
sense to consider the function of ε ∈ (−1, 1) : ε → F (yε), “value of F along
the curve y through x in the point parameterized by ε“.

It is now possible to give a precise definition of stationarity.

23 Definition. LetM⊂Mt1,t2(ξ1, ξ2) and let A be a function onM having
the form of Eq. (2.24.1). We shall say that x ∈ M is a “stationarity point”
for A in M, if for every y ∈ Vx(M) the function [see Eq. (2.24.4)]

ε→ A(yε), ε ∈ (−1, 1) (2.24.5)

has a stationarity point in ε = 0, i.e.,

d

dε
A(yε)

∣∣
ε=0

= 0. ∀ y ∈ Vx(M). (2.24.6)

Observations.

(1) In other words, x is a stationarity point for A in M if on every regular
curve y through x, the function A, thought of as a function of the parameter
ε parameterizing the curve, has a stationarity point in ε = 0, i.e., “in x“.
(2) In the theory of maxima and minima of functions F ∈ C∞(Rd), there are
various equivalent definitions of the stationarity points; for instance,
(a) ∂F

∂xi
(V x) = 0, i = 1, 2, . . . , d.

(b) On every C∞ curve ε → yε, ε ∈ (−1, 1), through x ≡ y0, the function
F → F (yε) has zero derivative with respect to ε in ε = 0.
Definition (b) is the “finite-dimensional” analogue inspiring Definition 23:
intuitively, one can think of x ∈ Mt1,t2(ξ1, ξ2) as a vector with infinitely
many components xt ≡ x(t), t ∈ [t1, t2], not independent, however, since
they are constrained by the condition that t → xt is in C∞([t1, t2]) and
xt1 = ξ1, xt2 = ξ2.
(3) Strictly speaking, one should prove that Eq. (2.24.6) makes sense, i.e.,
that ε → A(yε) is differentiable in ε. But this is an immediate consequence
of the differentiation rules for integrals. Actually, it is easy to find explicit
expressions for the derivatives of A. For instance, from Eqs. (2.24.1) and
(2.24.5), it follows that

d

dε
A(yε) =

d

dε

∫ T2

t1

L
(∂y
∂t

(t, ε), y(t, ε), t
)
dt

=

∫ T2

t1

dt
{∂L
∂η

(∂y
∂t

(t, ε), y(t, ε), t
)
· ∂

2y

∂ε∂t
(t, ε)

+
∂L
∂ξ

(∂y
∂t

(t, ε), y(t, ε), t
)
· ∂y
∂ε

(t, ε)
}
,

) (2.24.7)

and shortening the notations for ∂y
∂t (t, ε) in ∂y

∂t and for ∂2y
∂ε∂t (t, ε) in ∂2y

∂ε∂t , and
for y(t, ε) in y, etc., Eq. (2.24.7) can be rewritten:
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d

dε
A(yε) =

∫ t2

t1

dt
{∂L
∂η

(∂y
∂t
, y, t

) ∂2y

∂ε∂t
+
∂L
∂ξ

(∂y
∂t
, y, t

)∂y
∂ε

}
. (2.24.8)

Avoiding explicit indication of the arguments ∂y/∂t, y, t in L and in its deriva-
tives, a straightforward computation yields

d2

dε2
A(yε) =

∫ t2

t1

dt
{∂2L
∂η2

( ∂2y

∂ε∂t

)2

+
∂2L
∂ξ∂η

∂2y

∂ε∂t

∂y

∂ε

∂L
∂η

∂3y

∂ε2∂t
+

∂2L
∂η∂ε

∂2y

∂ε∂t

∂y

∂ε
+
∂2L
∂ξ2

(∂y
∂ε

)2
+
∂L
∂ξ

∂2y

∂ε2

} (2.24.9)

The higher derivatives could be evaluated with similar procedures; i.e., ε →
A(yε) is a C∞ function.

As in the case of the functions on Rd, it is convenient to distinguish be-
tween stationary points and points of “local” or “relative” minimum.

24 Definition. If x ∈ Mt1,t2(ξ1, ξ2), we say that x is a”local” minimum for
A defined by Eq. (2.24.1) on M if for all varied motions y ∈ Vx(M), the
function ε→ A(yε) [see Eq. (2.24.5)] has a relative minimum in ε = 0.

Observations.
(1) A has a local minimum in x on M if on every regular curve y through x
lying on M, it has a local minimum in x.
(2) A necessary condition for A to have a local minimum relative to M in
x ∈ M is that x is a stationarity point for A on M.
(3) A necessary condition in order that a stationarity point for A on M is a
local minimum on M is that

d2

dε2
A(yε)

∣∣∣
ε=0
≥ 0, ∀ y ∈ Vx(M) (2.24.10)

if x is the point of stationarity.
(4) If x ∈ M is an absolute minimum point for A on M, i.e., if A(x′) >
A(x), ∀x′ ∈M, then x is also a local minimum point for A onM.
(5) If A has a local minimum in x relative to M it must be that, given
y ∈ Vx(M), there is η > 0 such that if ε ∈ [−η, η], then A(yε) ≥ A(x): this
value of η may, however, depend on the choice of y.
(6) One could be tempted to define a local minimum by requiring that A(x) ≤
A(x′), ∀x′ ∈ M and “close enough” to x. But the meaning of “close enough”
would be unclear.

A necessary and sufficient stationarity criterion, which is as “simple” as the
one usually considered in the case of the stationarity of functions on Rd and
concerning the vanishing of the gradient (see Observation 2 (a), to Definition
23), is the following.
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36 Proposition. The motion x ∈ Mt1,t2(ξ1, ξ2) is a stationary point for Eq.
(2.24.1) on all of Mt1,t2(ξ1, ξ2) if and only if

d

dt

∂L
∂η

(ẋ(t), x(t), t) =
∂L
∂ξ

(ẋ(t), x(t), t), ∀ t ∈ [t1, t2]. (2.24.11)

Observations.
(1) In this proposition, it is essential that the setM⊂Mt1,t2(ξ1, ξ2) on which
stationarity is considered coincides with Mt1,t2(ξ1, ξ2) itself.
(2) Equation (2.24.11) can be thought of as a differential equation for the
function t → x(t), t ∈ [t,t2], i.e., as an equation for the determination of the
stationarity points of A on the entire set Mt1,t2(ξ1, ξ2) . When Eq. (2.24.11)
is viewed in this way, it is called the “Euler-Lagrange” equation for A or L. As
it emerges from the proof, it is analogous to the condition of vanishing in the
stationarity problem for functions on Rd (see observation 2 (a) to Definition
23, p.128).
(3) It has to be kept in mind that, in general, Eq. (2.24.11) is not a differential
equation in the sense of Definition 1, p.14: in important cases, however, Eq.
(2.24.11) is equivalent to a differential equation in that sense (see Problems
4-6 at the end of this section).

Proof. It reduces to a check. Let y ∈ Vx and set

z(t) =
∂y

∂t
(t, 0), t ∈ [t1, t2], (2.24.12)

ż(t) =
∂2y

∂t∂ε
(t, 0), t ∈ [t1, t2] (2.24.13)

and note that Eq. (2.24.2) implies, ∀ t ∈ [t1, t2]:

y(t, 0) = x(t),
∂y

∂t
(t, 0) = ẋ(t) (2.24.14)

while Eq. (2.24.3) gives

z(t1) = z(t2) = 0 (2.24.15)

Then, with the above notations, Eq. (2.24.8) becomes

d2

dε2
A(yε)

∣∣∣
ε=0

=

∫ t2

t1

dt
{∂L
∂η

(ẋ(t), x(t), t)ż(t) +
∂L
∂ξ

(x(t), x(t), t)z(t))
}
.

(2.24.16)
As yε varies in Vx, the function z defined by Eq. (2.24.12) spans the entire set
Mt1,t2(0, 0). In fact, Eq. (2.24.15) shows that z ∈ Mt1,t2(0, 0); furthermore,
given arbitrarily z ∈Mt1,t2(0, 0) and setting
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y(t, ε) = x(t) + εz(t) (2.24.17)

for ε ∈ (−1, 1), t ∈ [t1, t2], one constructs a varied motion y ∈ Vx, which, via
Eq. (2.24.12), exactly generates z.

The wide arbitrariness of z in Eq. (2.24.16) can then be used to deduce
conditions on x. For this purpose it is convenient to eliminate ż(t) from Eq.
(2.24.16) by integrating the first term by parts; one finds:

d2

dε2
A(yε)

∣∣∣
ε=0

=
[∂L
∂η

(ẋ(t), x(t), t)z(t)
]t2
t1

−
∫ t2

t1

{ d
dt

(∂L
∂η

(ẋ(t), x(t), t)
)
− ∂L
∂ξ

(ẋ(t), x(t), t)
}
z(t) dt

(2.24.18)

which, by Eq. (2.24.15) and by the preceding remark on the arbitrariness of
z, shows that (dA/dε)(yε)|ε=0 = 0, ∀ y ∈ Vx, becomes:

0 =

∫ t2

t1

{ d
dt

(∂L
∂η

(ẋ(t), x(t), t)
)
− ∂L
∂ξ

(ẋ(t), x(t), t)
}
z(t) dt, (2.24.19)

∀ z ∈ Mt1,t2(0, 0). The equivalence between Eqs. (2.24.19) and (2.24.11) is
implied by the principle of vanishing integrals (see Appendix D). mbe

As a consequence of Proposition 36, it is possible to answer the ques-
tion raised at the beginning of this section. In fact, if one defines for x ∈
Mt1,t2(ξ1, ξ2).

A(x) =

∫ t2

t1

(1
2
mẋ(t)2 − V (x(t))

)
dt (2.24.20)

the following proposition holds.

37 Proposition. The motion x of a point, with mass m > 0 developing from
ξ1 to ξ2 in the time interval [t1, t2] under the influence of a force with poten-
tial energy V ∈ C∞(R), makes the action of Eq. (2.24.20) on Mt1,t2(ξ1, ξ2)
stationary, i. e., it makes stationary the action with Lagrangian density

L(η, ξ, t) =
1

2
mη2 − V (ξ). (2.24.21)

Proof. In fact, Eq. (2.24.11) becomes

d

dt
m ẋ(t) = −∂V

∂ξ
(x(t)), t ∈ [t1, t2] (2.24.22)

which is the equation of motion. mbe

Furthermore, the following interesting proposition holds.



132 2 Qualitative Aspects of One-Dimensional Motion

38 Proposition. Let t → x(t), t ∈ R, be a motion of a point mass
with m > 0 developing under the action of a force with potential energy
V ∈ C∞(R), bounded from below. Given t1 ∈ R, there exists t > t1 such
that if t2 ∈ [t1, t] the motion t → x(t) observed for t ∈ [t1, t2], i.e., as an
element of Mt1,t2(x(t1), x(t2)), not only is a stationarity point for the ac-
tion with Lagrangian Eq. (2.24.21), but is also a local minimum for it in
Mt1,t2(x(t1), x(t2)).

Observation. The proposition motivates the name “principle of the least ac-
tion” occasionally given to the Propositions 37 and 38.

Proof. By the observation 5 to Definition 24, p.129, given y ∈ Vx, we must
find a ηy such that A(yε) ≥ A(x), ∀ ε ∈ [−ηy, ηy].

Given t2 > t1 and y ∈ Mt1,t2(x(t1), x(t2)), define ηy so that |yε(t)−x(t)| ≤
1, ∀ t ∈ [t1, t2], ∀ ε ∈ [−ηy, ηy]. The comparison of A(yε) with A(x) yields

A(yε)−A(x) =

∫ t2

t1

{m
2

(
(ẋ(t) + ż(t))2 ˙x(t)

2
)

−
(
V (x(t) + z(t))− V (x(t)))

}
dt,

(2.24.23)

where we set z(t) = yε(t) − x(t), t ∈ [t1, t2]. This is a function z which has
the property

z(t1) = z(t2) = 0 (2.24.24)

and it is ε dependent. To show that Eq. (2.24.23) is > 0, apply the Taylor-
Lagrange formula (see Appendix B):

V (ξ′)− V (ξ) =
∂V

∂ξ
(ξ) (ξ′ − ξ) + ϕ(ξ′, ξ)

(ξ′ − ξ)2
2

, (2.24.25)

where ϕ ∈ C∞(R2) is a suitable function. Then Eq. (2.24.23) becomes

A(yε)−A(x) =

∫ t2

t1

{[
m
ż(t)2

2
− ϕ(x(t) + z(t))

z(t)2

2

]

+
[
mẋ(t) z(t)− ∂V

∂ξ
(x(t))z(t)

]}
dt

(2.24.26)

Integrating the first term in the second set of square brackets by parts and
using the equation of motion for x, Eqs. (2.24.22) and (2.24.24), one realizes
that the integral of the term within the second set of square brackets in Eq.
(2.24.26) vanishes. Therefore, if

M = max
t∈[t1,t1+1]

|ζ|≤1

|ϕ(x(t) + ζ, x(t))|, (2.24.27)

one sees that, if |ε| < ηy, Eq. (2.24.26) implies
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A(yε)−A(x) ≥ m

2

∫ t2

t1

ż(t)2 dt− M

2

∫ t2

t1

z(t)2 dt; (2.24.28)

if t2 − t1 < 1, which is a condition that can be implemented by supposing
t2 < t and, without loss of generality,

t < t1 + 1. (2.24.29)

On the other hand, since z(t1) = 0,

z(t) =

∫ t

t1

ż(τ) dτ, (2.24.30)

and applying the Cauchy-Schwartz inequality (see Appendix A), which gen-
erally looks like, ∀ f, g ∈ C∞([t1, t2]),

∣∣
∫ t2

t1

f(τ)g(τ)dτ
∣∣ ≤

( ∫ t2

t1

f(τ)2dτ
) 1

2
( ∫ t2

t1

g(τ)2dτ
) 1

2

(2.24.31)

one finds,

∫ t2

t1

z(t)2 dt =

∫ t2

t1

∣∣
∫ t

t1

ż(τ) · 1 dτ
∣∣2dt ≤

∫ t2

t1

dt
( ∫ t

t1

ż(τ)2dτ
)( ∫ t

t1

1dτ
)

≤
∫ t2

t1

dt(t− t1)
( ∫ t2

t1

ż(τ)2dτ
)

=
(t2 − t1)2

2

∫ t2

t1

ż(τ)2dτ

(2.24.32)
from Eq. (2.24.30). Hence Eqs. (2.24.28) and (2.24.32) mean

A(yε)−A(x) ≥ 1

2

(
m− M

2
(t2 − t1)2

)∫ t2

t1

ż(τ)2dτ (2.24.33)

which implies A(yε) − A(x) > 0 if t2 ∈ [t1, t] and if t is close enough to t1
(precisely so that t−t1 < 1 and 2m−M(t−t1)2 > 0), ∀ y ∈ Vx, ∀ ε ∈ [−ηy, ηy].

mbe

In the context of Proposition 38, one can wonder about what happens when
the interval [t1, t2] is not small: and one realizes that it is always possible to
cut the interval [t1, t2] into finitely many small intervals such that the action
is locally minimal on the variations of the restrictions of x to such intervals.

This situation is strongly reminiscent of the properties of the geodesics on
curved surfaces. For instance, on a sphere, a line joining two points along a
great circle (“geodesic of the sphere”) has the property of being the line short-
est among all those joining the two points and lying on the sphere, provided
their distance, measured along the line itself, is small enough. However, if the
two points are not close enough, it is generally no longer true that such a line
is the shortest (“close enough” here means closer than πR if R is the radius).
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Finally, let us meditate upon the following important comment: we wish
to stress the fact that the stationarity (or minimality) of A is an “intrinsic
property”, i.e., it is independent of the way the motion is described. To make
this precise, let ξ → γ(ξ) be a C∞ function defining a “nonsingular” change of
variables (i.e., such that γ′(ξ) ≡ dγ

dξ (ξ) 6= 0). We can then use as a coordinate

for the point ξ the quantity γ(ξ).
Let Γ be the inverse function to γ defined on the open interval I = γ(R) =

γ-image of R. Suppose, for simplicity, γ(R) = I = R.
A motion in R, t → x(t), t ∈ [t1, t2], can be described by the function

t→ s(t) = γ(x(t)), t ∈ [t1, t2]. We shall say that such a function describes the
motion x in the system of coordinates on R associated with the function γ.
There is a one-to-one correspondence B between motions x ∈ Mt1,t2(ξ1, ξ2)
and motions s ∈ Mt1,t2(γ(ξ1), γ(ξ2)): it is established by the relations

s(t) = γ(x(t)), x(t) = Γ (s(t)), t ∈ [t1, t2] (2.24.34)

The correspondence of Eq. (2.24.34) will be denoted by s
def
= Bx. Let Γ ′ be

the derivative of Γ , then s = Bx implies

ẋ(t) = Γ ′(s(t)) ṡ(t), (2.24.35)

and it has to be remarked that the Lagrangians

L(η, ξ, t) =
m

2
η2 − V (ξ), (2.24.36)

L̃(η, ξ, t) =
mΓ ′(ξ)2

2
η2 − V (Γ (ξ)), (2.24.37)

attribute the same action to the motions x ∈ Mt1,t2(ξ1, ξ2) and, respectively,
s ∈Mt1,t2(γ(ξ1), γ(ξ2)); i.e., if s = Bx,

A(x) =

∫ t2

t1

dt
(mẋ(t)2

2
− V (x(t))

)

≡Ã(s) =

∫ t2

t1

dt
(mΓ ′(s(t))2ṡ(t)2

2
− V (Γ (s(t)))

)
dt

(2.24.38)

which follows from Eqs. (2.24.34) and (2.24.35).
If y ∈ Vx(M) it is natural to associate with y the element B y ∈ Vs(BM)

(By)(t, ε)
def
= γ(y(t, ε)), (t, ε) ∈ [t1, t2]× (−1, 1) (2.24.39)

and BM ⊂ Mt1,t2(γ(ξ1), γ(ξ2)) is the image of M via the map of Eq.
(2.24.39).

It is then an immediate consequence of Definitions 23 and 24 that if A is
stationary or locally minimal on x ∈ Mt1,t2(ξ1), ξ2)) in M , then Ã also is
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stationary or locally minimal on s = Bx ∈ Mt1,t2(γ(ξ1), γ(ξ2)) in BM and
vice versa. In particular, this means that the equations

d

dt

(∂L
∂η

(ẋ(t), x(t), t)
)

=
∂L
∂ξ

(ẋ(t), x(t), t)

d

dt

(∂L̃
∂η

(ṡ(t), s(t), t)
)

=
∂L̃
∂ξ

(ṡ(t), s(t), t)

(2.24.40)

are “equivalent” if L and L̃ are given by Eqs. (2.24.36) and (2.24.37).
As we shall see, this invariance property of the stationarity (or of the

local minimality) with respect to changes of coordinates is perhaps the most
interesting aspect of all the considerations of this section. We shall meet some
of its very remarkable applications in the theory of systems with many degrees
of freedom.

Concluding Remarks

(1) In the analysis of this section we always dealt with conservative systems.
In fact, it is not possible to give a simple formulation of the stationary action
principle for dissipative motions without introducing singular Lagrangians
(see Problems 12-15 at the end of this section).
(2) The action of a motion x with Lagrangian (2.24.36) can be thought of
as the product of (t2 − t1) times the difference between the average value, in
[t1, t2], of the kinetic energy and the average value of the potential energy:

A(x)

t2 − t1
=

1

t2 − t1

∫ t2

t1

mẋ(t)2

2
dt− 1

t2 − t1

∫ t2

t1

V (x(t)) dt. (2.24.41)

It is for this reason that one can say that the motion developing for t ∈ [t1, t2]
between t1, and t2 under the influence of a force of given potential energy V is
the one that minimizes the difference between the average kinetic energy and
the average potential energy in every short enough time interval in [t1, t2].

We leave it to the reader to elaborate his own philosophical considera-
tions on this beautiful mathematical property. The interested reader could go
through the history of the variational principles in mechanics and, more gen-
erally, in physics, to understand how subjective considerations (as we would
call them today) have influenced the formulation of the variational principles
themselves and the recognition of their equivalence to the Newtonian equa-
tions of motion; see also the comments on p. 164 and p. 242 and the Euler’s
quotation at the beginning of this section.

2.24.1 Exercises and Problems

1. Compute the action between t1 = 0 and t2 = 2π/ω of the motions of an harmonic

oscillator with mass m > 0 and pulsation ω.
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2. Same as Problem 1 with t2 arbitrary (t2 6= 2π/ω).

3. Compute the action between t1 = 0 and arbitrary t2 of the motions of a point mass with
mass m > 0 subject to the force f = −mg, g > 0.

4. Let L ∈ C∞(R2) be such that the correspondence (η, ξ)→ (∂L
∂η

(p, ξ), ξ) can be inverted

in class C∞ as a mapping of R2 onto R2 and let (p, ξ) → (f(p, ξ), ξ) be the inverse map.
Set H(p, ξ) = pf(p, ξ)−L(f(p, ξ), ξ) ≡ [pη−L(η, ξ)]η=f(p,ξ), and check that the “Lagrange
equations”

ξ̇ = η,
d

dt

∂L
∂η

(η, ξ) =
∂L
∂ξ

(η, ξ)

are equivalent to the “Hamilton equations”

ṗ = −∂H
∂ξ

(p, ξ), ξ̇ =
∂H

∂p
(p, ξ).

The motion described in terms of p and ξ, t → (p(t), ξ(t)), is a solution of this differential
equation and any of its solutions is called a “Hamiltonian motion” and the space R2,
thought of as the space of the initial data for the above equations, is called a “phase space”.
(Hint: Note that since, by definition of p and f , one has p ≡ ∂L

∂η
(f(p, ξ), ξ), it follows that

∂H

∂p
(p, ξ) = f(p, ξ) + p

∂f

∂p
(p, ξ)− ∂L

∂η
(f(p, ξ), ξ)

∂f

∂p
(p, ξ) ≡ f(p, ξ) = η

and

∂H

∂ξ
(p, ξ) =p

∂f

dξ
(p, ξ)− ∂L

∂η
(f(p, ξ), ξ)

∂f

dξ
(p, ξ)− ∂L

∂ξ
(f(p, ξ), ξ)

≡ −∂L
∂ξ

(f(p, ξ), ξ) ≡ −∂L
∂ξ

(η, ξ)

having used the definition of H.)

5. The function H in Problem 4 can be expressed in terms of L and vice versa as

H(p, ξ) = max
η∈R

(pη − L(η, ξ)), L(η, ξ) = max
p∈R

(pη −H(p, ξ))

(“Legendre duality”), if the maximum is attained at a unique point η or p, respectively, and,
furthermore, if η, p are the only stationarity points of the functions in brackets as functions
of η or p, respectively. (Hint: Write the stationarity conditions for pη − L(η, ξ) and those
for pη − H(p, ξ) with respect to η or, respectively, to p. Then use the definition of H in
Problem 4.)

6. The “Hamilton equations“ ṗ = − ∂H
∂ξ

(p, ξ), ξ̇ = ∂H
∂p

(p, ξ). with HamiltonianH ∈ C∞(R2)
can be obtained by imposing stationarity of

S =

Z t2

t1

(p(t)ẋ(t) −H(p(t), x(t))) dt

in the space Mt1,t2

“
(π1, ξ1), (π2, ξ2)

”
of the C∞([t1, t2]) functions t → (p(t), q(t)) ∈ R2

such that p(t1) = π1, p(t2) = π2, x(t1) = ξ1, x(t2) = ξ2, (“Hamilton’s principle”). (Hint:

Apply Proposition 36, Eq. (2.24.1), with L(ṗ, ẋ, p, x) = pẋ−H(p, x).)

7. In the context of Problem 6, show that the same Hamilton equations can be obtained by
imposing stationarity of S on the larger space fMt1,t2(ξ1, ξ2) of the C∞([t1, t2]) functions
t → (p(t), q(t)) ∈ R2 such that x(t1) = ξ1, x(t2) = ξ2. (Hint: Go through the proof of
Proposition 36 using the special form of the Lagrangian L(ṗ, ẋ, p, x) = pẋ−H(p, x).)
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8. Let t → (p(t), x(t)) ∈ R2 be a motion verifying the Hamilton equations of Problems 4
and 6. Show that the quantity S defined in Problem 6 coincides with

R t2
t1
L(ẋ(t), x(t)) dt,

i.e., with the action of the same motion (of course, if L and H are related as in Problem 4).

9. Extend Problems 4 and 7 to the case when H and L depend explicitly on time.

10.* Let H be as in Problem 4 and let St(p, x) = (p(t), x(t)), t ≥ 0, be the solution of the
Hamilton equations (as in Problem 14), supposed normal, with (p, x) as initial datum at
t = 0. Let A ⊂ R2 be a (Riemann) measurable region. Show that area(StA) = area(A),
∀ t ≥ 0, if StA = {set of points of the form St(p, x), with (p, x) ∈ A} (“Liouville’s theorem”).
(Hint: In general, let ẋ = f(x) be an autonomous normal differential equation in Rd. Set
y = Stx, for t ≥ 0. Then

volume(StA) =

Z

StA
dx =

Z

A

˛̨
˛̨det

“∂S−t(y)

dy

”˛̨
˛̨ dy

where ∂St(y)/∂y denotes the Jacobian matrix of the coordinate transformation x = St(y).

This formula shows that if det
“
∂S−t(y)

∂y

”
> 0, the modulus symbol is irrelevant and t →

volume(StA) is a C∞ function, and

d

dt
volume(StA)|t=τ =

Z

A

»
d

dt
det
“∂S−t(y)

∂y

”–

t=τ

dy.

But (see §2.6) St+τ = StSτ , hence, the last expression is equal to:

Z

A

»
d

dt
det
“∂S−t−τ (y)

∂y

”–

t=0

dy =

Z

A

»
d

dt
det
“∂S−t(S−τ (y))

∂y

”–

t=0

dy

=

Z

A

»
d

dt
det
“∂S−t(S−τ (y))

∂S−τ (y)

”–

t=0

det
“∂S−τ (y)

∂y

”
dy

by the composite function differentiation rule and by the determinant rules.
It is then sufficient to check that, under suitable circumstances, the derivative

»
d

dt
det
“∂S−t(x)

∂x

”–

t=0

≡ 0, ∀ x ∈ Rd

to infer the volume conservation under the same circumstances. If ẋ = f(x), it follows that

Stx = x + t f(x) + t2ϕ(x, t)

by the Taylor-Lagrange formula (see Appendix B), where ϕ is a C∞ function of x and t.
Hence,

det
∂St(x)

∂x
= det

„
1 + t

∂f(i)(x)

∂xj
+ t2

∂ϕ(i)(x, t)

∂xj

«
;

hence, by developing the determinant

det
∂St(x)

∂x
== 1 + t

dX

j=1

∂f(j)(x)

∂xj
+ t2 ψ(x, t),

where ψ is a suitable C∞ function of x, t. Hence, the derivative of det(∂St(x)/∂x) for t = 0

is
Pd
j=1

∂f(j)(x)
∂xj

≡ div f(x), wherein the right-hand side is the notation used in physics for

the left-hand side (“divergence of f ”).
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Therefore, if div f = 0, the flow St generated by ẋ = f(x) preserves the volume (this
also motivates the name “divergence” given to div f(x) since it measures the rate of increase
of volume under the transformation St). In fact, it follows from the above considerations
that det(∂St(x)/∂x) ≡ 1, being constant and equal to 1 for t = 0. Then note that the
Hamilton equations are divergenceless.)

11.* Let ẋ = f(x) be an autonomous normal differential equation in Rd, f ∈ C∞(Rd), and

suppose div f(x) ≡Pd
j=1

∂f(j)(x)
∂xj

= 0, ∀x ∈ Rd. So, by the hint to Problem 10, it follows

that the solution flow (St)t∈R+
preserves the volume: volumeStA ≡ volumeA.

Suppose that the solution flow maps a bounded open set Ω ⊂ Rd into itself: StΩ ⊂ Ω, ∀ t ∈
R+. Show that given x0 ∈ Ω, t0 > 0, and a neighborhood U ⊂ Ω of x0, there exists t ≥ t0
such that StU∩U 6= ∅; i.e., close to any point x0 ∈ Ω, there is another point which comes as
close to x0 after a given, arbitrarily large, time (“Poincaré’s recurrence theorem”). (Hint:

Suppose St0U ∩ U 6= ∅, otherwise t = t0; then consider S2t0U ∩ U 6= ∅, show that the
three sets U,St0U, S2t0U must be pairwise disjoint because if S2t0 ∩ U 6= ∅ then t = 2t0.
In the first case, consider S3t0U : if S3t0U ∩ U = ∅ the four sets U,St0 , S2t0U and S3t0U
must be pairwise disjoint; if not, take t = 3t0, etc. The result could fail only if the sequence
U,St0U,S2t0U, . . . , Skt0U, . . . is an infinite sequence of pairwise disjoint sets. However, in
such a case, volume(Ω) ≥ P∞

k=0 volume(Skt0U) =
P∞
k=0 volume(U) = +∞ because U is

open and volume(U) > 0, which is absurd since Ω is a bounded set.)

12. Show that the equation ẍ + γẋ = 0, γ > 0 describing a free particle moving under
the action of linear friction is the Euler-Lagrange equation associated with the Lagrangian
L(ẋ, x) = ẋ log ẋ − γx in the region ẋ > 0, [27]. (Define the Euler-Lagrange equations by
Eq. (2.24.11), i.e. as (d/dt)(∂L/∂ẋ) = ∂L/∂x.)

13. Let V ∈ C∞(R) be bounded below. Show that if F ∈ C∞(R) has a non vanishing
derivative, the equations ẍ = −(dV/dx)(x) can be described by the Lagrangian function

L(η, ξ) = η

Z η

1

F ( 1
2
y2 + V (ξ))

y2
dy

in the region ẋ > 0, i.e., η > 0. What does L become if F (e) ≡ e, ∀ e ∈ R? Is this consistent
with the alternative Lagrangian eL = 1

2
η2 − V (ξ)? (see [27]).

14. Consider the damped oscillator ẍ+ ẋ+ω2x = 0 and let α = (4ω2 − γ)− 1
2 , γ > 0. Show

that in the region η > 0, ξ > 0, the Lagrangian

L(η, ξ) = −1

2
log(η2 + γηξ + ω2ξ) + α (2

η

ξ
+ γ)arctg (2

η

ξ
+ γ)

has, as Euler-Lagrange equations, the damped oscillator equations (see [27]).

15. Let ẍ = g(ẋ, x) be a differential equation. Show that in order that a function L on a
subset A of R2 generates (via the Euler-Lagrange equations) the equation ẍ = g(ẋ, x) for
the motions developing in A, it must be

∂L
∂η
− η ∂

2L
∂ξ∂η

− g(η, ξ)∂
2L
∂η2

= 0, ∀ (η, ξ) ∈ A

(Hint: Write the Euler-Lagrange equations substituting ẍ with g(ẋ, x)) (see [27]).25

25 The last four problems are taken from [27]. The equation for L in Problem 15 allows one
to find many Lagrangians for the same equation. Note, however, that such Lagrangians
will generally be singular somewhere in R2, always so, probably, if the equation ẍ =
g(ẋ, x) is nonconservative. So, strictly speaking, this confirms the fact that a Lagrangian
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description, in the sense of §2.24, with L ∈ C∞(R2) can only be found for conservative
systems.





3

Systems with Many Degrees of Freedom.
Theory of the constraints. Analytical

Mechanics

3.1 Systems of Points

We begin with some definitions which are perhaps obvious from the consider-
ations of Chapters 1 and 2, but are nevertheless necessary.

A notational convention that will allow important formal simplifications is
that, if M = m1 +m2 + . . .+mp is a sum of p positive integers, the space RM
will be considered identical with the spaceRm1×Rm2×. . .×Rmp . A point ξ =
(ξ1, . . . , ξM ) ∈ RM will be identified with the p-tuple of vectors (ξ(1), . . . , ξ(p)),
where ξ(i) =

(
ξm1+...+mi−1+1, . . . , ξm+1+...+mi

)
for i = 1, 2, . . . , p.

Very often such a decomposition of ξ into (Bx(1), . . . , ξ(p)) will be “natu-
ral” in the context of the discussion. For instance, if a point in R3N represents
a configuration of a system of N point masses, it will be “natural” to think
of ξ as (ξ(1), . . . , ξ(N)), where ξ(i) ∈ R3, i = 1, . . . , N , represents the po-
sition in R3 of the i-th point mass. Every time that it will appear useful,
when a natural decomposition of ξ ∈ RM into (ξ(1), . . . , ξ(p)), ξ(i) ∈ Rmi ,
i = 1, . . . , p, emerges from the context, ξ will be regarded as a p-tuple of
vectors in Rm1 × . . .×Rmp .

Such an identification will be made without explicit mention, provided no
real ambiguities arise. Thus, aR3N -valued function t→ ϕ(t) defined onR will
be written, if this is natural within the context, as t→ (ϕ(1)(t), . . . ,ϕ(N)(t))
with t→ ϕ(i)(t), i = 1, . . . , N , an R3-valued function, etc.

If F is anRd-valued C∞-function onRM = Rm1×. . .×Rmp , the Jacobian
matrix
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(∂F (i)

∂ξj
(ξ)
)

i=1,...,d
j=1,....M

with the symbol (∂F/∂ξ)(ξ) or ∂F(ξ)
∂ξ . If ξ = (ξ(1), . . . , ξ(p)) ∈ Rm1×. . .×Rmp ,

the symbol ∂F/∂ξ(s) will denote the Jacobian matrix (∂F (i)/∂ξℓ)(ξ) where
i = 1, . . . , d and ℓ varies in the set of indices corresponding to the coordinates
of ξ(s) (i.e., ℓ = m1 + . . .+ms−1 + 1, . . . ,m+ 1 + . . .+ms).

We can now set up the following definition.

1 Definition. A “motion” of a system of N point masses in Rd, ob-
served as the time varies in the interval I, is a C∞ function t → x(t) =
(x(1)(t), . . . ,x(N)(t)) defined for ∈ I and taking values in RNd = Rd×. . .×Rd.
A motion x of a system of N points, with respective masses m1, . . . ,mN > 0,
will be said “governed by a force law F” or “developing under the influence”
of a force law F if:
(i) F = (f (1), . . . , f (N)) with f (i) an Rd-valued function in C∞(R2Nd+1), ∀ i.
(ii) For i = 1, . . . , N , t ∈ I:

mi ẍ
(i)(t) = f (i)(ẋ(1)(t), . . . , ẋ(N)(t),x(1)(t), . . . ,x(N)(t), t) (3.1.1)

(iii) Eq. (3.1.1), thought of as a differential equation, is normal for all values
of m1, . . . ,mN > 0 (see Definition 3, §2.5).
Observation. Requirement (iii) is a restriction of “physical nature” on the
force laws F that will be considered. Such laws will often be subject to other
restrictions and, always (beginning with the next section), to the condition of
verifying the third principle of dynamics (see Chapter 1, §1.3).

A particularly important role will be played by the “conservative force
laws”, which deserve a formal definition and the rest of the section.

2 Definition. A force law for a system of N points in Rd, i.e., a function
F ∈ C∞(R2dN+1) with values in Rd, verifying (i) and (iii) of Definition 1, is
called “conservative” if:
(i) it depends solely on the configuration of the system, i.e., there exist N
Rd-valued C∞ functions defined on RdN , f (1), . . . , f (N), such that

f (i)(η(1), . . . ,η(N), ξ(1), . . . , ξ(N), t) ≡ f̃ (i)(ξ(1), . . . , ξ(N)); (3.1.2)

(ii) there is a real-valued function V ∈ C∞(RdN ) such that for i = 1, . . . , N :

f̃ (i)(ξ(1), . . . , ξ(N)) = −∂V (ξ(1), . . . , ξ(N))

∂ξ(i)
(3.1.3)

which will be called the “potential energy” of the force law F.

The interest of this definition lies in the fact that the majority of force
models are described by conservative force laws, i.e., by force laws that can
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be expressed as in Eq. (3.1.3) which, according to the conventions set up at
the beginning of this section, means:

f̃ (i)(ξ(1), . . . , ξ(N))j = −∂V (ξ(1), . . . , ξ(N))

∂(ξ(i))j
. (3.1.4)

Furthermore, the energy conservation theorem can be easily extended to sys-
tems of N points subject to conservative forces. Given a motion x of a system
of N points, with respective massm1, . . . ,mN > 0, define the “kinetic energy”
at time t as the quantity

T (t)
def
=

1

2

N∑

i=1

miẋ
(i)(t)2, (3.1.5)

while the “potential energy” at time t of the force F governing the motion,
supposed conservative with potential energy function V ∈ C∞(RdN ), will be
defined as

V (t)
def
= V (ξ(1)(t), . . . , ξ(N)(t)) (3.1.6)

One then notes that

d

dt
T (t) =

N∑

=1

mi ẋ
(i)(t) · ẍ(i)(t), (3.1.7)

d

dt
V (t) =

N∑

=1

∂V

∂ξ(i)
(x(t)) · ẋ(i)(t), (3.1.8)

hence, by Eqs. 3.1.1), 3.1.2), and 3.1.3):

d

dt

(
T (t) + V (t)

)
=

N∑

=1

mi ẋ
(i)(t)

(
miẍ

(i)(t) +
∂V

∂ξ(i)
(x(t))

)
= 0 (3.1.9)

Therefore the following proposition holds.

1 Proposition. If t → x(t) = (x(1)(t), . . . ,x(N)(t)), t ∈ I, is the motion of
system of N points, governed by a conservative force law with potential energy
V , there is a constant E, “total energy” of the motion, equal at all times to
the sum of the kinetic energy and the potential energy:

T (t) + V (t) = E, ∀ t ∈ I (3.1.10)

with T (t) and V (t) defined in Eqs. (3.1.5) and (3.1.6).

Observation. It is worth stressing that here we are meeting a first but very im-
portant difference between one-dimensional and multi-dimensional motions:
in the case of the motion of a single point in one dimension, every purely
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positional force law is conservative. If d > 1 or N > 1, there are purely posi-
tional force laws which are not conservative in the above sense. For instance,
if N = 1, d = 2, the force law f1(ξ1, ξ2) = 0, f2(ξ1, ξ2) = ξ1 is not conservative
since ∂f1/∂ξ2 6= ∂f2/∂ξ1, while the two derivatives should coincide if f were
conservative (since they would be the mixed second-order derivatives of the
same function V ).

1. Let f be a C∞(R3/{0}) function with values in R3 having the form f(x) = ϕ(|x|) x
|x| ,

ϕ ∈ C∞(R+/{0}). Consider the force law for a system of N point masses given by

f (i)(ξ(1), . . . ,ξ(N)) =
X

j 6=i
ϕ(|ξ(i) − ξ(j)|) ξ

(i) − ξ(j)
|ξ(i) − ξ(j)| ≡

X

j 6=i
f(ξ(i) − ξ(j)).

This force law is defined for configurations such that ξ(i) 6= ξ(j), ∀ i 6= j, and strictly speak-
ing is, therefore, a generalization of the force law notion of Definitions 1 and 2 (requiring the
force to be defined for every configuration (ξ(1) , . . . , ξ(N))). It will be called conservative
if there is a function V , of class C∞ on the configurations with ξ(i) 6= ξ(j), such that Eq.
(3.1.4) holds. In this extended sense, show that the above force law is conservative and

V (ξ(1), . . . ,ξ(N)) =
X

j<j′

Φ(|ξ(i) − ξ(j)|),

where r → Φ(r), r > 0, is a primitive function to ϕ: Φ(r) =
R r ϕ(r′) dr′.

Find sufficient conditions on ϕ so that the above force law can be extended by continuity
to all configurations becoming a conservative force law in the sense of Definition 2.

2. Let Φj,j′ (r), j, j
′ = 1, . . . , N, j < j′, be N(N −1) functions in C∞(0,+∞). Consider the

force law with potential energy function

V (ξ(1) , . . . ,ξ(N)) =
X

j<j′

Φj,j′ (|ξ(i) − ξ(j)|)

Find sufficient conditions on Φ so that the force law is of class C∞(R3N ).

3.2 Work. Linear and Angular Momentum

One can wonder whether it is possible to extend the energy conservation
theorem so that it could be applied to systems subject to nonconservative
force laws. The answer is, in some sense, affirmative and it is known as the
“alive forces theorem”. To formulate this simple theorem, one needs the notion
of “work of a force” on a given motion.

3 Definition. (i) A RdN -valued C∞(RdN+1) function F verifying properties
(i) and (iii) of Definition 1 will be called a “force law” for a system of N point
masses.
(ii) If x is a motion, defined for t ∈ I, of a system of N point masses and if Φ
is a force law for it, not necessarily coinciding with the force law generating the
motion x [i.e. not necessarily verifying Eq. (3.1.1)], one defines the “work”
of the force Φ in the time interval [t1, t2] ⊂ I as the quantity
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Lt1,t2(Φ,x)
def
=

N∑

i=1

∫ t2

t1

ϕ(i)(ẋ(t),x(t), t) dt (3.2.1)

where, following the conventions of §3.1, we set Φ = (ϕ(1), . . . ,ϕ(N)).

Observations.

(1) Let Φ be a purely positional force law, i.e., ∀ (η, ξ, t) ∈ RNd+1:

ϕ(i)(η(1), . . . ,η(N), ξ(1), . . . , ξ(N), t) = ϕ̃(i)(ξ(1), . . . , ξ(N)) (3.2.2)

i = 1, . . . , N . Then

Lt1,t2(Φ,x) =
N∑

i=1

∫ t2

t1

ϕ̃(i)(x(t)) · ẋ(i)(t) dt (3.2.3)

and one recognizes in the above integral a line integral of the differential form

N∑

i=1

ϕ̃(i)(ξ) · dξ(i) (3.2.4)

on the curve I(x) described in RdN by the point x(t) as t varies in [t1, t2]
(“trajectory of x”). Formula (3.2.4) is usually read by saying that the work
done by a force on a point which undergoes a displacement is the “scalar
product of the force times the displacement”.
(2) From observation (1), it follows that the work done by a purely positional
force law ϕ in a given time interval during which the system is displaced from
the configuration x(t1) to x(t2) along a certain trajectory I solely depends
upon the trajectory and does not depend on the time law governing the motion
along I.
(3) If Φ is a conservative force with potential energy V [see Eq. 3.1.3)], the
differential form of Eq. 3.2.4) coincides with the differential of −V :

N∑

i=1

ϕ̃(i)(ξ) · dξ(i) = −
N∑

i=1

∂V (ξ)

∂ξ(i)
· dξ(i) = −dV . (3.2.5)

hence, from Eq. (3.2.3), it follows that

Lt1,t2(Φ,x) = −V (x(t2)) + V (x(t1)), (3.2.6)

showing that the work performed in a given time interval by a conservative
force on a motion x depends solely on the initial and final configurations of the
motion, i.e., it is also independent of the trajectory followed by the motion.

The “theorem of the alive forces” can now be formulated.

2 Proposition. Let t → x(t), t ∈ I, be a motion of a system of N points,
with masses m1, . . . ,mN > 0, developing in Rd under the action of a force
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law F.
Then the variation of the kinetic energy, or “alive force”,1 between the times
t1, t2 ∈ I, is equal to the work performed in [t1, t2] by F on the motion x:

T (t2)− T (t1) = Lt1,t2(F,x) (3.2.7)

Observation. By Eq. (3.2.6), Eq. (3.2.7) becomes the already discussed energy
conservation theorem, Proposition 1, whenever F is conservative.

Proof. By Definition 1, p.142, of motion developing under the action of a
force F = (f (1), . . . , f (N)), we have

mj ẍ
(j) = f (j)(ẋ(1), . . . , ẋ(N),x(1), . . . ,x(N), t), (3.2.8)

∀ j = 1, . . . , N . Multiplying both sides scalarly by ẋ(j) and summing over j:

N∑

j=1

mjẍ
(j) · ẋ(j) =

N∑

j=1

f (j) · x(j), (3.2.9)

and integrating both sides with respect to t between t1 and t2 one finds Eq.
(3.2.7). mbe

The interest of Proposition 2 lies in its generality as a consequence of Eq.
(3.1.1). There are other immediate consequences of Eq. (3.1.1) valid under
the additional assumption that the force law F governing the motion verifies
the third principle of dynamics: they are the so called “cardinal equations” of
dynamics, whose interest is also due to their great generality.

As discussed in Chapter 1, the hypothesis that a force law F for a system
of N point masses verifies the third law of dynamics means several things
mathematically. First, if F = (f1, . . . , f (N)), the function f (j), j = 1, . . . , N ,
can be represented as

f (j)(η(1), . . . ,η(N), ξ(1), . . . , ξ(N), t)

= ϕ(j)e(η(j), ξ(j), t) +
∑

i=1
i6=j

f (i→j)(η(i),η(j), ξ(i), ξ(j), t) (3.2.10)

where f (j) ∈ C∞(R2d+1), f (i→j) ∈ C∞(R4d+1) are suitable Rd-valued func-
tions, ∀ i, j = 1, . . . , N .

For reasons discussed in Chapter 1, the function f (j)e is called the “external
force” acting upon the j-th point mass and f (i→j) is called the “force exerted
by the i-th point on the j-th one”. Second, one assumes that

f (i→j)(η,η′, ξ, ξ′, t) = −f (j→i)(η′,η, ξ′, ξ, t)) (3.2.11)

1 In the ancient times the alive force was actually defined to be twice the kinetic energy.
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and, finally,
f (i→j)(η,η′, ξ, ξ′, t) is parallel to ξ′ − ξ (3.2.12)

Equations (3.2.10)-(3.2.12) are the analytic form taken, in our notations,
by the third principle of dynamics for the force law F acting on the system of
point masses under consideration (see, also, Chapter 1).

4 Definition. A force law for a system of N point masses in Rd verifies
the third principle of dynamics if it admits a representation like Eq. (3.2.10)
verifying Eqs. (3.2.11) and (3.2.12). In this case, the quantity

R(e)(η(1), . . . ,η(N), ξ(1), . . . , ξ(N), t) =

N∑

i=1

f (j)e(η(j), ξ(j), t) (3.2.13)

thought of as an Rd-valued C∞(R2dN+1) function takes the name of “total
external force” of the force law F. If d = 3, the quantity

M(e)
α (η(1), . . . ,η(N), ξ(1), . . . , ξ(N), t) =

N∑

j=1

(ξ(j) −α) ∧ f (j)e(η(j), ξ(j), t))

(3.2.14)
is called the “total momentum of the external forces” of F with respect to the
point α ∈ Rd.
Observation. If d 6= 3, it is still possible to define the momentum of the forces
with respect to a point: however, it cannot be naturally thought of as a vector
in Rd. To avoid complications, rather than on the shaky grounds that the
“physical case” is d = 3, we do not deal with this question.

The following proposition gives the so called “cardinal equations of dy-
namics”:

3 Proposition. Given a motion t → x(t), t ∈ R+, of N points in R3, with
masses m1, . . . ,mN > 0, define the “linear momentum” at time t and the
“angular momentum”, with respect to α ∈ R3, at time t as the quantities

Q(t)
def
=

N∑

j=1

mj ẋ
(j), Kα

def
=

N∑

j=1

mj (ξ(j) −α) ∧ ẋ(j)(t) (3.2.15)

If the motion develops under the action of a force law F verifying the
third principle of dynamics and if one shortens R(e)(ẋ(1)(t), . . . ,x(N)(t), t)

as R(e)(t) and, likewise, M
(e)
α (ẋ(1)(t), . . . ,x(N)(t), t) as M

(e)
α (t) and [see Eqs.

(3.2.13),(3.2.14)], then

d

dt
Q(t) = R(e)(t),

d

dt
Kα(t) = M(e)

α (t), (3.2.16)
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Observations.
(1) Sometimes the linear momentum is called the “quantity of motion”, while
the angular momentum is called “momentum of the quantity of motion”. The
cardinal equations (3.2.16) show that their time variation depends only upon
the external forces acting on the system.
(2) The first cardinal equation in (3.2.16) is often called the “baricenter theo-
rem” or the “center of mass theorem”. To understand the origin of this name
associate with the motion in R3N , t → x(t) = (ẋ(1)(t), . . . , ẋ(N)(t)), t ∈ I,
the motion in R3, t→ xG(t), where

xG(t) =

∑N
i=1mi x

(i)(t)
∑N

i=1mi

. (3.2.17)

The point G
def
=

∑
N

i=1
mi X(i)

∑
N

i=1
mi

is called the “baricenter” and the motion t →

xG(t), t ∈ I, the “baricenter motion”. Setting M =
∑N

i=1mi (“total mass of
the system”), the first relations in Eqs. (3.2.15) and 3.2.16) become, respec-
tively,

Q(t) = M ẋG(t) (3.2.18)

M ẍG(t) = R(e)(t) (3.2.19)

and Eq. (3.2.19) can be read as “the baricenter of a system of N masses moves
as if it were a single point mass subject to the action of a force equal to the
total external force acting on the system”.

If the external force has the form f (i) = mi g ∈ R3, “gravity force,” the
point G has many other nice properties which motivate its name: they are
discussed below.
(3) Note that, in general, Eq. (3.2.19) is not a “closed equation”: the right-
hand side cannot, in fact, be computed without already knowing the locations
and the speeds of all the particles of the system. Nevertheless, there are some
exceptional particular cases of special importance. For instance, if the external
force acting on the j-th point is independent of its position and velocity: this
is the case of the gravity force.
(4) It is worth stressing that, in general, it is not true that the momentum of
the external forces can be computed by imagining the total force as applied
to the baricenter; i.e., as (xG−α)∧R(e). Neither is it generally true that the
derivative of the angular momentum of the baricenter, i.e., of M(xG−α)∧ẋG,
is the momentum of the total external forces.
(5) However, in the special case

f (j)e = mi g, (3.2.20)

where g is a fixed vector (“gravity force”), one finds
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R(e) =
( N∑

i=1

mi

)
g = Mg (3.2.21)

and by Eq. (3.2.17),

M(e) =

N∑

j=1

(x(j) −α) ∧mjg =
( N∑

j=1

mj (x(j) −α)
)
∧ g

=M (xG −α) ∧ g = (xG −α) ∧R(e) = M(e)
α

(3.2.22)

Furthermore,

d

dt
(xG −α) ∧M ẋG = (xG −α) ∧M ẍG + ẋG ∧M ẋG

≡ (xG −α) ∧M ẍG = (xG −α) ∧R(e) = M(e)
α ;

(3.2.23)

i.e., in the case of the gravity forces, the most daring thoughts are allowed:
Eqs. (3.2.22) and (3.2.23) show the uniqueness of the gravity force case with
respect to the cardinal equations and they explain why the point defined in
Eq. (3.2.17) is given the name of “center of gravity”, or “center of mass” or
“baricenter”.

Proof. From Eq. (3.2.8), by summing both sides over j, it follows that

N∑

j=1

mj ẍ
(j) =

N∑

j=1

f (j) (3.2.24)

but Eqs. (3.2.10) and (3.2.11) and the first of Eqs. (3.2.15) imply
∑N

j=1mj ẍ
(j)

= R(e), i.e., the first of Eqs. (3.2.16). Similarly, by externally multiplying both
sides of Eq. (3.2.8) by (x(j)(t)−α), α ∈ R3, and summing:

N∑

j=1

mj (x(j)(t)−α) ∧ ẍ(j)(t)

=
N∑

j=1

(x(j)(t)−α) ∧ f (j) =
N∑

j=1

(x(j)(t)−α) ∧ f (j)e = M(e)
α

(3.2.25)

having used Eqs. (3.2.10) and (3.2.11) and, particularly, Eq. (3.2.12) in the
third step to eliminate the contribution of the internal forces:
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N∑

j=1

(x(j)(t)−α) ∧
N∑

i=1
i6=j

f (i→j) =
∑

i6=j
(x(j)(t)−α) ∧ f (i→j)

=
1

2

∑

i6=j

{
(x(j)(t)−α) ∧ f (i→j) + (x(i)(t)−α) ∧ f (j→i)

}

=
1

2

∑

i6=j

{
(x(j)(t)− x(i)(t)) ∧ f (i→j)

}
= 0

(3.2.26)

because f (i→j) = −f (j→i) and f (i→j) is parallel to x(i)(t)−x(j)(t), by the third
principle. Furthermore,

(x(j)(t)−α) ∧ ẍ(j)(t) ≡ (x(j)(t)−α) ∧ d

dt
ẋ(j)(t)

=
d

dt

{
(x(j)(t)−α) ∧ ẋ(j)(t)

}
−
{ d
dt

(x(j)(t)−α)
}
∧ ẋ(j)(t)

=
d

dt

{
(x(j)(t)−α) ∧ ẋ(j)(t)

}
− ẋ(j)(t) ∧ ẋ(j)(t)

=
d

dt

{
(x(j)(t)−α) ∧ ẋ(j)(t)

}
. Hence,

(3.2.27)

N∑

j=1

mj(x
(j)(t)−α)∧ ẍ(j)(t) =

d

dt

N∑

j=1

(x(j)(t)−α)∧ ẋ(j)(t) =
d

dt
Kα (3.2.28)

which, together with Eq. (3.2.25), proves the second equation in (3.2.16).
mbe

1. In Appendix P, there is a table of the masses of the nine main planets and of their
distance from the Sun. The mass and radius of the Sun can also be found there. Find the
configuration of the planets in which the center of mass of the above ten heavenly bodies
is farthest from the center of the Sun and compute the ratio of this distance to the Sun
radius. (Assume that the planets move in circular orbits around the Sun.)

2. Same as Problem 1, not counting the Sun.

3. From the data in Appendix P, find the position of the Earth-Moon center of mass relative
to the Earth and compare its distance from the center of the Earth with the Earth radius.
(Assume the distance between the Earth and Moon to be equal to the maximal or to the
minimal distance.)

4. Find the value of the angular momentum of the Earth-Moon system with respect to the
center of the Sun, assuming that the latter is fixed in a reference frame with axes fixed with
the fixed stars. Assume also that the configuration Moon-Earth-Sun is that of a full lunar
eclipse and neglect the orbital inclination of the Moon. Should the angular momentum be
time independent? If not, indicate what should be neglected to make it time independent.
(Hint: The attraction of the Sun on the Earth and on the Moon has vanishing momentum
with respect to the center of the Sun, while the Sun-Moon forces are internal forces to the
Earth-Moon system.)

5. If V ∈ C∞(RNd) is bounded below the force law F = (f (1), . . . , f (N)) with f (i) def= −
∂V (ξ(i))

∂ξ
, i = 1, . . . , N , is actually a force law in the sense of Definition 3, (i). Show the
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validity of this statement. (Hint: One need only check condition (iii) of Definition 1. This

is obtained by finding an a priori estimate in the sense of §2.5, using energy conservation.

Proceed along the lines of the analogous one-dimensional case, §2.5, Proposition 6, p.29).

3.3 The Least Action Principle

The least action principle seen in §2.24 can be extended to systems of N points
in Rd subject to conservative forces. Consider the following definition.

5. Definition.
(i) Let Mt1,t2(ξ1, ξ2) be the set of motions t→ x(t) = (x(1)(t), . . .x(N)(t)) ∈
C∞([t1, t2]) such that x(t1) = ξ1,x(t2) = ξ2, with ξ1, ξ2,x(t) ∈ RNd.
(ii) If x ∈ M ⊂ Mt1,t2(ξ1, ξ2), the Vx(M) will denote the space of the
“variations” of the motion x in M: it is the set of the RNd-valued functions
y ∈ C∞([t1, t2]× (−1, 1)), (t, ε)→ y(t, ε) such that:

(a) y(t, 0) ≡ x(t), ∀ t ∈ [t1, t2] (3.3.1)

(b) y(t1, ε) ≡ ξ1, y(t2, ε) ≡ ξ2, ∀ ε ∈ (−1, 1) (3.3.2)

(c) for all ε ∈ (−1, 1), the function t→ yε(t) = y(t, ε), t ∈ [t1, t2] (3.3.3)
is a motion yε ∈ M. We shall set Vx(Mt1,t2(ξ1, ξ2)) ≡ Vx
(iii) If L ∈ C∞(R2Nd+1) is a real-valued function, define the action with
Lagrangian density L as the real-valued function A on Mt1,t2(ξ1, ξ2):

A(x)
def
=

∫ t2

t1

L(ẋ(t),x(t), t) dt (3.3.4)

(iv) The action A in Eq. (3.3.4) is said to be stationary or locally minimal
the motion x ∈M ⊂Mt1,t2(ξ1, ξ2) if the function ε→ A(yε), ε ∈ (−1, 1), is
stationary or locally minimal for ε = 0 and for all y ∈ Vx(M).

The stationarity condition of Eq. (3.3.4) on all of Mt1,t2(ξ1, ξ2) in x is
deduced exactly along the same lines and patterns followed to prove the anal-
ogous condition seen in Proposition 36, §2.24, p.130, through the principle
of the vanishing integrals (Appendix D). Therefore, the detailed proof of the
following proposition is left to the reader.

4 Proposition. A motion x ∈ Mt1,t2(ξ1, ξ2) is a stationary point in
Mt1,t2(ξ1, ξ2) for the action of Eq. (3.3.4) if and only if

d

dt

( ∂L
∂η(i)

(ẋ(t),x(t), t)
)

=
∂L
∂ξ(i)

(ẋ(t),x(t), t) (3.3.5)

for all t ∈ [t1, t2] and for all i = 1, 2, . . . , N .

Observations.
(1) In Eq. (3.3.5) we use the notation on the derivatives introduced in §3.1.
(2) Often, with an abuse of notation, Eq. (3.3.5) is compactly written as
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d

dt

∂L
∂ẋ

=
∂L
∂x

. (3.3.6)

An immediate corollary to Proposition 4 is the following.

5 Proposition. Given a real-valued C∞(RNd) function V , bounded from be-
low,2 the motion x ∈ Mt1,t2(ξ1, ξ2) makes the action with Lagrangian density

L(η, ξ, t) =
1

2

N∑

i=1

mi η
(i)2 − V (ξ) (3.3.7)

mj > 0, j = 1, . . . , N , stationary onMt1,t2(ξ1, ξ2) if and only if x is a motion
of N points in Rd with masses m1, . . . ,mN > 0 which, for t ∈ [t1, t2], develops
subject to influence of the force law F with potential energy V .

Proof. It is enough to substitute Eq. (3.3.7) into Eq. (3.3.5) to see that, in
this case, Eq. (3.3.5) becomes Eq. (3.1.1) with F given by Eq. (3.1.3), i.e.,

mj ẍ
(j)(t) = − ∂V

∂ξ(j)
, j = 1, . . . , N (3.3.8)

if x(t) = (x(1)(t), . . . ,x(N)(t)), t ∈ [t1, t2]. mbe

The following generalization of Proposition 38, §2.24, is also valid, but the
proof is left as a problem for the reader (since it is an essentially a word-by-
word repetition of that of Proposition 38, p.132).

6 Proposition. Let t → x(t), t ∈ R+, be a motion of a system of N points
in Rd, with masses m1, . . . ,mN > 0, developing under the action of a conser-
vative force with potential energy V ∈ C∞(RNd). Given t1 ∈ R+ and t2 > t1,
if t2 − t1, is small enough, the motion t → x(t) considered in the time inter-
val [t1, t2] is a point of local minimum in Mt1,t2(ξ1, ξ2) for the action with
Lagrangian (3.3.7).

The comments seen at the end of Chapter 2, pp.133-135, extend to the
contents of this section. It is, in particular, quite important that the reader
extends to the case of a system of point masses the observations made in §2.24,
concerning the representations of motions in coordinates other than Cartesian
coordinates and concerning the invariance of the Lagrange equations (3.3.6)
with respect to changes in coordinates (see §2.24, p.133 and following).

In the following sections and in their exercises, we shall see some interest-
ing applications of the “Lagrangian formulation” (3.3.6) of the equations of
motion as a “change of coordinates invariant” formulation of such equations.
Among these will be the theory of perfect constraints.

2 See Problem 5, §3.2.
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3.4 Introduction to the Constrained Motion Theory

Elli avien cappe con cappucci bassi
Dinanzi a li occhi, fatte della taglia
Che in Clugǹı per li monaci fassi.
Di fuor dorate son, si ch’elli abbaglia;
Ma dentro tutte piombo, e gravi tanto . . . 3

The principle of least action inspires the following somewhat trivial con-
siderations. Let x → A(x) be the action of Eqs. (3.3.4) and (3.3.7) defined
on the motions in Mt1,t2(ξ1, ξ2) of a system of N point masses subject to a
conservative force F.

Suppose a priori known that the force law is such that the motion x that
develops under its influence from ξ1 to ξ2, within times t1 and t2, verifies some
properties like |x(t)| ≤ S or |ẍ(t)| ≤ P or |x(1)(t)| = 0, etc. Then it is clear
that the research of x in Mt1,t2(ξ1, ξ2) can be restricted to the subsetM, of
the motions in Mt1,t2(ξ1, ξ2) verifying the properties under consideration.

Very often it happens that a system of point masses is subject lo “con-
straints”, i.e., to force laws that allow only a “few” motions among those a
priori possible, at least for vast classes of initial data. Think of a point mass
constrained to remain on a surface: in this case, the surface acts on the point
with a force systematically such as to forbid the abandonment of the surface
itself by the point, whenever the initial data (η, ξ) have ξ on the surface and
η tangent to it.

Think, also, of a rigid system of N points. Now the i-th point will exert on
the j-th point a force f (i→j) systematically such that the two points remain
at a fixed distance from each other.

By taking into account the constraints, the allowable motions inMt1,t2(ξ1,
ξ2) will generally be parameterizable with ℓ coordinates, and often ℓ ≪ Nd;
consequently, it will be possible to imagine a description of the motions in
terms of ℓ functions of time. Therefore, the Lagrangian and the action will
also be expressible in terms of the same ℓ functions, and the action of a motion
x allowed by the constraints will take the form

A(x) =

∫ t2

t1

dt L̃(ȧ1(t), . . . , ȧℓ(t), a1(t), . . . , aℓ(t), t) (3.4.1)

if t→ (a1(t), . . . , aℓ(t)), t ∈ [t1, t2], is the description of the motion x in the ℓ
“essential coordinates”.

3 In basic English:
They had capes with low hoods
in front of the eyes, made in the fashion
that in Cluny is used for the monks.
Golden they are outside, so that they dazzle
but inside they are all leaden and heavy a lot . . .

(Dante, Inferno, Canto XXIII).
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To be less vague, assume that there are N Rd-valued functions in C∞(Rℓ):

α = (α1, . . . , αℓ)→ X(i)(α) = X(i)(α1, . . . , αℓ), (3.4.2)

i = 1, . . . , N , such that the set of the motions t→ x(t) = (x(1)(t), . . . ,x(N)(t))
t ∈ [t1, t2], which are “constrained” or “allowed” by the constraints is sim-
ply the set of the motions which is the image of the motions in Rℓ via the
transformation (3.4.2). Thus, given a motion t → a(t), t ∈ [t1, t2], in Rℓ one
describes, via Eq. (3.4.2), the constrained motion t→ x(t), t ∈ [t1, t2], where

x(i)(t) = X(i)(a(t)), i = 1, 2, . . . , N (3.4.3)

which we shorten as x(t) = X(a(t)).
In other words, let us admit that the conservative force law F for the

system of N point masses under consideration is such that the motions in
Mt1,t2(ξ1, ξ2) that can actually develop under its influence starting from a
given class of initial data are necessarily contained in the class of the motions
having the form of Eq. (3.4.3) with a ∈ Mt1,t2(α1,α2), where α1,α2 ∈ Rℓ
and X(α1) = ξ1,X(α2) = ξ2.

If x is a constrained motion in the sense just discussed, its action, Eq.
(3.3.4), with respect to the Lagrangian (3.3.7), where V is the potential energy
of F, can be written as in Eq. (3.4.1) if L ∈ C∞(R2ℓ+1) is the function

L̃(β1, . . . , βℓ, α1, . . . , αℓ, t) =
1

2

N∑

i=1

mi

( N∑

j=1

∂X(i)

∂αj
βj
)2 − V (X(α)), (3.4.4)

because ẋ(i)(t) can be computed, by differentiating Eq. (3.4.3), as

ẋ(i)(t) =

N∑

j=1

∂X(i)

∂αj
(α(t)) ȧj(t), j = 1, 2, . . . , N, (3.4.5)

whenever x is the constrained motion image of a : x = X(a).
Hence, if x ∈ Mt1,t2(ξ1, ξ2) is the motion that actually develops under

the influence of the force F and if x is the image via Eq. (3.4.3) of a, then
the action A with Lagrangian (3.3.7) is stationary in Mt1,t2(ξ1, ξ2) on x,

while the action Ã with Lagrangian given by Eq. (3.4.4) is stationary on a in
Mt1,t2(α1,α2). This property is an immediate consequence of the fact that
if A is stationary on a motion x in it is also stationary on x in any smaller
set M′ ⊂ Mt1,t2(ξ1, ξ2) provided x ∈ M′. In our case, through Eq. (3.4.3),
M′ would be the set of the motions which is the image of the motions in
Mt1,t2(α1,α2).

By Proposition 4, §3.3, the stationarity condition for A, i.e., for the action
onMt1,t2(α1,α2) with Lagrangian density (3.4.4), is
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d

dt

∂L̃
∂βi

(ȧ(t),a(t), t) =
∂L̃
∂αi

(3.4.6)

i = 1, 2, . . . , ℓ, ∀ t ∈ [t1, t2].
The importance of the above considerations is easily realized: Eq. (3.4.6)

is already the equation of motion after the elimination of the parameters
describing the system, necessary a priori but made “useless” or “redundant”
by the presence of the constraints which allow one to reduce the number
of the coordinates needed to describe the actually “possible” configurations,
from Nd down to ℓ via (3.4.2) and (3.4.3).

Therefore, the idea occurs that the mechanism for the elimination of the
redundant coordinates in conservative systems subject to simple constraints,
like Eqs. (3.4.2) and (3.4.3), might be particularly simple: it will be enough
to rewrite the Lagrangian density of the action only in terms of the essential
coordinates through Eq. (3.4.2) and, then, deduce Eq. (3.4.6).

However, the principle of conservation of difficulties makes it clear that
there must be some serious obstacle to the actual applications of such a shining
but simplistic vision.

The true constraints are, in fact, generated by forces that, as we shall see
shortly, generally are neither simple nor conservative (in the sense of Definition
2, p.142, §3.1) but depend on the velocities of the points as well as on their
positions.

In such situations, the above considerations become essentially useless
since they are not applicable to the simplest and most interesting motions
constrained in the sense that they are parameterizable as in Eqs. (3.4.2) and
(3.4.3), by ℓ coordinates.

To understand better what has just been said, let us consider the case
of a point constrained to stay on a curve Γ ⊂ R3 with intrinsic parametric
equations given by

s→ ξ(s), s ∈ R (3.4.7)

where s is the curvilinear abscissa on Γ (which will be supposed to be a simple
curve, i.e., without double points and open). Assume that the curve Γ exerts
a force on the point mass which keeps it on Γ for all motions starting from
initial data (η, ξ) with ξ = ξ(s0), η = dξ

ds (s0)ṡ0 (i.e., with ξ ∈ Γ and η tangent
to it), with (s0, ṡ0) ∈ R2.

If τ (s),n(s) denote, respectively, the tangent and the principal normal
versors to Γ at the point with curvilinear abscissa s and if r(s) denotes the
curvature radius at the same point, it is well known that

τ (s) =
dξ(s)

ds
,

n(s)

r(s)
=
dτ (s)

ds
(3.4.8)

Then if t → s(t), t ∈ R, is a motion on Γ described by the time variation of
the curvilinear abscissa, we find
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d

dt
ξ(s(t)) = ṡ(t) τ (s(t)) (3.4.9)

and

d2

dt2
ξ(s(t)) = s̈(t) τ (s(t)) +

ṡ(t)2

r(s(t))
n(s(t)). (3.4.10)

If the point is subject to a force which is the sum of the constraint reaction
R(ṡ, s) and of an external force f(s), then

m ẍ = f + R (3.4.11)

if m > 0 is the mass and x(t) = ξ(s(t)) denotes the motion in R3.
By Eq. (3.4.10), Eq. (3.4.11) becomes

ms̈ = f · τ + R · τ , m
ṡ2

r
= f · n + R · n (3.4.12)

and from the second equation, it follows that the normal component of the
constraint reaction is

R · n = m
ṡ2

r(s)
− f(s) · n(s) (3.4.13)

at the point of Γ with coordinate s when it is occupied by a mass m with
speed along Γ given by ṡ.

From Eq. (3.4.13), one sees that R(ṡ, s) is necessarily ṡ dependent if 0 <
r(s) < +∞, as will be supposed, and therefore the constraint reaction cannot
be conservative in the very restrictive sense of §3.1.

Nevertheless, the essence of the idea which arose in connection with Eq.
(3.4.6) will be saved: it will, however, be necessary to go through a long
analysis which, as is to be expected, involves a deeper physico-mathematical
discussion of the notion of constraint. Such a discussion will be aimed at
clarifying the definition of constraint, i.e., the physical phenomenon mathe-
matically modeled as a “constraint”.

In the next section a general mathematical definition of constraint will be
presented, stressing its main mathematical properties and delaying until the
later sections a deeper discussion showing how the empirical notion of a fric-
tionless constraint is naturally schematized by the introduced mathematical
structures.

3.4.1 Exercises

1. Let Γ be a circle in R3 with radius r. Find r(s),n(s), τ(s) [see Eq. (3.4.8)].

2. Let Γ be an ellipse with equations z = 0, x2/a2+y2/b2 = 1, a, b > 0. Find r(s),n(s), τ(s),
at the point (x, y, 0).

3. Show that the force law R(ẋ,x) = −mẋ2

r2
x, (ẋ,x) ∈ R2 ×R2 produces a constraint for

the motions of a point with mass m > 0 with initial data (η, ξ) with η · ξ = 0, |ξ| = r. The
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constraint is to the circle Γ = {ξ ∈ R2, |ξ| = r}. (Hint: Show that the circular uniform
motion verifies the equations of motions and use the uniqueness theorem.)

4. Same as Problem 3 in R3, replacing the circle Γ with the surface of a sphere.

5. Same as Problem 3, using Archimedes’ spiral (with equations ̺ = a θ, a > 0, in polar
coordinates), finding an appropriate force R producing a constraint to the spiral.

6. Find an appropriate force R producing a constraint to Γ , as defined in Problems 3-5, if
the point mass is also subject to a conservative force with potential energy V = κ

2
x2, κ > 0.

7. Show that no purely positional force law R can force every motion with initial data (η, ξ)

with η · ξ = 0, |ξ| = 1, to move on the unit circle in R2, regardless of the mass m of the

point. (Hint: Let (η0,ξ0) be an initial datum at t = 0 producing a motion which stays on

the circle. Consider the motion with initial datum (2η0,ξ0) and show that it must abandon

the unit circle, for t > 0 and small, by using the Lagrange-Taylor theorem or, alternatively,

by using Eq. (3.4.13).)

3.5 Ideal Constraints as Mathematical Entities

The following is a rather general mathematical definition of a constrained
motion for a system of N point masses.

6 Definition. Given s real-valued C∞(R2Nd+1)-functions ψ(1), . . . , ψ(s) we
shall say that a system of N points, with masses m1 . . . ,mN > 0, subject to
a force law F is constrained by the constraints ψ(1), . . . , ψ(s) if F is such that
the motions t → x(t) = (x(1)(t), . . . ,x(N)(t)), t ∈ R+, developing under its
influence identically verify the s relations, i = 1, . . . , s:

ψ(i)(ẋ(1)(t), . . . , ẋ(N)(t),x(1)(t), . . . ,x(N)(t), t) = 0 (3.5.1)

∀t ∈ R+, provided there is a time t (e.g., t = 0) when Eq. (3.5.1) holds.

Examples
(1) If V ∈ C∞(RNd) and E ∈ R, the function

ψ(i)(η(1)(t), . . . ,η(N)(t), ξ(1)(t), . . . , ξ(N)(t), t)

=
1

2

N∑

i=1

miη
(i)2 − V (ξ(1), . . . , ξ(N))− E

(3.5.2)

is a constraint for the motions of a system of N point masses with masses
mi, . . . ,m′′ > 0 subject to a force law with V as a potential energy.
(2) Given a system ofN points, with massesm1, . . . ,mN > 0 subject to a force
law F verifying the third principle of dynamics and with zero external forces,
let q,m ∈ R3. Define the six functions on R2Nd+1 (actually independent on
the last coordinate):
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ψ(η(1)(t), . . . ,η(N)(t), ξ(1)(t), . . . , ξ(N)(t), t) =

N∑

i=1

mi ηi − q,

ψ′(η(1)(t), . . . ,η(N)(t), ξ(1)(t), . . . , ξ(N)(t), t) =
N∑

i=1

mi ξ
(i) ∧ η(i) −m,

(3.5.3)
then the above six functions provide six constraints for the system.
(3) More generally, every conservation law may be interpreted as a constraint.
(4) The above examples may be pushed to the extremes: given (η0, ξ0) ∈ R2Nd

and calling St, the evolution flow associated with a time independent force
law F acting on a system of N point masses, the 2Nd functions:

ψ(η, ξ, t) = St(η, ξ)− (η0, ξ0) (3.5.4)

are constraints for the system.
(5) Consider a point with mass m > 0 in R3 subject to a force law given by

F(η, ξ) = −mη
2

r

ξ

r
(3.5.5)

where r > 0 is constant. Then the following two functions:

ψ1(η, ξ) = (ξ2 − r2)2 + (η · ξ)2, ψ2(η, ξ) = ξ23 + η2
3 (3.5.6)

are constraints for the system (see Problem 3, §3.4). are constraints for the
system.

Observation. The above examples of constraints may leave the reader a bit
perplexed, particularly Example 4. In some sense it shows that all the motions
can be considered as constrained motions.
It will be seen that the constraints become interesting only when they can
actually be “constructed”, so that they can be used to reduce the number
of degrees of freedom, or of parameters, necessary to describe the motions. A
constraint of the type in the Example 4 is of little use in practice since it can be
constructed only when all the motions of the system are perfectly understood
(i.e., when St is a “known transformation”). However, this is usually the aim
of the theory and it cannot be considered as a starting point.

Particularly interesting are the velocity-independent and time-independent
constraints.

7 Definition. In the context of Definition 6, assume that there exist s real-
valued functions in C∞(RNd), ϕ(1), . . . , ϕ(s), such that, ∀ i = 1, . . . , s,

ψ(i)(η(1), . . . ,η(N), ξ(1), . . . , ξ(N), t) =≡ ϕ(i)(ξ(1), . . . , ξ(N)) (3.5.7)
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for all (η, ξ, t) ∈ R2Nd+1. We shall say that the system is “subject to s
holonomous constraints ϕ(1), . . . , ϕ(s)”.4 We shall denote Mt1,t2(ξ1, ξ2 |ϕ(1),
. . . , ϕ(s)) the subset of the motions inMt1,t2(ξ1, ξ2) consisting of the motions
x ∈ Mt1,t2(ξ1, ξ2) such that

ϕ(i)(x(t)) ≡ 0 (3.5.8)

This set will be called the set of the motions “subject to” or “compatible with”
the constraints ϕ(1), . . . , ϕ(s).
Finally, if ξ,η ∈ RNd, we shall say that ξ is a configuration “compatible
with the constraints” if ϕ(i)(ξ) = 0, j = 1, . . . , s, and that η is a velocity
“compatible with the constraints in ξ” if there is a motion t → x(t), defined
for t near zero, such that x(0) = ξ, ẋ(0) = η and x(t) is compatible with the
constraints for all t.

Observations.
(1) By the assumed time invariance of the constraints [see Eq. (3.5.7)], the
choice of time t = 0 in the last part of Definition 7 has no special meaning.
2) In Problem 2 at the end of this section, we mention that when the vectors
∂ϕ(i)(ξ)
∂ξ , j = 1, . . . , s, are s linearly independent vectors inRNd, the constraint

compatibility condition for a velocity η can be analytically expressed as

∂ϕ(i)(ξ)

∂ξ
· η = 0, j = 1, . . . , s (3.5.9)

which has a clear geometrical meaning.
(3) Given ξ ∈ RNd compatible with the constraints, the set of the velocity
vectors η compatible with the constraints in ξ is always nonempty since it
contains η = 0.

Our first task will now be to set up a precise definition of a “perfect
holonomous constraint”. A possible definition is inspired by Eq. (3.4.12): in
that case, the constraint to the line Γ is naturally called “ideal” if R · τ = 0,
i.e., if the “only effect” of the constraint is to keep the motion on Γ ; in fact,
the equation of motion simply becomes

m s̈(t) = f(s) · τ (s) (3.5.10)

which can be read “the acceleration along Γ is proportional to the projec-
tion on Γ of the active force”, i.e., of the part of the force distinct from the
constraint reaction.

The relation R · τ = 0 means that the reaction acts orthogonally to Γ .
However, it is not immediately clear what should be meant by the reaction
being orthogonal to the constraint in the case of the general constraints con-
sidered in Definition 7.

4 Holonomous simply means “depending on the site”.
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After some thought, the following notion appears natural: the constraint
reaction or, more generally, a force law R(η, ξ) acting on a system of N points
masses in Rd occupying the configuration ξ with velocity η (both constraint
compatible), is “orthogonal to the constraint” if, calling η′ the velocity of any
other constraint compatible motion at the time when it occupies the configu-
ration ξ, it is

R(η, ξ) · η′ = 0, (3.5.11)

which, more explicitly, is

N∑

j=1

η′(j) ·R(j)(η, ξ) = 0 (3.5.12)

One could argue and debate about this extension. However, in this section we
shall first investigate its mathematical meaning, delaying the discussion of its
deep and interesting physical interpretation until later on. Let us therefore
establish the following definition.

8 Definition. Let F be a time-independent force law for a system of N points
in Rd. Assume that F produces s holonomous constraints ϕ(1), . . . , ϕ(s).
Given a positional force law F(a) ∈ C∞(RNd) for the system, we define the
“constraints reaction” with respect to the “active force” F(a) as the quantity
R = F − F(a). Furthermore, we shall say that the system of constraints is
“ideal” with respect to the pair (R,F(a)) if for all ξ ∈ RNd compatible with
the constraints, i.e., such that ϕ(j)(ξ) ≡ 0, ∀ j (see Definition 7), it is

R(η1, ξ) · η2 = 0 (3.5.13)

for all choices of constraint compatible velocity vectors η1,η2 (in the sense
of Definition 7). We shall refer to this situation by using the shortened locu-
tion “the system of point masses is subject to the active force F(a) and to s
holonomous ideal constraints ϕ(1), . . . , ϕ(s).

Observations.
(1) Therefore, the last sentence means that the system is subject to a time-
independent force law F producing the constraints ϕ(1), . . . , ϕ(s). which are
ideal with respect to the active force F(a) and to the “reaction” R = F−F(a).
Strictly speaking, the last sentence of Definition 8 should be subject to a
consistency check: in terms of the information contained in it, it should be
possible to reconstruct the equations of motion at least as far as the con-
strained motions are concerned; i.e., given F(a) and the constraints it should
be possible to reconstruct F(η, ξ) for all constraint compatible (η, ξ). This is
actually possible and, basically, it is the content of Proposition 8 (below) and
of the first observation to it (see, also, Problem 2 at the end of this section).
(2) It is important to stress that the decomposition F(a) + R of the force as
a sum of an “active force” and of an “ideal constraint reaction” is certainly
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not unique, if it exists at all. For instance, if F is a conservative force field for
our system whose potential energy Ṽ ∈ C∞(RNd) is constant on the region
of RNd, where

ϕ(1)(ξ) = . . . = ϕ(s)(ξ) = 0, (3.5.14)

then the decomposition

F = (F(a) + F̃) + (R− F̃) (3.5.15)

can be shown to be another decomposition of F into an “active” part F(a) + F̃
and into a “reaction” R′ = R− F̃ verifying Eq. (3.5.13).
In fact, if t→ x(t), t ∈ R, is a constraints compatible motion passing through

ξ at t = 0 with speed η2, it will be Ṽ (x(t)) = constant; hence,

0 = −dṼ (x(t))

dt

∣∣
t=0

= −∂Ṽ (ξ)

∂ξ
· ẋ(0) =

∂Ṽ (ξ)

∂ξ
· η̇2 = F̃ (ξ) · η2. (3.5.16)

(3) The ambiguity seen in observation 2 has a physical interpretation: it is
generally ambiguous to talk about the constraints reactions before having
specified which are the other forces “not due to the constraints”. Think of a
point constrained to glide on a horizontal plane: we can always look at it as
if it were subject to a force orthogonal to the plane and of arbitrary intensity
G, besides the vertical downward gravity force mg. The point will not change
its motion, at least in absence of friction, but the reaction of the table will be
mg upwards in the first case and mg + G upwards in the second.
(4) Hence, on the basis of the above definition of ideality, the ideality of a
system of constraints depends on the choice of F(a): only once both F and
F(a) are given it is possible to define R and check Eq. (3.5.13). Therefore, the
ideality of a constraint is not a property that can be described only in terms
of the total force F producing it.
Translating into a mathematical model concrete problems, it often happens
that one is given the constraints equations ϕ(1), . . . , ϕ(s). and, separately, the
active forces F(a) and the “reaction of the constraints” R. In fact, in applica-
tions it is often possible to distinguish operationally between the forces due to
the constraints (“constraint reactions”) and those due to other causes (“active
forces”). In such cases, R is a priori given, or at least some of its properties
are a priori given.
(5) Equation (3.5.13) is often called the “symbolic equation of dynamics”
or “D’Alembert’s principle” or “virtual works principle”. The last name is
usually given to Eq. (3.5.13) in its applications to statics where it is considered
with η1 = 0 (see, also, the next comment and Observation 2, p.164, and the
concluding remarks, p.241).
(6) Equation (3.5.13) is also read “the virtual work of an ideal constraint
reaction always vanishes”. This is perhaps the most suggestive way of reading
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this equation since it stresses the fact that the velocity vector η2 is not the
same as that, η1 provoking the reaction in ξ. It is, in fact, the velocity of
another possible motion through ξ (“virtual motion”). The word “work” is
naturally a reference to the fact that R(η1, ξ) · η2 is the work per unit time
that the constraint reaction to the motion x passing at a given time through ξ
with speed η1 performs on another motion passing, at the same time, through
ξ with speed η2.

In the upcoming sections, we will analyze the physical meaning of Defini-
tion 8, i.e., we shall discuss the physical circumstances in which it becomes
a relevant definition. Before that analysis, let us examine some remarkable
consequences of this definition.

The first consequence is the following proposition: the “theorem of energy
conservation for ideally constrained systems”.

7 Proposition. Let t → x(t), t ∈ I, be a motion of a system of N point
masses in Rd with masses m1, . . . ,mN > 0 subject to a system of s ideal
holonomous constraints ϕ(1), . . . , ϕ(s) and to a conservative active force F(a)

with potential energy V (a) ∈ C∞(RNd). Assume that x respects the con-
straints. Then there is a constant E such that

T (t) + V (a)(t) = E, t ∈ I, (3.5.17)

where V (a)(t) = V (a)(x(t)) and T (t) is the kinetic energy of the motion x at
time t.

Observation. The main point is that the above proposition does not assume
that the reaction of the constraint is conservative in the sense of §3.1, but
“only” that it is ideal, i.e., that it verifies Eq. (3.5.13). It can be velocity
dependent, for instance.

Proof. It is an immediate consequence of the theorem of alive forces, propo-
sition 2, §3.2, p.145, that the variation of kinetic energy between two times
t1, and t2 is equal to the sum of the work performed on the motion x by the
force F(a), i.e., V (a)(t1)− V (a)(t2), and by the reaction R, given by

N∑

j=1

∫ t2

t1

R(j)(ẋ(t),x(t)) dt (3.5.18)

However, by assumption, the motion x respects the constraints and, also, Eq.
(3.5.13) holds. Using Eq. (3.5.13) with ξ = x(t),η1 = η2 = ẋ(t), we see that
the work in Eq. (3.5.18) vanishes; hence, T (t2)− T (t1) = V (a)(t1)− V (a)(t2),
implying Eq. (3.5.17).

mbe

Far more interesting is the following proposition: the “least-action principle
for ideally constrained systems”.
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8 Proposition. Consider N points in Rd, with masses m1, . . . ,mN > 0,
subject to s holonomous ideal constraints ϕ(1), . . . , ϕ(s) and to the active force
F(a), conservative, with potential energy V (a) ∈ C∞(RNd). Denote by R the
constraint reaction. The action with Lagrangian

L(η, ξ, t) =

N∑

j=1

mj

2
η(j)2 − V (a)(ξ) (3.5.19)

is stationary in Mt1,t2(ξ1, ξ2 |ϕ(1), . . . , ϕ(s)) on the motions which are gener-
ated by the force F(a) + R = F.
Furthermore, let t → x(t), t ∈ R+, be a motion of the system develop-
ing under the action of the force F and respecting the constraints. Given
t1 ∈ R+, there exists t > t1 such that if t2 ∈ [t1, t], the action with
Lagrangian (3.5.19) is locally minimal in Mt1,t2(x(t1),x(t2) |ϕ(1), . . . , ϕ(s))
on the motion x observed for t ∈ [t1, t2] and thought of as an element of
Mt1,t2(x(t1),x(t2) |ϕ(1), . . . , ϕ(s)).

Observations. (1) The importance of the above proposition lies in the fact
that, if wisely used, it allows one to “eliminate” the degrees of freedom which
are redundant because of the constraints. Suppose that one is able to find N
C∞ functions on Rℓ taking values in Rd:

α = (α1, . . . , αℓ)→ X(i)(α) = X(i)(α1, . . . , αℓ), (3.5.20)

i = 1, . . . , N , such that, ∀α ∈ Rℓ:

ϕ(j)(X(α)) = 0, j = 1, . . . , s (3.5.21)

i.e., such that the image of Rℓ via the transformation (3.5.20) is a subset of
RNd which automatically “verifies the constraints”.5

Also, suppose one knows that the motion x̂ ∈ Mt1,t2(ξ1, ξ2 |ϕ(1), . . . , ϕ(s))
that we are studying and which develops under the action of the force F, is
the image in RNd of a motion a ∈Mt1,t2(â(t1), â(t2)) in Rℓ via the transfor-
mation (3.5.20).
The above assumptions mean that we have a good understanding of the struc-
ture of the constraint so that we can find an explicit parametric representation
of a class of configurations satisfying it.
Then the action A(x) with Lagrangian (3.5.19) can be computed on the
motions x ∈ Mt1,t2(ξ1, ξ2 |ϕ(1), . . . , ϕ(s)) that are images via Eq.(3.5.21)

of motions a ∈ Mt1,t2(â(t1), â(t2)) as Ã(a), where Ã is the action on
Mt1,t2(â(t1), â(t2)) with (t-independent) Lagrangian

5 For instance, in the case of the point constrained on a line (§3.4), one can take ℓ = 1
and α → x(α) = ξ(α) , α ∈ R, and the parameter α has the meaning of a curvilinear
abscissa on the curve.
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L̃(β,α) =

N∑

j=1

mj

2

( ℓ∑

k=1

∂X(j)(α)

∂αk
βk
)2 − V (a)(X(α)) (3.5.22)

[see, also, §3.4, Eq. (3.4.5), where this is derived]. Since by Proposition 8 A

is stationary in x̂ ∈Mt1,t2(ξ1, ξ2 |ϕ(1), . . . , ϕ(s)), then Ã is stationary in â on
the entire set Mt1,t2(â(t1), â(t2)) and, therefore, by Proposition 4, §3.3, this
means that

d

dt

( ∂L̃
∂βi

( ˙̃a(t), ã(t))
)

=
( ∂L̃
∂αi

( ˙̃a(t), ã(t))
)

(3.5.23)

for i = 1, 2, . . . .ℓ and t ∈ [t1, t2],
Equation (3.5.23) provide ℓ equations for the ℓ unknown functions t →
αi(t), i = 1, 2, ..., ℓ, t ∈ [t1, t2]. These are the equations of motion for the
essential coordinates once the degrees of freedom which have become inessen-
tial because of the constraints have been eliminated.
It is of fundamental importance to realize the difference between the consider-
ations of this section and those, apparently alike, of §3.4, pp.153-154. Those,
in fact, had been developed assuming that the force F was conservative in
the sense of §3.1. In the present case, as the example of §3.4 p.156 shows, the
force will generally be velocity dependent. After a few exercises the reader will
understand how great a simplification Eq. (3.5.23) implies in the deduction of
the equations of motion, if compared to the alternative procedure of writing
the equations of motions in the ordinary Cartesian coordinates followed by
the elimination of the constraint reactions [remarkably absent in Eq. (3.5.23)]
and of the redundant coordinates. In many instances, for example think of a
rigid body, N can be large but ℓ very small.
(2) It is convenient to say a few words to explain why the name “principle”
is granted to the Proposition 8 as well as to several other propositions or
definitions already met (D’Alembert’s principle, virtual work principle, etc.).
Such names have interesting historical origins: the reader should not believe
that the discussion of the laws of mechanics and the treatment of all the me-
chanical problems by the application of the equation f = ma, together with
the two other laws of dynamics, to the point masses into which a system can
be ideally decomposed has always been obvious and natural since the work of
Newton.
As already remarked, Newton himself did not arrive in a very clear way to such
a conclusion. For instance, in his study of rigid motions he had recourse to
arguments quite different from modern methods based on the cardinal equa-
tions (i.e., on Newton’s laws).
Both before and after Newton, philosophers were accustomed to studying me-
chanical problems on the basis of special assumptions, “principles”, which
were deduced by them through more or less general considerations often a bit
obscure.
Newton’s principles can be thought of as belonging to the above class of princi-
ples, and, initially, they were used particularly in the theory of heavenly bodies
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motions. Together with the three principles first formulated by Newton, there
already existed, more or less clearly formulated at least in particular cases,
the energy conservation principle for simple systems (Huygens), the principle
of the linear momentum conservation (going back at least to Descartes), the
virtual works principle (which was used in the solution of problems in stat-
ics by Del Monte, Galilei, Stevin, etc.), the inertia principle (Galilei), and to
these principles many others can be added: they were invented, even in years
following Newton’s time, to treat complex mechanical problems.
With Euler’s work, the synthesis of all the different principles began through
the realization that they could all be unified and deduced from Newton’s and,
what is often not sufficiently clearly stated, equivalent to Newton’s if suit-
ably interpreted (probably beyond the intentions and meanings the inventors
attributed to them) (see, also, the concluding remarks to Chapter 3, p.241).

Let us go back to the simple proof of Proposition 8.

Proof. Let x ∈ Mt1,t2(ξ1, ξ2 |ϕ(1), . . . , ϕ(s)) ≡ M, be a motion developing
under the influence of F = F(a) + R. The action of x with respect to the
Lagrangian (3.5.19) is

A(x) =

∫ t2

t1

{ N∑

j=1

mj

2
(ẋ(j)(t))2 − V (a)(x(t))

}
dt. (3.5.24)

Let y ∈ Vx(M); let us compute the derivative with respect to ε of the

function A(yε) in ε = 0. If we set (see Definition 5, §3.3) z(t) = ∂yε(t,0)
∂ε

= (z(1)(t), . . . , z(N)(t)), t ∈ [t1, t2], we have z(t1) = z(t2) = 0 and

d

dε
A(yε)

∣∣
ε=0

=

∫ t2

t1

N∑

j=1

{
mjẋ

(j)(t)·ż(j)(t)−∂V
(a)

∂ξ(j)
(x(t))·z(j)(t)

}
dt. (3.5.25)

By integrating the terms containing ż(j)(t) by parts and using z(t1) = z(t2) =
0, one deduces, as usual,

d

dε
A(yε)

∣∣
ε=0

= −
∫ t2

t1

N∑

j=1

{
mjẍ

(j)(t) +
∂V (a)

∂ξ(j)
(x(t))

}
· z(j)(t) dt. (3.5.26)

The equations of motion for x are, by assumption,

mjẍ
(j)(t) = −∂V

(a)

∂ξ(j)
(x(t)) + R(j)(ẋ(t),x(t)); (3.5.27)

hence, we cannot conclude that the right-hand side of Eq. (3.5.26) vanishes,
but only that it is equal to
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d

dε
A(yε)

∣∣
ε=0

= −
∫ t2

t1

N∑

j=1

R(j)(ẋ(t),x(t)) · z(j)(t) dt. (3.5.28)

However, Eq. (3.5.13) will allow us to infer that, ∀ τ ∈ (t1, t2):

N∑

j=1

R(j)(ẋ(τ),x(τ)) · z(j)(τ) ≡ 0 (3.5.29)

if we show that (x(t), z(t)) are a position-velocity pair compatible with the
constraints; i.e., if we show the existence of a motion defined for t near τ and
constraint compatible, which at t = τ is in x(t) with velocity z(t).

Recalling the definition of z, one sees that such a motion indeed exists. To
build it, one simply defines t→ y(τ, t− τ) for t− τ ∈ (−1, 1), i.e., for t close
to τ . This function of t has, for t = τ , velocity z(τ) and, furthermore, verifies
the constraints and has a value x(τ), for t = τ , since y ∈ Vx(M).

We shall not explicitly prove the local minimum property: its (long) proof
is entirely analogous to the proof of Proposition 37, §2.24, and should not
present particular difficulties to the reader. mbe

3.5.1 Problems

1. Give an example of a holonomous constraint for a system of N point masses in R3 for
which the only constraint compatible velocity η is η = 0. (Hint: Find a constraint ϕ such
that ϕ(ξ) = 0 determines an isolated point.)

2.* Let ϕ(1), . . . , ϕ(s) be s holonomous constraints for a system of N point masses in

R3. Given a constraint compatible ξ ∈ R3N , assume that the s vectors
∂ϕ(j)(ξ)

∂ξ
∈ R3N ,

j = 1, . . . , s, are linearly independent. Show that η is a constraint compatible velocity if and
only if Eq. (3.5.9) holds. (Hint: The necessity is obvious. Conversely, consider the conditions

on a constraint compatible motion of the form t→ ξ + tη+
Ps
j=1 δj(t)

∂ϕ(j)

∂ξ
given by

ϕ(k)(ξ) + tη+
sX

j=1

δj(t)
∂ϕ(j)

∂ξ
= 0, k = 1, . . . , s

which are regarded as equations for δj parameterized by t and solved, for t = 0 , by δj = 0.
We now regard the left-hand side as a function of t, δ1, . . . , δs, and call it Φ(k)(t, δ1, . . . , δs)
and we try to define δj(t), j = 1, . . . , s, for t near zero, applying the implicit functions
theorem (Appendix G). The Jacobian matrix for t = 0, δ1 = . . . = δs = 0, is

Mkh =
∂Φ(k)

∂δh
(0) =

3NX

p=1

∂ϕ(k)

∂ξp
(ξ)

∂ϕ(h)

∂ξp
(ξ), h.k = 1, . . . , s

which has rank s, by the supposed linear independence of the vectors
∂ϕ(k)(ξ)

∂ξ
. In fact, the

linear independence means that, ∀ c ∈ Rs Ps
k=1 ck

∂ϕ(k)(ξ)
∂ξ

6= 0 unless c = 0; therefore, if

c 6= 0:

sX

h,k=1

chckMhk =
3NX

p=1

sX

h,k=1

chck
∂ϕ(k)

∂ξp
(ξ)

∂ϕ(h)

∂ξp
(ξ) =

3NX

p=1

„ sX

h=1

ch
∂ϕ(h)

∂ξp
(ξ)

«2

> 0
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and, since Mhk = Mkh, this means that the matrix M is positive definite; hence detM > 0
(see Appendix F). Thus, by the implicit functions theorem, there exist s C∞ functions t→
δj(t), j = 1, . . . , s, defined near t = 0 such that the motion t→ ξ + tη+

Ps
j=1 δj(t)

∂ϕ(j)

∂ξ

verifies the constraints and, furthermore, δj(0) = 0 and, by the implicit functions theorem:

δk(t) = −t
sX

s=1

(M−1)kh
∂ϕ(h)(ξ)

∂ξ
· η+ t2 eδk(t)

for some C∞ functions eδk(t) defined near t = 0. By the assumption on η, the t-linear term
vanishes: hence, δ̇k(0) = 0, i.e., ẋ(0) = η ... .).

3.* Given a system of N points in R3, with masses m1, . . . , mN > 0, subject to ideal
holonomous constraints ϕ(1), . . . , ϕ(s) and to active force F(a), show the possibility of an
explicit expression for the reaction R acting on a constraint compatible motion, at a time
t when x(t) = ξ, ẋ(t) = η. (Hint: Let m1 = . . . = mN = 1 for simplicity and suppose also

that the s vectors in R3N , ∂ϕ(j)(ξ)
∂ξ

, j = 1, . . . , s, are independent, again for simplicity.

From ϕ(j)(x(t)) ≡ 0, j = 1, . . . , s, deduce by two-fold differentiation

∂ϕ(j)

∂ξ
(x(t)) · ẍ(t) +

NX

p,q=1

∂2ϕ(j)

∂ξp∂ξq
(x(t))ẋp(t)ẋq(t) ≡ 0

and then combine this equation with the equation of motion ẍ = F(a) + R to obtain

∂ϕ(j)

∂ξ
(ξ) ·R(η, ξ) = −


∂ϕ(j)

∂ξ
(ξ) · F(a)(ξ) +

NX

p,q=1

∂2ϕ(j)

∂ξp∂ξq
(ξ)ηpηq

ff
,

j = 1, . . . , s. But, by the ideality assumption, R(η,ξ) has to be orthogonal to every η′

such that ∂ϕ(j)(ξ)
∂ξ

· η′ = 0 [see Problem 2 and Eq. (3.5.13)]. Hence, R has to be a linear

combination of the s vectors
∂ϕ(j)(ξ)

∂ξ
, j = 1, . . . , s, and the coefficients can be determined

by the scalar products ∂ϕ(j)(ξ)
∂ξ

· R, j = 1, . . . , s, since the s vectors ∂ϕ(j)(ξ)
∂ξ

are linearly

independent. Deal also with the general case: different masses and linearly dependent vectors
∂ϕ(j)(ξ)

∂ξ
.)

4. A “constraint” of the form ϕ(ξ) ≥ 0 for a system of N point masses in Rd is called
“unilateral”. Show that such constraints are not more general than those considered in
Definition 7. (Hint: Let α → χ(α) be a C∞ function, strictly positive if α < 0 and zero if
α ≥ 0; then consider the constraint ψ(ξ) = χ(ϕ(ξ)) = 0, etc.)

5. Show that any velocity is compatible with a unilateral constraint ϕ ≥ 0 in the positions
ξ, where ϕ(ξ) > 0.

6. Which are the velocities η compatible with a unilateral constraint ϕ(ξ) ≥ 0 in a position

ξ where ϕ(ξ) = 0? Suppose ∂ϕ(ξ)
∂ξ

6= 0. (Answer: Those such that η · ∂ϕ(ξ)
∂ξ

= 0, i.e., the

same as those for the constraint ϕ(ξ) = 0!)

7. Extend the notion of velocity η compatible, in a configuration ξ, with some holonomous
(unilateral or not) constraints ϕ(1), . . . , ϕ(s) by saying that η is constraint compatible at ξ
if there is a constraint compatible motion t→ x(t), defined for t > 0 small enough (rather
than for |t| small enough) such that ẋ(0) = η,x(0) = ξ. Show that there are cases where η
can be constraint compatible in this new sense without being so in the old one of Definition
7. We call the velocities which are constraint compatible in the new sense “(+)-compatible
velocities”. (Hint: The two notions will differ when ξ is such that ϕ(ξ) = 0 in the case of a
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unilateral constraint ϕ ≥ 0. Give a physical interpretation of such extra velocities in terms
of “collision velocities” with the constraint.)

8.* Show that the smoothness requirements on F and F(a) used for the Definition 8 of

an ideal constraint cannot generally hold if the system is subject to a unilateral constraint

ϕ ≥ 0 (thought of as a constraint via the construction of Problem 4); i.e., a unilateral

constraint cannot, in general, be ideal in the sense of Definition 8. (Hint: There are, in

general, motions starting in the region ϕ > 0 which in a finite time reach a point ξ0,

where ϕ(ξ0) = 0, “collision with the constraint”, with a speed which is not (+)-constraint

compatible in the sense of Problem 7. At this point the speed must have a discontinuity

against the assumption that F ∈ C∞(R3N ) and the regularity theorem for the differential

equations.)

3.6 Real and Ideal Constraints

The discussion of §3.5 is largely unsatisfactory.
The notion of constraints used there has been given on a purely mathe-

matical basis and it is quite unclear which is the physical phenomenon math-
ematically modeled by the constraints, ideal or not, of the preceding sections.

In this and in the following sections, we will radically modify the point
of view to show that an ideal constraint for a system of N point masses can
also be thought of as a limiting case of suitable very strong conservative force
fields which oblige the trajectories to lie on certain surfaces in RNd or in their
vicinity.

From a physical viewpoint, one always imagines a constraint as a complex
of forces acting on a system of point masses and due to their tendency to
deform some obstacles. Such a tendency provokes imperceptibly small (at
least as far as our observations are concerned6) deformations of the obstacles.
Think of a point constrained on a rail or on a surface, or think of a rigid
system.

Note, also, that in the above concrete cases, the elegant theory of §3.5 is
totally useless: the constraints now constrain in an approximate sense only
and, therefore, they are not of the type considered there.

The question which is more interesting for us in this context is whether
or not the solutions of the equations obtained by minimizing the Lagrangian
(3.5.19) on the motions constrained by s holonomous constraints ϕ(1), . . . , ϕ(s)

(see Definition 8, §3.5) provide good approximations to the real motion under
the influence of the real constraints, which necessarily constrain only in an
approximate sense.

This is a really interesting problem in physics and applications, in contrast
with the question underlying §3.5 which, abstractly, asked for a definition of
a perfect constraint that would give rise to a sufficient condition in order
that the equations of motion could be deduced from the least-action principle

6 When they can be appreciated, one no longer speaks of a constraint.
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associated with the Lagrangian (3.5.19), for the (ϕ(1), . . . , ϕ(n))-constrained
motions (see §3.5, Proposition 8, p.163).

To understand better the spirit and the meaning of the various definitions
that will follow, it is convenient to analyze a simple but significant example.

Consider a point with mass m > 0 in R2 and suppose that it is subject to

an elastic force with potential energy V (a) = mω2

2 (x2 + y2) and to a restoring
conservative force toward the y = 0 axis with potential energy

λW (x, y) =
λm

2
y2 (3.6.1)

Consider the motions under the action of the force with potential energy

V (a) + λW =
mω2

2
(x2 + y2) +

λm

2
y2 (3.6.2)

It is intuitively clear that if A is very large, such a force simulates a constraint
to the line y = 0 in a sense which has still to be precisely understood. For this
purpose study the motions which start on the y = 0 axis and develop under
the influence of the force with potential energy of Eq. (3.6.2). The equations
of motion are

mẍ = −ω2mx, mÿ = −ω2my −mλy,
x(0) = x0. ẋ(0) = v0, y(0) = 0, ẏ0 = w0,

(3.6.3)

and, to be definite, suppose x0 > 0.
Because of their extreme simplicity, Eqs. (3.6.3) can be elementarily solved:

if t→ (x(t), y(t)), t ∈ R, denotes the solution of Eqs. (3.6.3):

xλ(t) =

√
x2

0 +
v2
0

ω2
cos(ωt+ ϕ0), yλ(t) =

w0√
λ+ ω2

sin(ωt+ ϕ0), (3.6.4)

with ϕ0 = arctg− v0
ωx0

. One then sees that the limit as λ→∞ of the motion
of Eqs. (3.6.4) is the motion t→ (x(t), y(t)) with

x(t) =
(
x2

0 +
v2
0

ω2

) 1
2 cos(ωt+ ϕ0), y(t) ≡ 0 (3.6.5)

for all w0. This is exactly the solution of the equations obtained by imposing
stationarity on the motions constrained by the ideal holonomous constraint
ξ2 = 0 for the action with Lagrangian:

L(η1, η2, ξ1, ξ2) =
m

2
(η2

1 + η2
2)− mω2

2
(ξ21 + ξ22) (3.6.6)

On the basis of Observation (1) to Proposition 8 of §3.5, these equations
coincide with those for the motions t → x(t), t ∈ R, in R1 which make
stationary the “constrained Lagrangian”:
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L̃ =
m

2
η2
1 −

mω2

2
ξ21 (3.6.7)

which, in our case, is what Eq. (3.6.6) becomes by imposing the constraint
ξ2 = 0.

It is interesting to note that the more “rigid” the approximate constraint
realized by Eq. (3.6.2), the smaller the deviations from a motion respecting
the constraints (|yλ| ≤ O( 1√

λ
)) for λ large [see Eqs. (3.6.4)]. At the same

time, however, the coordinate yλ(t), which simply represents the violation of
the constraint, oscillates more and more rapidly: in fact, its vibrations have a
frequency:

νλ =

√
λ+ ω2

2π
(3.6.8)

These very small but very-high-frequency vibrations (“fatigue vibrations” of
the constraint) provide a good intuitive representation of the effect of an ap-
proximate ideal constraint on the motion of a system. In general, it is possible
to think that a system of N point masses subject to an approximate ideal
constraint moves as if it were on the surface Σ ⊂ RNd ⊂ RNd defined by the
constraint, with some very small elongations orthogonal to Σ: described by
oscillatory motions with very small amplitude and very large frequency.

On the basis of the above heuristic discussion, the following definition
should appear quite natural.

9 Definition. Given a system of N point masses, with masses m1, . . . ,mN

in Rd, let Σ ⊂ RNd be a closed set and let W be a real C∞(RNd) function
vanishing on Σ and having there a strict minimum; i.e., Σ is the set of the
points ξ ∈ RNd where W (ξ) = 0 and for all ξ 6∈ Σ it is W (ξ) > 0. We shall
say that the conservative force law with potential energy

ξ → λW (ξ) ≥ 0. λ > 0 (3.6.9)

is a “model of conservative approximate constraint to the region Σ with struc-
ture W and rigidity λ”.
We shall denote such a force law by (Σ,W, λ). If Σ is a regular surface with di-
mension ℓ < Nd, we shall say that the constraint model (Σ,W, λ) is a bilateral
approximate conservative constraint “with dimension ℓ” or “with codimension
Nd− ℓ”, (see also Definition 10 below).

Observation. In general Σ may contain interior points: in this case, one says
that Eq. (3.6.9) is a model for a “unilateral” approximate constraint.

It is convenient to recall the definition of a regular surface in Rd.
10 Definition. Let β → Ξ(β) be a C∞ function defined on a convex open
Ω ⊂ Rd, taking its values in a neighborhood U ⊂ Rd. Suppose that Ξ is
invertible, i.e., one to one, as a map of Ω onto U and, furthermore, assume
that ξ is nonsingular, i.e., that its Jacobian matrix defined by
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J(β) =
∂Ξi
∂βj

(β), j = 1, . . . , d (3.6.10)

has a non vanishing determinant, ∀β ∈ Ω.
We shall say that Ξ “establishes a regular system of coordinates on U” and,
if ξ = Ξ(β), we shall say that β ∈ Ω is the coordinate of ξ in the coordinate
system on U associated with Ξ. The just-described coordinate system will be
denoted (U,Ξ) and Ω will be called the “basis” of the coordinate system.
A closed set Σ ⊂ Rd will be called a “regular ℓ-dimensional surface” if for
all ξ0 ∈ Σ it is possible to find a neighborhood U0 and a regular system of
coordinates (U0,Ξ) with basis Ω0 such that the points of Σ ∩U0 are all those
with coordinates β = (β1, . . . , βℓ) such that

β1 = β2 = . . . , βℓ = 0 (3.6.11)

We say that (U0,Ξ) is a local system of coordinates “adapted to Σ”.
A regular s-dimensional surface is also called a regular surface of codimension
d− s.

Going back to the definition of approximate conservative constraint at-
tention will be confined, from now on, to approximate bilateral conservative
constraints with dimension ℓ, or, as it is customary to say, with “ℓ degrees of
freedom”, 0 < ℓ < Nd.

Consider a system ofN points in Rd, with massesm1, . . . ,mN > 0, subject
to the action of a conservative force with potential energy V (a) ∈ C∞(RNd),
bounded from below, and to a model of approximate conservative constraint
(Σ,W, λ), bilateral and ℓ-dimensional.

Suppose that Σ is defined by equations of the type

ϕ(1)(ξ) = . . . = ϕ(s′)(ξ) = 0 (3.6.12)

with ϕ(i) ∈ C∞(RNd) (the number s′ need not be (Nd − ℓ), although this
will often be the case). It is natural to study the motions t → x(t), t ∈ R+,
developing under the action of the conservative force with potential energy

ξ → V (a)(ξ) + λW (ξ), (3.6.13)

following an initial datum xλ(0) = ξ0, ẋλ(0) = η0 with ξ0 compatible with
the constraints

ξ0 ∈ Σ. (3.6.14)

The question is whether there exists a limit

x(t) = lim
λ→+∞

xλ(t), t ∈ R+. (3.6.15)

Furthermore, one asks if t → x(t), t ∈ R+, coincides (when existing) with
a motion developing under the action of the ideal constraints of Eq. (3.6.12)
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and of the active force with potential V (a), in conformity with the Definition
8, p.160, and Proposition 8, p.163.

It is easy to realize that there cannot be a positive answer if the problem
is posed in the above generality.

Just reconsider the point mass in R2, with mass m > 0, constrained to
the line ξ2 = 0 with the new constraint model (Σ,W, λ) with Σ = {ξ1}-axis
and, if ξ1 ≡ x, ξ2 ≡ y,

W (x, y) =
m

2
y2 (1 + x2) (3.6.16)

subject, also, to the same active force with potential energy V (a) = mω2

2 (x2 +
y2). The equations of motion, similar to Eqs. (3.6.3), now become

mẍ = −mω2x− λmy2x, m ÿ = −λmy (1 + x2)−mω2 y, (3.6.17)

with x(0) = x0, ẋ(0) = v0, y(0) = 0, ẏ(0) = w0. These equations are more
complex than Eqs. (3.6.3), and will be discusses only in a heuristic, non rig-
orous way.

Let t → (x(t), y(t)), t ∈ R+, be the solution of Eqs. (3.6.17). Energy
conservation implies that if

E =
m

2
(v2

0 + w2
0) +

mω2

2
x2

0, (3.6.18)

one has, ∀ t > 0,

E = m
ẋλ(t)

2 + ẏλ(t)
2

2
+mω2xλ(t)

2 + yλ(t)
2

2
+ λm

yλ(t)
2(1 + xλ(t)

2)

2
(3.6.19)

Then Eq. (3.6.19) implies

|ẋλ(t)|, |ẏλ(t)| ≤
(2E
m

) 1
2 , (3.6.20)

|xλ(t)| ≤
( 2E

mω2

) 1
2 , (3.6.21)

|yλ(t)| ≤
( 2E

mλ

) 1
2 (3.6.22)

which follow by observing that all the addends in Eq. (3.6.19) are nonnegative.
Fix a finite time interval [0, T ] and note that the first of Eqs. (3.6.17)

together with Eqs. (3.6.20), (3.6.21), and (3.6.22) implies that the function
ẍλ(t) has a uniformly bounded modulus for all λ > 1 and for t ∈ [0, T ].
Hence, if T is “small”, one can think that the function t→ xλ(t), t ∈ [0, T ], is
practically constant together with its first derivative and, then, heuristically
set xλ(t) = x0, t ∈ [0, T ] in the second equation of Eqs. (3.6.17). Within this
“approximation”, Eqs. (3.6.17) becomes “elementarily soluble”:
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yλ(t) ≃
w0

(ω2 + λ (1 + x2
0))

1
2

sin(ω2 + λ (1 + x2
0)

1
2 )t (3.6.23)

which shows that, at least if t ∈ [0, T ],, yλ(t) varies very quickly if λ is large,

with a frequency νλ ≃ (ω2 + λ (1 + x2
0))

1
2 remaining, nevertheless, small by

Eq. (3.6.22).
Since, as just seen, xλ(t) varies slowly (essentially λ independently), we

can substitute in the first of Eqs. (3.6.17) λ yλ(t)
2 with its average value

λ yλ(t)2 between 0 and t, if t is large compared to the characteristic time Tλ
of variation of y, namely Tλ ≃ 2πO(λ−

1
2 ):

λ yλ(t)2 ≃
λ

t

∫ t

0

w2
0

(
sin(ω2 + λ (1 + x2

0)
1
2 )τ
)2

ω2 + λ (1 + x2
0)

dτ

=
λw2

0

ω2 + λ (1 + x2
0)

[∫ t
√
ω2+λ (1+x2

0)

0
(sin θ)2 dθ

t
√
ω2 + λ (1 + x2

0)

] (3.6.24)

where Eq. (3.6.23) has been used and θ has been defined as θ = τ (ω2 +λ (1+

x2
0))

1
2 = 2πτ

Tλ
. By assumption t ≫ Tλ = 2π(ω2 + λ (1 + x2

0)
− 1

2 ), therefore the
integral in square brackets can be replaced by

lim
R→∞

1

R

∫ R

0

(sin θ)2dθ =
1

2
. Hence, (3.6.25)

λ yλ(t)2 ≃
1

2

λw2
0

ω2 + λ (1 + x2
0)
≃ 1

2

w2
0

1 + x2
0

(3.6.26)

if λ is large enough. Then substituting λ yλ(t)
2 → λ yλ(t)2 in the first of Eqs.

(3.6.17), one finds

mẍλ = −mω2 xλ −
w2

0

2(1 + x2
0)
xλ (3.6.27)

for t near 0 (but t≫ Tλ) and λ large (note that Tλ → 0 as λ→ +∞).
For arbitrary values of t, a similar argument suggests that, in general, the

acceleration ẍλ should verify the equation (when λ→ +∞):

ẍ = −mω2 x− mw2
0

2

x√
1 + x2

√
1 + x2

0

. (3.6.28)

Hence, the model of constraint to the line y = 0 with the structure of Eq.
(3.6.16) does not give rise to the motions that develop under the action of an
ideal constraint to the line y = 0 and of an active force with potential energy
V (a)(x) = 1

2mω
2x2, when λ→ +∞, as one could have naively expected.

Rather one should think that the limit motion, for λ → +∞, of xλ is a
motion subject to an ideal constraint to y = 0 and to the active force whose
potential energy is
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V ′(a)(x) =
1

2
mω2x2 +

w2
0m

4
2

√
1 + x2

1 + x2
0

(3.6.29)

which depends on the initial velocity w0 transversal to the constraint (and, of
course, on the particular form of the structure function W ).

It is then possible to think, in general, that in the limit of infinite rigid-
ity, the model of a conservative bilateral approximate constraint generates
motions which respect the constraints and develop as if they were ideal, but
under the influence of an active force modified with respect to the one with
potential energy V (a) which naively could be thought to be the force “not due
to the constraints”. In general, the structure W of the constraints has some
influence, even for λ large, and contributes to the active forces in a way that
may also depend on the initial data or, better, on the “initial stresses on the
constraints”, as in the case of the last example, where the active force de-
pends also on the initial velocity component w0 orthogonal to the constraint.
This conjecture also sheds some light on the slightly formal distinction in §3.5
between the active force and the reaction of the constraint.

In the following section we will deal with questions related to the following
problems.

(1) Which further condition is it necessary to place on an approximate con-
straint model (Σ,W, λ) to imply that the motion t→ xλ(t), t ≥ 0, developing
under the action of the force with potential energy

V (a) + λW, (3.6.30)

and following the initial datum

x(0) = ξ0 ∈ Σ, ẋ(0) = η0 (3.6.31)

is well approximated by the motion that takes place under the action of the ac-
tive force with potential energy V (a) and of the ideal constraints ϕ(1), . . . , ϕ(s′)

and follows the initial datum x(0) = ξ0, ẋ(0) = ηΣ0 , where ηΣ0 is a suitable
“projection of η0 on Σ ”, assuming that Σ is determined by the equations
ϕ(1)(ξ) = . . . = ϕ(s′)(ξ) = 0? (See Definitions 7 and 8, §3.5.)
In other words the question is: when does an approximate conservative con-
straint appear as well approximated by an ideal constraint model in the sense
of Definition 8, §3.5, with the “naive” identification of the active forces?

(2) If (Σ,W, λ) is a model of an approximate conservative constraint, is it
true that the motion developing under the action of a force with the potential
energy of Eq. (3.6.30) and following the initial datum of Eq. (3.6.31) is well
approximated, as λ→ +∞, by a motion developing under the influence of the
ideal constraints ϕ(1), . . . , ϕ(s′) (determining Σ) and of a conservative active
force with potential energy V ′(a), possibly different from V (a) and (η0, ξ0)-
dependent?
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(3) In the same situation as that of question (2) and if η0 is suitable, i.e.
η0 ≡ ηΣ0 , where ηΣ0 is as in question (1), is it true that V ′(a) = V (a)? [This
seems to be true in the example, heuristically explicitly studied above, about
the constraint to the line y = 0 generated by Eq. (3.6.16), when w0 = 0; see
Eqs. (3.6.17) and (3.6.29)].

Actually, we shall really study in detail question (1) only, which we shall
refer to as the problem of the determination of “sufficient perfection conditions
for approximate bilateral conservative constraints”.

It will be useful and necessary to analyze in some deeper way the kine-
matics of the system of point masses subject to constraints: this is a purely
geometric analysis, very suggestive for its relationship with differential geom-
etry. The following section is mainly devoted to this task.

3.6.1 Exercises and Problems

1. Show that the polar coordinates are a regular system of coordinates in various regions
U ⊂ R2 or U ⊂ R3.

2. Show that the surface of a sphere is a regular surface in the sense of Definition 10, p.170.

3. Show that the surface of the paraboloid z = (x2 + y2)/2 is a regular two-dimensional
surface in the sense of Definition 10, p.170. Treat similarly the hyperboloid and ellipsoid
cases.

4. Consider the ellipsoid surface x2

a
+ y2

b
+ z2

c
= 1, 0 < a < b < c, and show that if

β = (β1, β2, β3) ≡ (w, u, v)

x =(1 + w)

s
a

(u− a)(v − a)
(b − a)(c − a)

y =(1 + w)

s
b

(u− b)(v − b)
(a− b)(c − b)

x =(1 + w)

s
a

(u− c)(v − c)
(a− c)(b− c)

is a local system of regular coordinates in the vicinity of various points of the ellipsoid’s
surface. This system is adapted to the surface itself, which has equations β1 ≡ w = 0
(“Jacobi’s coordinates”). The domains w = 0, u ∈ (a, b), v ∈ (b, c) and w = 0, u ∈ (b, c), v ∈
(a, b) give the part of the ellipsoid situated in the first octant in R3 with the exception of
a few lines; determine the latter lines.

5. Let V ∈ C∞(R), V ′(ξ) ≡ dV (ξ)
dξ
6= 0, ∀ξ 6= 0, limξ→±∞ V ′(ξ) = +∞, V (0) = 0. Given a

point (η, ξ) ∈ R2, (η, ξ) 6= (0, 0), define

E =
η2

2
+ V (ξ), T (E) = 2

Z x+(E)

x−(E)

dξ′p
2(E − V (ξ′))

,

where x−(E) < x+(E) are the two roots of E − V (ξ) = 0. Define
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ϕ(η, ξ) =
2π

T (E)
·

8
>>><
>>>:

time necessary to the motion x such that

ẍ = −dV/dξ with initial datum (0, x(E))

to reach (η, ξ)

9
>>>=
>>>;

which defines ϕ (mod 2π) (as every motion with initial velocity η and position ξ is periodic

and, sooner or later, visits x−(E) with velocity 0).

Show that the coordinates (E,ϕ) are a regular system of coordinates near any point in R2

other than the origin, and that they generalize the polar coordinates (̺, θ) with E being

analogous to ̺2/2 and ϕ to θ. (Hint: First consider the case V (ξ) = ξ2/2 and explicitly find

ϕ(η, ξ). Draw the qualitative form of the curves η2/2 + V (ξ) = E as E varies.)

3.7 Kinematics of Quasi-constrained Systems.
Reformulation of Perfection Criteria for Approximate
Conservative Constraints

In this section RNd is regarded as a vector space in which the scalar product
between two vectors η = (η(1), . . . ,η(N)) and χ = (χ(1), . . . ,χ(N)) is defined
by

N∑

i=1

miη
(i) · χ(i), (3.7.1)

where m1, . . . ,mN are given positive numbers. The length of a vector is then

||η|| =
( N∑

i=1

miη
(i)2
) 1

2

(3.7.2)

The strange convention above allows one to say that the kinetic energy of a
motion t→ x(t), t ≥ t0, of a system of N points, with masses m1, . . . ,mN is

T (t) =
1

2
||ẋ(t)||2 (3.7.3)

i.e., it is one-half the square of the velocity of the point representing the system
configuration in RNd without explicit reference to the masses (which of course
are now hidden in the definition of length given by Eq. (3.7.2)).

Let (U,Ξ) be a local system of regular coordinates in RNd with basis
Ω ⊂ RNd (see Definition 10, p.170) and let t → x(t), t ≥ t0, be a motion of
a system of N point masses, with masses m1, . . . ,mN > 0, taking place for
t ∈ [t1, t2] inside U (i.e., x(t) ∈ U , ∀ t ∈ [t1, t2]).

We can then consider the motion t → b(t), t ∈ [t − 1, t2], “image” in the
basis ω of the motion t → x(t), t ∈ [t1, t2], via the coordinate system (U,Ξ)
i.e., the motion such that

x(t) = Ξ(b(t)), t ∈ [t1, t2]. (3.7.4)
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It is obviously possible to express the kinetic energy of the motion x in
terms of the kinematic properties of its image motion b. In fact, if Ξ =
(Ξ(1), . . . ,Ξ(N)), differentiating Eq. (3.7.4) with respect to t

ẋ(j)(t) =

Nd∑

ℓ=1

∂Ξ(j)

∂βℓ
(b(t))ḃℓ(t), j = 1, . . . , N (3.7.5)

where x(t) = (x(1)(t), . . . ,x(N)(t)), b(t) = (b1(t), . . . , bNd(t)), with the usual
notations. Hence

T (t) =

N∑

j=1

mj

2
ẋ(j)

2

=

Nd∑

ℓ′,ℓ′′=1

N∑

j=1

mj

2

(∂Ξ(j)

∂βℓ′
(b(t))

∂Ξ(j)

∂βℓ′′
(b(t))

)
ḃℓ′(t)ḃℓ′′(t)

(3.7.6)

which will be written as

T (t) =
1

2

∑

ℓ′,ℓ′′=1

gℓ′ ℓ′′(b(t))ḃℓ′ (t)ḃℓ′′(t) (3.7.7)

having set, ∀β ∈ Ω, ∀ ℓ′, ℓ′′ = 1, . . . , Nd:

gℓ′ ℓ′′(β) =

N∑

j=1

mj
∂Ξ(j)

∂βℓ′
(β) · ∂Ξ

(j)

∂βℓ′′
(β) = gℓ′′ ℓ′(β) (3.7.8)

It is convenient to establish a general definition in connection with Eqs. (3.7.7)
and (3.7.8) because of the generality of Eq. (3.7.7) itself.

11 Definition. The function β → g(β) defined by Eq. (3.7.8) on Ω and
with values in the Nd × Nd matrices will be called the “kinetic matrix” for
the scalar product of Eq. (3.7.1) or, equivalently, for a system of N points
in Rd, with masses m1, . . . ,mN > 0, “relative to the local system of regular
coordinates (U,Ξ) in RNd”.
Observations. (1) Via Eq. (3.7.7), the kinetic matrix allows one to compute
the kinetic energy in arbitrary local coordinates; hence, its name.
(2) Some of the properties of the kinetic matrix will be listed and discussed at
the end of the section. For the moment, note that g(β) is a symmetric matrix
whose elements, thought of as functions on Ω, are in C∞(Ω).

For the study of the kinematics of quasi-constrained systems, the following
purely geometrical definition is useful.

12 Definition. Let Σ be a regular surface in RNd with codimension s and
let U be a neighborhood of a point ξ0 ∈ Σ on which a system (U,Ξ) of local
regular coordinates, with basis Ω, is defined.
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Assume that the coordinate system is “adapted” to Σ: (see Definition 10,
p.170) i.e., that Σ ∩ U is described in (U,Ξ) by

β1 = . . . = βs = 0 (3.7.9)

(a) We shall say that (U,Ξ) is “well adapted” to Σ if the kinetic matrix, for
the scalar product of Eq. (3.7.1), associated with (U,Ξ) has the first prin-
cipal submatrix which is constant on the plane of Eq. (3.7.9); i.e.. if for
β = (0, . . . , 0, βs+1, . . . , βNd) ∈ Ω it is, ∀ ℓ′, ℓ′′ = 1, . . . , s:

gℓ′ ℓ′′(β) = gℓ′ ℓ′′(0, . . . , 0, βs+1, . . . , βNd) = γℓ′,ℓ′′ (3.7.10)

where γ is a s× s β-independent matrix.
(b) We shall say that (U,Ξ) is “orthogonal” on Σ with respect to the scalar
product of Eq. (3.7.1) if ∀β = (0, . . . , 0, βs+1, . . . , βNd):

gℓk(β) = 0, ℓ = 1, 2, . . . , s; k = s+ 1, . . . , Nd. (3.7.11)

Observations. (1) Let t → x(t), t ∈ R+, be a motion of N points in Rd,
with masses m1, . . . ,mN > 0, which at some time t happens to be in Σ with
velocity ẋ(t) “purely transversal” to Σ in the coordinate system (U,Ξ), i.e.,
such that the motion b, image of x in Ω for t close to t, has velocity ḃ(t) with
components vanishing “along Σ”:

ḃ(t) = (ḃ1(t), . . . , ḃs(t), 0, . . . , 0). (3.7.12)

If the coordinates system is well adapted, then the kinetic energy of x at time
t depends only upon ḃ(t) but not on the particular position b(t).
(2) If the coordinate system (U,Ξ) is orthogonal on Σ, the kinetic energy
T (t) of a motion t→ x(t) which for t = t crosses Σ is in this instant a sum of
two terms: one depending only on ḃ1(t), . . . , ḃs(t) and on b(t), and the other
depending only on ḃs+1(t), . . . , ḃNd(t) and on b(t):

T1(t) =

1,s∑

ℓ′,ℓ′′

gℓ′ ℓ′′(b(t))β̇ℓ′(t)ḃℓ′′(t), T2(t) =

s+1,Nd∑

ℓ′,ℓ′′

gℓ′ ℓ′′(b(t))β̇ℓ′(t)ḃℓ′′(t),

(3.7.13)
and T (t) = T1(t) + T2(t). In other words, one can say that, in such a system
of coordinates, for t = t the kinetic energy is the sum of the kinetic energies
of the component of motion orthogonal to Σ and of the component parallel
to it.
(3) Thinking of this, it should become geometrically evident that if Σ is a
regular surface in RNd and ξ0 ∈ Σ, it will always be possible to construct a
system of local coordinates in a neighborhood U of ξ0 which is well adapted
and orthogonal to Σ (see Proposition 12 to follow).
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The equations of motion can immediately be written in an arbitrary co-
ordinate system, either in the absence or in the presence of constraints, using
the following propositions.

9 Proposition. Let V ∈ C∞(RNd) be a real-valued function bounded from be-
low. Let t→ x(t), t ≥ t0 be a motion of N points, with masses m1, . . . ,mN >
0, in Rd developing under the influence of the force F with potential energy
V . Suppose that for t ∈ [t1, t2], the motion x takes place in a neighborhood
U ⊂ RNd where a local system of regular coordinates (U,Ξ) is established
with basis Ω ⊂ RNd. Call b the motion in Ω, image of the considered motion
x, for t ∈ [t1, t2], via the coordinate transformation Ξ.
Then b verifies Lagrange’s equations7 associated with the Lagrangian:

(α,β)→ L(α,β) =

Nd∑

ℓ′,ℓ′′=1

1

2
gℓ′ ℓ′′(β)αℓ′ αℓ′′ − V (Ξ(β)), (3.7.14)

where α ∈ RNd, β ∈ Ω and g is the kinetic matrix of Eq. (3.7.1) relative to
(U,Ξ). Explicitly, such equations are, ∀ ℓ = 1, . . . , Nd:

d

dt

( Nd∑

ℓ′=1

gℓ,ℓ′(b(t))ḃℓ′(t)
)

= −
(∂V (Ξ(β))

∂βℓ

)
β=b(t)

+
1

2

Nd∑

ℓ′,ℓ′′=1

∂gℓ′ ℓ′′

∂βℓ
(β(t))β̇ℓ′(t) β̇ℓ′′(t).

(3.7.15)

Proof. This is an exercise based on the definition of Lagrangian equations
and on the least-action principle as in Proposition 4, §3.3. It will be left to
the reader.

10 Proposition. Consider N points in Rd, with masses m1, . . . ,mN > 0,
and let F(a) be a conservative force with potential energy V (a), bounded below.
Let Σ ⊂ RNd be a codimension-s regular surface and suppose that Σ is the
set of points ξ ∈ RNd such that

ϕ(1)(ξ) = . . . = ϕ(s′)(ξ) = 0, (3.7.16)

where ϕ(1), . . . , ϕ(s′) ∈ C∞(RNd).
Let t → x(t) ∈ Σ, t ∈ [t1, t2], be a motion developing in a neighborhood U

7 If (α,β) → eL(α,β) is a real C∞ function defined on an open set W ⊂ R2M , we shall
say that a C∞ function t → b(t), t ∈ [t1, t2], such that (ḃ(t),b(t)) ∈ W, ∀t ∈ [t1, t2],
verifies Lagrange’s equations associated with eL if

d

dt

„
∂eL
∂αi

(ḃ(t),b(t))

«
=

∂eL
∂βi

(ḃ(t),b(t)), i = 1, 2, . . . ,M

even when W does not coincide with R2M , as usually supposed so far in connection with
the Lagrange equations.
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of ξ0 ∈ Σ under the influence of the force F(a) and of the holonomous ideal,
constraint ϕ(1), . . . , ϕ(s′) in the sense of Definition 8, §3.5, p.160. Suppose that
(U,Ξ) is a local system of regular coordinates adapted to Σ and with basis Ω
(see Definition 10, §3.6) and let b be the image motion of x on Ω:

b(t) = Ξ−1(x(t)), t ∈ [t!, t2]. (3.7.17)

Since b respects the constraints it is such that

b1(t) = . . . = bs(t) = 0, t ∈ [t1, t2]. (3.7.18)

Then, setting b(t) = (0, ....0, βs+1(t), . . . , βNd(t)) ≡ (0,b(s)(t)), the motion
t → b(s)(t) verifies the Lagrange equations8 associated with a Lagrangian L0

on RNd−s ×Ω(s) where Ω(s) denotes the set of points β = (βs+1, . . . , βNd) ∈
RNd−s such that (0,β) ∈ Ω (0 being the origin in Rs). The Lagrangian L0

is defined by

L0(α,β) =
1

2

s+1,Nd∑

ℓ′,ℓ′′

gℓ′,ℓ′′(0,β)αℓ′αℓ′′ − V (a)(Ξ(0,β)), (3.7.19)

∀ (α,β) ∈ RNd−s × Ω(s) (0 being the origin in Rs). Hence, the equations of
motion for β(s)(t) are, ∀ ℓ = s− 1, . . . , Nd

d

dt

( Nd∑

ℓ′=1

gℓ,ℓ′(0,b
(s)(t))ḃ

(s)
ℓ′ (t)

)
= −

(∂V (Ξ(0,β))

∂βℓ

)
β=b(s)(t)

+
1

2

Nd∑

ℓ′,ℓ′′=1

∂gℓ′ ℓ′′(0,b
(s)(t))

∂βℓ
β̇

(s)
ℓ′ (t) β̇

(s)
ℓ′′ (t).

(3.7.20)

Proof. Proposition 10 can be proved as a corollary to Proposition 8, §3.5,
p.160, and it will be left to the reader as an important exercise.

Through the Propositions 9 and 10 and the above definitions, it is now
possible to reformulate and make precise the Problem (1) posed at the end of
§3.6, p.174. It appears to be naturally related to the following definition.

13 Definition. Let (Σ,W, λ) be a model for a bilateral conservative constraint
for a system of N points in Rd, with masses m1, . . . ,mN . Suppose that Σ has
codimension s and that it is described by Eq. (3.7.16).
Let V (a) be a real-valued C∞(RNd) function bounded below and let t →
xλ(t), t ∈ R+, be the motion of the system developing under the influence
of the force with potential energy

8 See footnote 7.



3.7 Quasi-constrained Systems 181

ξ → V (ξ) = V (a)(ξ) + λW (ξ) (3.7.21)

following the initial datum

xλ(0) = ξ0 ∈ Σ, ẋ(0) = η0 ∈ RBd. (3.7.22)

We shall say that (Σ,W, λ) is a model of an “ideal approximate constraint”
if, ∀V (a), ξ0,η0 as above:
(i) The following limit exists:

lim
λ→+∞

xλ(t) = x(t), ∀ t ≥ 0 (3.7.23)

(ii) The function t → x(t) is a motion developing on Σ: under the influence
of the active force F(a), with potential energy V (a), and of the ideal constraint
ϕ(1), . . . , ϕ(s′) to Σ, in the sense of Definition 8, §3.5.
(iii) The initial datum verified by x is

x(0) = ξ0, ẋ(0) = ηΣ0 , (3.7.24)

where ηΣ0 is the orthogonal projection of η0 on the tangent plane to Σ in ξ0,
with respect to the scalar product of Eq. (3.7.1) [see Observation (1) below].

Observations. (1) Let (U,Ξ) be a local system of regular coordinates with
basis Ω. Let ξ0 ∈ U and suppose that (U,Ξ) is adapted and orthogonal on
Σ: it will be, by Eq. (3.7.5),

η0 =

Nd∑

i=1

∂Ξ

∂βi
(β0)α

0
i (3.7.25)

where β0 are the coordinates of ξ0 in (U,Ξ) and α0 ∈ RNd is a suitable
vector. Then the projection ηΣ0 is, by definition,

ηΣ0 =

Nd∑

i=s+1

∂Ξ

∂βi
(β0)α

0
i (3.7.26)

It could be checked that ηΣ0 does not depend on the coordinate system (U,Ξ)
provided the latter is adapted and orthogonal on Σ.
(2) By the above definition, if (Σ,W, λ) is a model of an approximate ideal
constraint, the motions of the system starting on Σ and developing under
the influence of a conservative force with potential energy V (a) + λW are, for
large λ, well approximated by the motions of the same system subject to s′

ideal constraints ϕ(1), . . . , ϕ(s′), determining Σ, and to an active force with
potential energy V (a), in the sense of Definition 8,§3.5, p.160. Of course, it
would be desirable, and necessary in order to make quantitative statements,
to have estimates of the difference between x(t) and xλ(t) in terms of λ: this
will be done, in some cases, in§3.8.
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(3) Problem 1, p.174, §3.6, is equivalent to the following question: given
(Σ,W, λ), how does one recognize whether this is a model of an approxi-
mate ideal constraint?
(4) Assume that for t ∈ [t1, t2], the motion t → xλ(t) takes place for large
enough λ in a neighborhood U such that U ∩ Σ 6= ∅ and suppose that a
local system of regular coordinates is established on U : (U,Ξ) with basis Ω
adapted to Σ. Let t → bλ(t), t ∈ [t1, t2] be the image in Ω of xλ considered
for t ∈ [t1, t2]. Items (i) and (ii) of Definition 13 are equivalent to:
(i1) There is a limit

lim
λ→+∞

bλ(t) = b(t) ≡ (0,b(s)(t)), t ∈ [t1,2 ]. (3.7.27)

where 0 is the origin in Rs and b(s)(t) is a suitable RNd−s-valued function.
(ii1) t→ b(t) is a C∞([t1, t2]) function verifying Eqs. (3.7.18) and (3.7.20),
∀ t ∈ [t1, t2].

Condition (iii) is equivalent to:
(iii1) If ξ0 ∈ U and (U,Ξ) is orthogonal on Σ:

Ξ(b(0)) = ξ0, ḃi(0) = 0, i = 1, 2, . . . , s. (3.7.28)

In the next section we shall discuss an important sufficient perfection criterion
for approximate conservative constraints and the perfection will checked in the
form of (i1), (ii1), and (iii1) above.

We conclude this section by stating some simple properties of the kinetic
matrices on RNd associated with the scalar product of Eq. (3.7.1) in a local
system of regular coordinates. We shall also sketch the proof of some met-
ric properties of the regular surfaces (i.e., the existence of well-adapted and
orthogonal coordinates).

11 Proposition. The matrix g(β) defined in Eq. (3.7.6) on Ω is, ∀β ∈
Ω, symmetric and positive definite. The matrix elements of g(β), as well as
the matrix elements of the matrices inverting g(β) or any of its principal
submatrices, are in C∞(Ω) as functions of β ∈ Ω.

There exists a positive continuous function β → C(β), defined on Ω, such
that if µ(β) is a q × q principal submatrix of g(β) or an inverse to such a
matrix, then ∀σ = (σ1, . . . , σq) ∈ Rq:

C(β)

q∑

i=1

σ2
i ≤

1,q∑

ℓ′,ℓ′′

µℓ′ ℓ′′(β)σℓ′σℓ′′ ≤ C(β)−1

q∑

i=1

σ2
i . (3.7.29)

Observation. We recall that a q × q matrix µ is called positive definite if it is
symmetric and
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1,q∑

ℓ′,ℓ′′

µℓ′ ℓ′′σℓ′σℓ′′ > 0, ∀σ ∈ Rq, σ 6= 0 (3.7.30)

(see Appendix F).

Proof. The symmetry is obvious and has already been remarked on [see Eq.
(3.7.8)]. The positivity of g(β) follows from its kinematic interpretation: in

fact, 1
2

∑1,Nd
ℓ′,ℓ′′ gℓ′ ℓ′′(β)σℓ′σℓ′′ is the kinetic energy of a motion which at some

time happens to be in Ξ(β) with velocity ẋ(j) =
∑Nd

ℓ=1
∂Ξ(j)

∂βℓ
σℓ, j = 1, . . . , N

[see Eq. (3.7.5)].
If σ 6= 0, then ẋ 6= 0 because the coordinate system is regular [see Eq.

(3.6.10)]. Hence,
∑1,Nd

ℓ′,ℓ′′ gℓ′ ℓ′′(β)σℓ′σℓ′′ =
∑N

j=1mj (ẋ(j))2 > 0.
From algebra, it is known that a matrix g(β) is positive definite if and

only if all its principal submatrices are positive definite: in such case also
their inverse matrices are all positive definite and all the mentioned matrices
have a positive determinant. Furthermore, if µ is a q × q positive definite
matrix, there is a positive continuous function of its matrix elements such
that

C1(µ)

q∑

i=1

σ2
i ≤

1,q∑

ℓ′,ℓ′′

µℓ′ ℓ′′σℓ′σℓ′′ ≤ C1(µ)−1

q∑

i=1

σ2
i (3.7.31)

(see, also, Appendix F, Corollary 3 and related exercises).
Then the proposition is a consequence of these algebraic properties and

of the observation that all the mentioned matrix elements are in C∞(Ω): in
fact they are obtained by taking products and sums of matrix elements of
g(β) and possibly dividing the results by products of determinants of some
principal submatrices of the matrix g(β), which are in turn positive by what
has just been mentioned. mbe

The following proposition concerns the existence of a local system of reg-
ular coordinates (U,Ξ) well adapted and orthogonal to a regular surface Σ
in the vicinity of one of its points ξ0.

12 Proposition. Given a regular surface Σ ⊂ RNd with codimension s and
given the scalar product of Eq. (3.7.1) and ξ0 ∈ Σ, it is always possible to
find a neighborhood U of ξ0 on which it is possible to define a local regular
system of coordinates well adapted and orthogonal to Σ. It is even possible to
construct it so that the kinetic matrix is, in the basis points corresponding to
Σ ∩ U ,

gℓ ℓ′ = γ δℓ ℓ′ , ℓ, ℓ′ = 1, 2, . . . , s, γ > 0 (3.7.32)

(“Fermi coordinates” on Σ).

Proof. Only a sketch will be given, leaving to the reader the task of com-
pleting the proof (see, also, exercises and problems at the end of this section).
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Σ

U

Û

ξ

ξ′

ξ0

β‖

β⊥
Figure3.1

Fig.3.1. ξ has coordinates (β′′, β⊥) and β′′ = {abscissa of ξ′ on Σ}.

A first reading should be intended just in order to get some ideas about the
proof and the geometrical meaning of Proposition 12: completing the details
should then become easier and transparent.

Let ξ0 ∈ Σ and let U be a bounded neighborhood on which a local system
of regular coordinates adapted to Σ, (U,Ξ), is established. Suppose that

Ξ−1(ξ0) = 0, say. An orthogonal and well-adapted system (Û , Ξ̂) will be

built by suitably choosing Û ⊂ U . The system is geometrically illustrated in
the case d = 2, s = 1, in Fig.3.1.

The construction proceeds as follows: at every point ξ′ ∈ Σ ∩ U , consider
a hyperplane in RNd orthogonal to Σ in ξ′ in the sense of the orthogonality
associated with the scalar product of Eq. (3.7.1). Denote this hyperplane by
π(ξ′) (dotted lines in Fig. 3.1). Fix on π(ξ′) a system of Cartesian mutually
orthogonal axes with unit vectors e1(ξ

′), . . . , es(ξ′), the orthogonality being
in the sense of the scalar product of Eq. (3.7.1) and the length of the axes
being measured in the same sense.

Choose the above unit vectors so that the points ξ′ + ei(ξ
′), i = 1, . . . , s,

have coordinates which are C∞ functions of the Nd−s nontrivial coordinates
of ξ′ in (U,Σ); i.e, choose the Cartesian axes “so that they are C∞ functions
of ξ′ ∈ Σ ∩ U ”.

There is a neighborhood U ′ of ξ0, U
′ ⊂ U such that every point ξ ∈ U ′ is

on a unique plane π(ξ′) with ξ′ suitably chosen on Σ ∩ U (“consequence of
the finite curvature of Σ”).

To every ξ ∈ U ′, we then associate Nd coordinates β̂: the first s of them,
denoted β̂⊥ = (β̂1, . . . , β̂s), are the coordinates of ξ in the Cartesian frame
chosen on the plane π(ξ′) containing ξ; the remaining Nd − s coordinates

β̂‖ = (β̂s+1, . . . , β̂Nd) are the coordinates with β̂i = βi, i = s + 1, . . . , Nd, if
ξ′ has in (U,Ξ) coordinates (0, . . . , 0, βs+1, . . . , βNd).
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Setting ξ = Ξ̂(β̂), one can check that as ξ varies in U ′, the point β̂ varies

in some open set Ω′ ∈ RNd. Furthermore, the function Ξ̂ is a C∞-invertible
map of Ω′ onto U ′ which is not singular, i.e., its Jacobian matrix [see Eq.

(3.6.10)] has a never-vanishing determinant if U ′ is small enough. Let ŜNd be

a sphere contained in Ω′ centered atΞ−1(ξ0) = 0 and set Û = Ξ̂(ŜNd). Then,

essentially by construction, the pair (Û , Ξ̂) is a coordinate system which is of

Fermi type on Σ with basis ŜNd and γ = 1.
The difficulty, in a rigorous proof, lies in the justification of the actual

possibility of the various “choices” involved in the above descriptive argument,
and in checking the validity of the statements claimed about the uniqueness of
the plane π(ξ′) through ξ′ and on the non singularity of the Jacobian matrix

Ĵ(β̂) =
∂ξ̂

∂β̂
(β̂), β̂ ∈ ŜNd. (3.7.33)

The main idea is to use the implicit function theorem to check the above
properties, (see the following problems for some more details.)

3.7.1 Exercises and Problems

1. Establish an orthogonal regular system of coordinates well adapted to the circle Γ ⊂ R2,
with radius 1 and center at the origin, with respect to the scalar product η·χ= η1χ1+η2χ2,
in the neighborhood of a generic point ξ0 ∈ Γ .

2. Same as Problem 1, replacing Γ with the parabola y = x2, the hyperbola xy = 1, or the
ellipse x22/a2 + y2/b2 = 1, a, b > 0.

3.* Let Γ ⊂ R2 be a simple C∞ curve in R2 parameterized in terms of its curvilinear
abscissa s ∈ R as:

8
<
:
ξ1 =X1(s), (X′

1(s))2 + (X′
2(s))2 = 1,

ξ2 =X2(s), lim
s→±∞

(X1(s))2 + (X2(s))2 = +∞,

where X′
1, X

′
2 are the derivatives of X1,X2. For every point on Γ with abscissa s ∈ R,

consider the normal line n(s) with equations ξ1X′
1(s) + ξ2X′

2(s) = 0. Show that given
R > 0, there is δ > 0 such that the segments of length 2δ cut around (X1(s), X2(s)) on the
line n(s) are pairwise disjoint, ∀ 0 ≤ |s| < R. (Hint: Define for |s| < R, |σ| < δ:

F1(s, σ) = X1(s) + σX′
2(s), F2(s, σ) = X2(s)− σX′

1(s)

and note that the equations F1(s, σ) = F1(s, σ), F2(s, σ) = F2(s, σ) thought of as equations
for (s, σ) parameterized by s, σ have s = s, σ = σ as a unique solution near s, σ, if σ is small
(using the implicit function theorem). Then, by using the possibility of choosing δ small,
show that they have a unique solution in the entire region |s| < R, |σ| < δ, etc.)

4.* In the context of Problem 3, show that there is δ′ < δ such that the image via (F1, F2)
of (−R,R) × (−δ′, δ′) is a neighborhood U of (F1(0, 0), F2(0, 0)) ∈ Γ . where the map
(s, σ)←→(F1(s, σ), F2(s, σ)) is invertible, C∞ and with nonvanishing Jacobian, i.e., the map
(U,F) is an adapted system of local regular coordinates.
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5.* In the context of Problem 4, compute the kinetic matrix g(s, σ) and show that (U,F)
is a well-adapted orthogonal coordinate system for Γ , with respect to the scalar product in
Problem 1, and g is on Γ a 2× 2 diagonal matrix.

6.* Let z = s + iσ, (s, σ) ∈ R2, and let f be a function on C admitting a representation
f(z) =

P∞
n=0 cnz

n with cn−−−−→n→∞ 0 so fast that the series has an infinite radius of conver-
gence. Also suppose that f ′(z0) =

P∞
n=0 ncnz

n−1
0 6= 0 for some z0 ∈ C.

Let γ1, γ2 be two segments of regular curves crossing at z0 ∈ C and there forming an an-
gle ϕ0. Show that the f images of γ1, and γ2, f(γ1) and f(γ2), cross at f(z0) forming
the same angle ϕ0. (Hint: Let {dz1}, and {dz2} be two infinitesimal segments in z0 di-
rected along γ1, and γ2. Show that f({dz1}) = f ′(z0){dz1}, f({dz2}) = f ′(z0){dz2}, where
f ′(z0) =

P∞
n=0 ncnz

n−1
0 6= 0, and interpret this as saying that dz1, and dz2 are transformed

into two infinitesimal segments emerging from f(z0), elongated by a factor ̺0 = |f ′(z0)|,
and rotated by an angle θ0 = argf ′(z0) (“conformal mapping property”).)

7.* In the context of Problem 6, suppose that z → f(z) is one to one near z0 and that
f ′(z0) 6= 0. Call U a neighborhood of z0 where this happens. Show that the map (s, σ) ∈
U → (s′, σ′) = (Re f(z), Im f(z)) (i.e., z → f(z)) maps U onto a neighborhood V of
(Re f(z0), Im f(z0)) and establishes a local system of regular coordinates on V .

Let U be a disk around z0 and z0 = 0. Consider the curve in V whose equations
are s′ = Re f(s), σ′ = Im f(s) for (s, 0) ∈ U . Show that the above coordinate system is
orthogonal on the curve Γ image of the points in U of the form (s, 0).

8.* Without use of complex functions, extend the argument of Problem 3 to a regular

surface Σ in Rd with Σ and d arbitrary, using the ordinary scalar product in Rd. (Hint:

Follow the pattern of the sketch of the proof of Proposition 12 and of the Problem 3, using

the implicit function theorem.)

3.8 A Perfection Criterion for Approximate Constraints

This section is devoted to the analysis of the following interesting proposition,
“Arnold’s theorem”, see historical note on p.211.

13 Proposition. Consider N points, with masses m1, . . . ,mN > 0, and a
model of bilateral conservative approximate constraint (Σ,W, λ) with codimen-
sion s. Suppose that ∀ ξ ∈ Σ, there is a neighborhood U admitting a system
of local regular coordinates (U,Ξ) with basis Ω, well adapted and orthogonal
on Σ with respect to the scalar product of Eq. (3.7.1), and such that

W (Ξ(β)) = W (β1, . . . , βs), (3.8.1)

where β = (β1, . . . , βs, βs+1, . . . , βNd) and W is a real C∞(Rs) function, van-
ishing at the origin and having a strict minimum there.
Then the constraint model (Σ,W, λ) is an ideal approximate constraint, in the
sense of Definition 13, p.180.

Observations.
(1) We already noted that it is always possible to find a neighborhood U of ξ0
on which a local system of regular coordinates, well adapted and orthogonal
on Σ, can be established. In general, however, the functions β → W (Ξ(β))
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will depend on all the Nd coordinates of β ∈ Ω and not just on the first s (one
can say that W will not, in general, be “purely orthogonal” to the constraint).
(2) Before proceeding to the proof, let us discuss the following example.

Example. Consider a two points system, with masses m1,m2 > 0, in R3

and the constraint model (“rigid link at distance ℓ”) defined by

Σ = {ξ | ξ = (ξ(1), ξ(2)), |ξ(1) − ξ(2)| = ℓ (3.8.2)

W (ξ(1), ξ(2)) =
(
(ξ(1) − ξ(2))2 − ℓ2

)2

(3.8.3)

where ℓ > 0 is given. Let us check that the approximate conservative con-
straint model (Σ,W, λ) verifies the assumptions of Proposition 13. Define the
following Baricentric-Polar coordinates:

β1 =|ξ(1) − ξ(2)| − ℓ ≡ ̺− ℓ, β2 = θ, β3 = ϕ,

β4 =(ξG)1, β5 = (ξG)2, β6 = (ξG)3
(3.8.4)

where (̺, θ, ϕ) are the polar coordinates of the vector ξ(1)−ξ(2) and ξB is the
vector determining the baricenter position:

ξG =
m1ξ

(1) +m2ξ
(2)

m1 +m2
(3.8.5)

Through Eq. (3.8.4), one can easily establish a regular local system of coor-
dinates (U,Ξ) in the vicinity of any point ξ0 ∈ Σ such that θ ∈ (0, π), ϕ ∈
(0, 2π) (which, by the arbitrariness of the choice of Cartesian axes, is not a real
restriction). This reference system is adapted to Σ, and Σ is given by β1 = 0.
To check that it is well adapted and orthogonal, for the scalar product of Eq.
(3.7.1), compute the kinetic matrix remarking that

m1(ξ̇
(1))2 +m2(ξ̇

(2))2 = (m1 +m2) ξ̇
2
G +

2m1m2

m1 +m2
(ξ(1) − ξ(2))2 (3.8.6)

which follows immediately from the relations

ξ(1) = ξG+
m2

m1 +m2
(ξ(1)−ξ(2)), ξ(2) = ξG−

m1

m1 +m2
(ξ(1)−ξ(2)), (3.8.7)

by differentiation and some algebra. Since

(ξ̇(1) − ξ̇(2))2 = ˙̺2 + ̺2θ̇2 + ̺2(sin θ)2ϕ̇2, (3.8.8)

which can be seen by recalling that the line element in polar coordinate is
d̺2 + ̺2dθ2 + ̺2(sin θ)2dϕ2 and that (̺, θ, ϕ) are just the polar coordinates
of ξ(1) − ξ(2), it follows that Eqs. (3.8.6) and (3.8.8) give
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m1(ξ̇
(1))2 +m2(ξ̇

(2))2 = (m1 +m2)(β̇
2
4 + β̇2

5 + β̇2
6)

+
2m1m2

m1 +m2
(β̇2

1 + (ℓ+ β1)
2β̇2

2 + (ℓ+ β1)
2(sinβ2)

2β̇2
3),

(3.8.9)

showing that the coordinates of Eq. (3.8.4) are well adapted and orthogonal
on Σ (in fact, g1 1(β) ≡ 2m1m2

m1+m2
and the quadratic form of Eq. (3.8.9) does

not contain the mixed terms β̇1 β̇ℓ, ℓ > 1).
In this coordinate system, the constraint structure function W of Eq.

(3.8.3) is simply (β2
1 + 2ℓβ1)

2, i.e., it depends only on β1.
A further example is the model (Σ,W, λ) for a single point in R3 bound

to a regular surface σ: Σ = {ξ | ξ ∈ σ}, and W is a C∞ function of ξ, positive
outside Σ and having, for ξ close enough to Σ, the form

W (ξ) = (n · (ξ − ξ̃))2 (3.8.10)

where ξ̃ is the point on σ closest to ξ and n is a unit vector normal to σ in ξ̃.
(The proof is left as a problem.)

Proof (of Proposition 13). Let (η0, ξ0) be an initial datum for the given
system of point masses, with ξ0 ∈ Σ.

Fix λ ≥ 1 and a function V (a) ∈ C∞(RNd) bounded from below. Let U
a neighborhood of the point ξ0 where it is possible to define a local system
of regular coordinates (U,Ξ) with basis Ω, well adapted and orthogonal on
Σ and such that Eq. (3.8.1) holds in this system. Suppose Ξ−1(ξ0) = 0. We
also suppose, for the sake of simplicity, that W has a rather special form:

W (β1, . . . , βℓ) =
1

2

s∑

i=1

β2
i (3.8.11)

In spite of the particularity of Eq. (3.8.11), this is an assumption that can
be eliminated through some formal complications which would only make the
true difficulties of the problem and the solution method more obscure (see
problems at the end of this section).

Denote t → xλ(t), t ∈ R+, the motion that the N points perform under
the influence of the force with potential energy V (a) + λW starting from the
initial datum (η0, ξ0). By energy conservation it follows that

N∑

i=1

mi

2
(ẋλ(t))

2 + V (a)(xλ(t)) + λW (xλ(t)) = E (3.8.12)

is a constant in t and

E =

N∑

i=1

mi

2
(η

(i)
0 )2 + V (a)(ξ0) (3.8.13)

is λ independent because ξ0 ∈ Σ and W vanishes on Σ.
Then Eq. (3.8.12) and the assumed boundedness of V (a) imply that
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N∑

i=1

mi

2
(ẋλ(t))

2 ≤ E + sup(−V (a)(ξ))
def
= C < +∞. (3.8.14)

If S̺ denotes a closed ball with radius ̺ and center ξ0, contained in U , Eq.
(3.8.14) will imply that the motion t → xλ(t) will develop remaining inside
S̺ for t ∈ [0, T ], i.e., xλ(t) ∈ S̺, ∀t ∈ [0, T ], if T is chosen so that

T

√
2C

minjmj
< ̺ (3.8.15)

Fix T verifying Eq. (3.8.15) consider the motion t→ xλ(t), t ∈ [0, T ].
Existence of the limit limλ→+∞ xλ(t) = x(t) and validity of Eqs. (3.7.18)

and (3.7.20) will be shown only for t ∈ [0, T ]. The treatment of the general
case (t arbitrarily large) contains some additional difficulties and will not be
discussed in detail. Such difficulties have a geometrical character and depend
on the fact that (U,Ξ) is generally a local coordinate system and not a global
one for all of Σ, see Problem 5 at the end of this section.

First it will be shown that the motion t→ xλ(t), t ∈ [0, T ], tends to evolve
on Σ as λ→ +∞.

This is a simple consequence of energy conservation and of the positivity
(only) of W : it does not depend on the special hypothesis on the constraint
nature [Eq. (3.8.11)], but it would be valid even for general approximate con-
servative constraints.

Let t→ bλ(t), t ∈ [0, T ], be the image of the motion xλ, observed for t ∈
[0, T ], in the basis Ω of the coordinate system: bλ(t) = Ξ−1(xλ(t)), t ∈ [0, T ].
Rewrite the energy conservation equation in the local coordinates (U,Ξ) by
using the kinetic matrix gℓ,ℓ′ in this reference system:

1

2

Nd∑

ℓ′,ℓ′′=1

gℓ′,ℓ′′(bλ(t))ḃλ ℓ′(t)ḃλ ℓ′′(t) + V (a)(Ξ(bλ(t))) +
λ

2

s∑

i=1

bλ i(t)
2 = E,

(3.8.16)
having used Eq. (3.8.11) to express W .

The first of the above three addends is non-negative (being the kinetic
energy; see, also, Proposition 11,§3.7, p.182). Hence, Eq. (3.8.16) implies

|bλ,j(t)| ≤
(2C
λ

) 1
2 , j = 1, 2, . . . , s. (3.8.17)

if C is defined by Eq. (3.8.14).
From the examples discussed in §3.6, it is expected that the motion t →

bλ(t), although squeezed on Σ, will very quickly oscillate transversally to Σ.
It will therefore be useful to estimate the velocities ḃλ i(t), i = 1, . . . , s, of the
“vanishing coordinates”. Equation (3.8.16) also provides such estimates: by
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Proposition 11, p.182, we can say that there is a constant g−1 = {minimum
of C(β) in Eq. (3.7.29) for Ξ(β) ∈ S̺} for which

1

2
g−1

Nd∑

ℓ=1

(ḃλ i(t))
2 ≤ 1

2

Nd∑

ℓ′,ℓ′′=1

gℓ′,ℓ′′(bλ(t))ḃλ ℓ′(t)ḃλ ℓ′′(t), (3.8.18)

∀ t ∈ [0, T ], because for such t’s and by the choice of T , xλ(t) = Ξ(bλ(t)) ∈ S̺.
Then Eqs. (3.8.18) and (3.8.16) imply, ∀λ ≥ 0,

|̇bλ,ℓ(t)| ≤
√

2Cg, ℓ = 1, . . . , Nd, t ∈ [0, T ]. (3.8.19)

By the orthogonality and adaptation properties of the coordinate system

(U,Ξ), setting β = (βv,βn) with βv
def
= (β1, . . . , βs) ∈ Rs, βn = (βs+1, . . . ,

βNd) ∈ RNd−s, it is

gℓ′,ℓ′′(0,βn) ≡ 0, ℓ′ = 1, . . . , s; ℓ′′ = s+ 1, . . .Nd (3.8.20)

(orthogonality) and

gℓ,ℓ′(0,βn) ≡ γℓ,ℓ′, ℓ, ℓ′ = 1, . . . , s, (3.8.21)

(good adaptation), where γ is a constant s × s matrix. Since the functions
gℓ′,ℓ′′(β), β ∈ Ω are C∞ functions, the Taylor-Lagrange theorem (see Ap-
pendix B), ∀ (βv,βn) ∈ Ω, ∀ ℓ = 1, . . . , s, ℓ′ = s+ 1, . . . , Nd, yields

gℓ ℓ′(βv,βn) =

s∑

j=1

gℓ ℓ′,j(βv,βn)βj (3.8.22)

and ∀ ℓ, ℓ′ = 1, . . . , s:

gℓ ℓ′(βv,βn) = γℓ ℓ′ +

s∑

j=1

gℓ ℓ′,j(βv,βn)βj , (3.8.23)

where gℓ ℓ′,j(β), β ∈ Ω, are suitable C∞(Ω) functions.
Equations (3.8.22) and (3.8.23) can be used to write “more explicitly” the

equations of motion (3.7.15) for the “non constrained coordinates”, i.e., for the
βj ’s with j = s+1, . . . , Nd. Using Eq. (3.8.1), one finds, for ℓ = s+1, . . . .Nd:

d

dt

{[ s∑

ℓ′=1

s∑

j=1

gℓ ℓ′,j(bλ(t))bλ j(t)ḃλ ℓ′(t)
]

+
Nd∑

ℓ′=s+1

gℓ ℓ′(bλ(t))ḃλ ℓ′(t)
}

= −
N∑

k=1

∂V (a)

∂ξ(k)
(Ξ(bλ(t))) ·

∂Ξ(k)

∂βℓ
(bλ(t))
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+
1

2

s+1,Nd∑

ℓ′,ℓ′′

∂gℓ′ ℓ′′

∂βℓ
(bλ(t))ḃλ ℓ′(t)ḃλ ℓ′′(t)

+




s∑

ℓ′=1

Nd∑

ℓ′′=s+1

s∑

j=1

∂gℓ,ℓ′,j
∂βℓ

(bλ(t))bλ j(t)ḃλ ℓ′(t)ḃλ ℓ′′(t)

+
1

2

s∑

ℓ′,ℓ′′=1

s∑

j=1

∂gℓ,ℓ′,j
∂βℓ

(bλ(t))bλ j(t)ḃλ ℓ′(t)ḃλ ℓ′′(t)




(3.8.24)

where the square brackets isolate the terms which should vanish, as λ →
+∞, in order that Eq. (3.8.24) could reduce at least formally to Eq. (3.7.20)
as wished on the basis of Definition 13,§3.7, p.180 and Observation (4) to
Definition 13 p.182.

Note that in Eq. (3.8.24) every term in square brackets contains factors
proportional to one of the first s coordinates which, by Eq. (3.8.17), van-
ish as λ → +∞ uniformly in t ∈ [0, T ]. The coefficients in Eq. (3.8.24)
of such coordinates are uniformly bounded in λ, as the motion takes place
in S̺, for t ∈ [0, T ], and there the g . . . are C∞ functions and, therefore,
bounded together with their derivatives; furthermore, Eq. (3.8.19) provides
λ-independent bounds for ḃλ ℓ(t).

To understand in a rigorous way that the above formal convergence of Eqs.
(3.8.17) and (3.8.24) to Eqs. (3.7.8) and (3.7.20) implies that, uniformly in
t ∈ [0, T ], the functions t→ bλ ℓ(t), ℓ = s+ 1, . . . , Nd, converge to limits bℓ(t)
verifying Eq. (3.7.20) with the desired initial conditions (3.7.24), some more
work is still necessary.

Integrate both sides of Eq. (3.8.20) with respect to t, ∀ ℓ = s+ 1, . . . , Nd:
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Nd∑

ℓ′=s+1

gℓ ℓ′(bλ(t))ḃλ ℓ′(t) +
[ s∑

ℓ′,j=1

gℓ,ℓ′,j(bλ(t)) bλ j(t)ḃλ ℓ′(t)
]

−
Nd∑

ℓ′=s+1

gℓ ℓ′(b(0)) ḃℓ′(0)

=

∫ t

0

{
−

N∑

k=1

∂V (a)

∂ξ(k)
(Ξ(bλ(t

′))) · ∂Ξ
(k)

∂βℓ
(bλ(t

′))

+
1

2

Nd∑

ℓ′,ℓ′′=s+1

∂gℓ′ ℓ′′

∂βℓ
(bλ(t

′))ḃλ ℓ′(t
′)ḃλ ℓ′′(t

′)
}
dt′

+
[ ∫ t

0

dt′
{ s∑

j=1

Nd∑

ℓ′′=s+1

Nd∑

j=1

∂gℓ′,ℓ′′,j
∂βℓ

(bλ(t
′))bλ ℓ(t

′)ḃλ ℓ′(t
′)ḃλ ℓ′′(t

′)

+
1

2

s∑

ℓ′,ℓ′′=1

s∑

j=1

∂gℓ′,ℓ′′,j
∂βℓ

(bλ(t
′))bλ ℓ(t

′)ḃλ ℓ′(t
′)ḃλ ℓ′′(t

′)
]
,

(3.8.25)

where in the second line the hypothesis that bλ ℓ(0) = 0, if ℓ = 1, . . . , s, is used
together with the λ-independence of the initial data bλ ℓ, ḃλ ℓ, ℓ = 1, . . . , Nd.

Now bring the second and third addends to the right-hand side and con-
sider the resulting equations as (Nd − s) linear equations in the (Nd − s)
unknowns bλ ℓ(t), ℓ = s + l, . . . , Nd, pretending that the right-hand side is
known. The matrix of the coefficients is the last (Nd− s)× (Nd− s) principal
submatrix gs, of the kinetic matrix g: (gs)ij = gij(bλ(t)), i, j = s+1, . . . , Nd.
By Proposition 11,§3.7, p.182, gs admits an inverse matrix ds(bλ(t))

−1 (mak-
ing explicit its bλ(t) dependence). Therefore, ḃλ ℓ(t), ℓ = s + 1, . . . , Nd, can
be expressed in terms of the right-hand side. Thus:

ḃλ ℓ(t) =
[
−

Nd∑

ℓ=s+1

(g−1
s (bλ(t)))ℓ ℓ

s∑

ℓ′=1

s∑

j=1

gℓ′,ℓ,j(bλ(t)) bλ j(t)ḃλ ℓ(t)
]
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+

Nd∑

ℓ=s+1

(g−1
s (bλ(t)))ℓ ℓ

Nd∑

ℓ′=s+1

gℓ ℓ′(b(0))ḃ(0)+

+
Nd∑

ℓ=s+1

(g−1
s (bλ(t)))ℓ ℓ

·
∫ t

0

{(
−

N∑

k=1

∂V (a)(Ξ(bλ(t
′)))

∂ξ(k)
· ∂Ξ

(k)(bλ(t
′))

∂βℓ

+
1

2

Nd∑

ℓ′,ℓ′′=s+1

∂gℓ′ ℓ′′(bλ(t
′))

∂βℓ
ḃλ ℓ′(t)ḃλ ℓ′′(t)

)}
dt′

+
[ Nd∑

ℓ=s+1

(g−1
s (bλ(t)))ℓ ℓ

·
∫ t

0

{ s∑

ℓ′=1

Nd∑

ℓ′′=s+1

s∑

j=1

∂gℓ′,ℓ′′,j(bλ(t
′))

∂βℓ
bλ j(t

′)ḃλ ℓ′(t
′)ḃλ ℓ′′(t

′)

+
1

2

s∑

ℓ′,ℓ′′=1

s∑

j=1

∂gℓ′,ℓ′′,j(bλ(t
′))

∂βℓ
bλ j(t

′)ḃλ ℓ′(t
′)ḃλ ℓ′′(t

′)
}
dt′
]

(3.8.26)

It has, now, to be remarked that the terms in square brackets vanish uni-
formly in t ∈ [0, T ] as λ → +∞ because of Eqs. (3.8.17) and (3.8.19) and
because of the uniform boundedness in Ξ−1(S̺) of the g functions and of
their derivatives.

Furthermore, convergence to a limit, as λ → +∞ of the terms which are
not in square brackets in Eq. (3.8.26) follows: call δλ,ℓ(t), t ∈ [0, T ] their sum
and show, first, that a subsequence λn → +∞, extracted from an arbitrary di-
verging sequence, exists such that δλn,ℓ

(t) converges to a limit δℓ(t) uniformly

in t ∈ [0, T ], ∀ ℓ = s+ 1, . . . , Nd.
This will be shown by proving that the family of functions on [0, T ] pa-

rameterized by λ and ℓ: (δλ,ℓ)λ≥1, ℓ=s+1,...,Nd is an equicontinuous and equi-
bounded family of functions on [0, T ], and then applying the Ascoli-Arzelà
theorem (see Appendix H).

Finally, the actual existence of the limit as λ → +∞ of δλ,ℓ(t) will be
obtained by showing that every limit of the converging subsequences verifies
a certain differential equation with given initial conditions, whatever the sub-
sequence is, and applying the uniqueness theorem for differential equations:
the equation will essentially turn out to coincide with Eq. (3.7.20) and the
proof will then be complete.

Equiboundedness (see Appendix H) of the functions is clear from Eqs.
(3.8.17) and (3.8.19). Equicontinuity of the contribution to δλ,ℓ coming from

the integral of Eq. (3.8.26) and that coming from the part outside the integral
can be separately shown. They follow from the remarks:
(i) Consider a family (µα)α∈A of functions on [0, T ] given by



194 3 Systems with Many Degrees of Freedom

µα(t) =

∫ t

0

να(τ) dτ (3.8.27)

where (να)α∈A is a family of equibounded continuous functions on [0, T ], i.e.,
a family of functions bounded as |να(t)| ≤ B, ∀ t ∈ [0, T ], with a suitable B,
∀α ∈ A. Then the family (µα)α∈A is equicontinuous; in fact,

|µα(t)− µα(t′)| =
∣∣
∫ t

t′
να(τ) dτ

∣∣ ≤ B |t− t′|. (3.8.28)

(ii) Families of functions obtained by composing a given C∞(Rh) function and
a family of equicontinuous equibounded Rh-valued functions on [0, T ] form
equicontinuous equibounded families of functions ∀h > 0 (exercise).

By suitably combining the criteria (i) and (ii), Eqs. (3.8.17), and (3.8.19),
the fact that (g−1)ℓ′ ℓ′′ are C∞ functions on Ξ−1(S̺) and t → bλ(t) is an
equicontinuous family [by (i) and by Eq. (3.8.19)] one realizes that δλ ℓ form
an equicontinuous equibounded family of functions on [0, T ] parameterized by
λ ≥ 1, ℓ = s+ 1, . . . , Nd.

Then the Ascoli-Arzelà criterion (see Appendix H) states that from every
diverging sequence of positive numbers, it is possible to extract a diverging
subsequence (λn)n∈Z+ such that the limit

lim
n→∞

δλn ℓ
(t) = δℓ(t) (3.8.29)

exists uniformly for t ∈ [0, T ], l = s+ 1, . . . , Nd.
Equation (3.8.26) then implies (since it has already been observed that

the terms in square brackets in the right-hand side vanish uniformly as λ →
+∞, ∀ t ∈ [0, T ]) that

lim
n→∞

δ̇λn ℓ
(t) = δ̇ℓ(t). Hence, (3.8.30)

lim
n→∞

bλn,ℓ
(t) ≡ lim

n→∞

(
bλn,ℓ

(0) +

∫ t

0

ḃλn ℓ
(τ) dt

)

= bℓ(0) +

∫ t

0

δ̇ℓ(τ) dτ
def
= bℓ(t), ℓ = s+ 1, . . . , Nd,

(3.8.31)

uniformly in t ∈ [0, T ], because the initial datum is λ independent, and bℓ(t)
is defined by the last identity. Of course, by changing the subsequence λn we
cannot yet be sure that δℓ and bℓ, thus defined, do not change.

The functions t → bℓ(t), t ∈ [0, T ], defined in Eq. (3.8.31) are, by Eq.
(3.8.31) itself, once differentiable and

ḃℓ(t) = δℓ(t), ∀ t ∈ [0, T ], ∀ i = s+ 1, . . . , Nd. (3.8.32)

Coming back to Eq. (3.8.25) with λ = λn and using Eqs. (3.8.17), (3.8.31),
(3.8.30), and (3.8.32), we find that as n→∞, ∀ ℓ = s+ 1, . . . , Nd:
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Nd∑

ℓ′=s+1

gℓ ℓ′(b(t))ḃℓ′(t) =

Nd∑

ℓ′=s+1

gℓ ℓ′(b(0))ḃℓ′(0)

+

∫ t

0

{
−

N∑

k=1

∂V (a)

∂ξ(k)
(Ξ(b(t′))) · ∂Ξ

(k)

∂βℓ
(b(t′))

+
1

2

Nd∑

ℓ′,ℓ′′=s+1

∂gℓ′ ℓ′′

∂βℓ
(b(t′))ḃℓ′(t

′)ḃℓ′(t
′′)
}
dt′,

(3.8.33)

having set b(t) = (0, . . . , 0, bs+1(t), . . . , bNd(t)) [recall that bℓ(t) is defined
by Eq. (3.8.31) only for ℓ = s + 1, . . . , Nd]. Therefore t → b(t) verifies the
wanted initial conditions at t = 0, Eq. (3.7.24), as well as Eq. (3.7.18) and,
by differentiating Eq. (3.8.33), also Eq. (3.7.20). It is also true that b ∈
C∞([0, T ]). In fact, pretending that the right-hand side of Eq. (3.8.33) is
known, we interpret Eq. (3.8.33) as a linear system in the unknowns ḃℓ(t): its
coefficients form the already-met nonsingular matrix gs(b(t)). Proceeding as
in Eq. (3.8.26), we find

ḃℓ(t) =
Nd∑

ℓ=s+1

(g−1
s (b(t)))ℓ ℓ

( Nd∑

ℓ′=s+1

gℓ ℓ′(b(0))ḃℓ′(0)

+

∫ t

0

{
−

N∑

k=1

∂V (a)

∂ξ(k)
(Ξ(b(t′))) · ∂Ξ

(k)

∂βℓ
(b(t′))

+
1

2

Nd∑

ℓ′,ℓ′′=s+1

∂gℓ′ ℓ′′

∂βℓ
(b(t′))ḃℓ′(t

′)ḃℓ′(t
′′)
}
dt′
)
,

(3.8.34)

and since the right-hand side is obviously once differentiable, it follows that
bℓ; is twice differentiable. Differentiating both sides, we find an expression for
b̈ℓ in terms of b, ḃ, and some integrals: hence, ḃ is differentiable, etc. So b is
in C∞([0, T ]).

It remains to show that the limit as λ → +∞ of bλ ℓ(t) exists, ∀ ℓ =
s+1, . . . , Nd, without “passing to subsequences”. It suffices to show that every
divergent subsequence λn → +∞ for which the limit limn→+∞ bλn ℓ

(t), ℓ =
s+ 1, . . . , Nd, exists uniformly has to converge to the same limit.

It is enough to show that there is only one function t→ b(t) verifying Eq.
(3.8.33) and in C∞([0, T ]) and such that b(t) ∈ Ξ−1(S̺), ∀ t ∈ [0, T ], because
every limit of a uniformly convergent subsequence has to verify Eq. (3.8.33).
The following trick, which will be sublimated in §3.11 and§3.12, can be used.

Set, ∀ ℓ = s+ 1, . . . .Nd:

pℓ(t)
def
=

Nd∑

ℓ′=s+1

gℓ ℓ′(b(t))ḃℓ′(t) (3.8.35)
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or, for short,

p = gs(b)ḃ, (3.8.36)

where gs(β) is the last principal matrix of g(β) of order Nd − s. Then, by
differentiation with respect to t, Eq. (3.8.33) yields the following equations,
∀ ℓ = s+ 1, . . . , Nd:

ṗℓ =−
N∑

k=1

∂V (a)

∂ξ(k)
(Ξ(b)) · ∂Ξ

(k)

∂βℓ
(b)

+
1

2

Nd∑

ℓ′,ℓ′′=s+1

∂gℓ′ ℓ′′

∂β′ℓ
(b) (gs(b)−1p)ℓ′′ (gs(b)−1p)ℓ′′ .

ḃℓ =(gs(b)−1p)ℓ

(3.8.37)

with the notations of Eq. (3.8.33), having dropped the t dependence from
p(t),b(t) and having deduced the second equation from Eq. (3.8.36). In Eq.
(3.8.37), b means (0, . . . , 0, bs+1, . . . , bNd).

Note that pℓ(0), bℓ(0), ℓ = s + 1, . . . , Nd, are, by Eq. (3.8.36) or by as-
sumption, independent of the sequence used to construct b.

So every sequence λn → +∞, for which bλn ℓ(t) is uniformly convergent in
t ∈ [0, T ] to a limit, ∀ ℓ = s + 1, . . . , Nd, can be used to construct a solution
of the differential equation (3.8.37) for t → (pℓ(t), bℓ(t))ℓ=s+1,...,Nd verifying
the initial condition (pℓ(0), bℓ(0))ℓ=s+1,...,Nd.

Eq. (3.8.37) is not quite a differential equation of the type considered
in the uniqueness theorem, Proposition 1, §2.2, p.14, since the right-hand
side of Eq. (3.8.37) is defined only for b ∈ Ξ−1(S̺) as a function of the
pℓ,’s, bℓ’s. However, all functions b(t), t ∈ [0, T ], which can be built via the
above construction, are such that b(t) ∈ Ξ−1(S̺), t ∈ [0, T ]. Then easy from
Proposition 1, p.14, as a corollary, it follows that every solution to Eq. (3.8.37)
t → (p(t),b(t)), t ∈ [0, T ], verifying b(t) ∈ Ξ−1(S̺), ∀ t ∈ [0, T ], must be
identical to every other with this property. mbe

3.8.1 Problems

1. Let Σ ⊂ RNd be a regular surface with codimension s. Let (U,Ξ) be a regular system of
local coordinates well adapted and orthogonal on Σ: with respect to the scalar product of Eq.
(3.7.1). Denote β ∈ Ω the coordinates of ξ = Ξ(β) ∈ U . Set β = (βv ,βn) ∈ Rs ×RNd−s.
Show that the change of coordinates (βv ,βn) → (Λβv, eΛβn), with Λ and eΛ being two
s× s and (Nd− s)× (Nd− s) constant matrices, allows us to define a new system of local
coordinates which is still well adapted and orthogonal on Σ.

2. In the context of Problem 1, let W (β1, . . . , βs) be a C∞ function of (β1, . . . , βs, βs+1,

. . . , βsNd) independent of the last (Nd−s) coordinates. Suppose that Mij = ∂2W
∂βi∂βj

(0), i, j

= 1, ..., s, is a s × s matrix which is positive definite. Show that there is a change of co-
ordinates β → β′ of the linear type considered in Problem 1 changing W into a function
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such that Mij = δij , i, j = 1, , .., s. (Hint: Use eΛ = 1, Λ = J = {orthogonal matrix diago-
nalizing M} (see Appendix F, F.4). Then make a further change of coordinates of the same

type with eΛ = 1 and Λ = {diagonal matrix with diagonal elements (w
− 1

2
1 , . . . , w

− 1
2

s ) where
(w1, . . . , ws) are the s eigenvalues of M .)

3. Show that there is essentially no change in the proof of Proposition 13 if Eq. (3.8.11) is
changed into

W (β1, . . . , βs) =
1

2

sX

i=1

β2
i + o(β2

1 + . . .+ β2
s ).

4.* Alternatively to Problem 3, but with the same assumptions, show that there is a
change of coordinates which, possibly restricting the size of U to U ′ ⊂ U , changes β
into β′, retaining the orthogonality and good adaptation of the β′ coordinates, chang-
ing fW into 1

2

Ps
j=1 β

′2
j . (Hint: For β ∈ Ω, Ω ≡ (basis of (UΞ)), let W (β) = 1

2
β2 +

P1,s
i,j,ℓ γijℓ(β)βiβjβℓ, where γijℓ are suitable ∞(Ω) functions symmetric in the indices i, j, ℓ

(this assumption is not restrictive because of Problem 2 and of the Taylor-Lagrange theo-
rem, Appendix B). Then define β′

ℓ = βℓ +
Ps
j,k=1 fℓ,j,k(β)βjβk with f symmetric in i, j, k

and of class C∞ in β and impose

1

2
β2 +

1,sX

i,j,ℓ

γi,j,ℓ(β)βiβjβℓ ≡
1

2
β′2

=
1

2
β2 +

sX

ℓ,j,k=1

βℓfℓ,j,k(β)βjβk +
1

2

X

ℓ,j,k,j′,k′

fℓ,j,k(β)fℓ,j′,k′ (β)β2
ℓ βjβkβj′βk′

Therefore, γjkℓ has to be equal to

fj,k,ℓ(β) +
1

2

X

(ℓ1,j1,k1,j
′
1,k

′
1)⊃∗(j,k,ℓ)

fℓ1,j1,k1(β)fℓ1 ,j′1,k
′
1
(β)

»β2
ℓ1
βj1βk1βj′1

βk′1
βjβkβℓ

–
,

where ⊃∗ means that the monomial in square brackets has to “simplify” so that all the
terms in the denominator cancel with some in the numerator. Show that for small β, by
the implicit functions theorem, the above relation allows us to determine f in terms of γ
and β. Then, again by the implicit functions theorem, invert the relation between β and
β′ to complete the change of coordinates.)

5.* Let t → x(t), t ∈ R+ , be a motion of N points, with masses m1, . . . ,mN > 0, which
develops under the influence of an active force F(a), conservative with potential energy
V (a) ∈ C∞(RNd) bounded from below, and of an ideal constraint to a regular surface
Σ ⊂ RNd with a codimension s.

Let ξ0 = x(0), η0 = ẋ(0), and let eη0 be any velocity vector such that eηΣ0 = η0 and
call t → xλ(t) the motion with initial datum (eη0,ξ0) of the same system moving under
the influence of the same active force and of an approximate constraint model (Σ,W,λ)
verifying the assumptions of Proposition 13. Call T0 = {supremum of the T ’s such that
limλ→+∞ xλ(t) = x(t) uniformly for t ∈ [0, T ]}. Show that T0 = +∞. (Hint: The part

of Proposition 13 proved in this section says that T0 > 0. Suppose T0 < +∞. Let bξ0 =
x(T0), bη0 = ẋ(T0) and note that the energies of the motions xλ and x are λ independent and
coincide. Discuss the system’s motion in the coordinate system (U,Ξ) around bξ0 which is
well adapted and orthogonal to Σ and in which W admits a representation like Eq. (3.8.11).
Show that in (U,Ξ), bxλ verifies equations like Eqs. (3.8.24), (3.8.25), (3.8.26), and (3.8.31)
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with some slight changes which do not affect the conclusion that limλ→+∞ xλ(t) = x(t)
as long as xλ(t) stays inside U at a positive distance from ∂U . Since the conservation of
energy implies the bound of Eq. (3.8.14) on speed, it is clear that for large λ, xλ(t) and
x(t) will stay at a positive distance from ∂U for all times in a neighborhood of T0. Hence,
T0 = +∞.)

6.* Show that a system of N point masses, with masses m1, ...,mN > 0, bound by an ideal

bilateral constraint to a regular surface Σ ⊂ RNd and also subject to a conservative active

force with inferiorly bounded potential energy V (a), has (for all ξ0 ∈ Σ and η0 tangent to

Σ) a unique global motion t→ x(t), t ∈ R+, such that ẋ(0) = η0,x(0) = ξ0; i.e., a motion

verifying Eq. (3.7.20) in every local system of regular coordinates (Hint: Use the energy

conservation and the existence and uniqueness theorems for Eq. (3.7.20) following from its

transformation into Eq. (3.8.37): energy conservation together with the semiboundedness

of V (a) gives an a priori estimate.)

3.9 Application to Rigid Motion. König’s Theorem

The general perfection criterion for approximate constraints discussed in §3.8
is interesting because it establishes perfection of some classes of constraint
models.

In this section, as an application of the results of §3.8, Proposition 13, it
will be shown that a natural rigidity constraint model is approximately ideal.

Consider the following model (Σ,W, λ), which is one of the most important
constraint models for N points. Let ℓij > 0 be given numbers defined for
(i, j) ∈ S = {subset of the set of pairs of different points in (1, . . . , N)}; let
σi, i ∈ T ⊂ {1, . . . , N}, be a family of regular surfaces in R3; then define

Σ = {ξ | ξ = (ξ(1), . . . , ξ(N)) ∈ R3N , |ξ(i) − ξ(j)| = ℓij for i, j ∈ S;

ξ(i) ∈ σi, for i ∈ T },
(3.9.1)

W (ξ) =
∑

i,j∈S
ψij(|ξ(i) − ξ(j)| = ℓij +

∑

i∈T
ψi(|ξ(i) − σi|2), (3.9.2)

where ψij , ψi ∈ C∞(R), ψij(0) = ψi(0) = 0, and have a strict minimum at
zero; the notation |ξ − σi|2 denotes a C∞ function on R3 positive outside σi
and near σi, equal to the square of the distance between ξ and σi. Here σi
may also be a single point.

(Σ,W, λ) is a natural model of rigidity for some system points (those in
S) and for permanence on a surface or on a point (if σi is zero dimensional)
for some of the system points (those in T ).

In applications, it is quite common to meet only constraints for which the
above is a good model, when friction is neglected. It is not completely trivial
to show that Eqs. (3.9.1) and (3.9.2) are an approximate ideal model in the
sense of Definition 13, §3.7.
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In this case, we shall examine, for simplicity, only the case in which Eq.
(3.9.1)) is a “total rigidity” constraint, i.e., the case when S contains so many
pairs (e.g. all) to allow only configurations which can be obtained by rigid
motions of a single one or, at most, of finitely many. Nevertheless, we formulate
the general result.

14 Proposition. The model (Σ,W, λ) defined by Eqs. (3.9.1) and (3.9.2)
is a model of an approximate ideal constraint for a system of N points with
(arbitrary) masses m1, . . . ,mN > 0.

Proof. (Case T = ∅, S such that Σ is a total rigidity constraint). The
surface Σ, in the case under examination, decomposes into a finite number
of connected parts, each representing a rigid system in the usual sense of the
word.9

1

3

2
O

(a)

1

3

2
O

(b)

Fig.3.2

Fig.3.2. Example of two rigid disconnected configurations.

Suppose N ≥ 3, the N = 2 case having been already discussed in the Example
in §3.8, p.187. Suppose also that the points 1, 2, and 3 are not aligned in the
configurations of Σ: the degenerate case of N aligned points could be treated
likewise.

The configurations ξ′ ∈ Σ located on the same connected component of
Σ shall be uniquely determined by the position G of the system baricenter
in the “fixed” Cartesian reference frame (O; i, j,k) and by three orthogonal
unit vectors (i1, i2, i3) fixed with the system (“co-moving”) and finally by the
positions P1, . . . , PN of N points in the reference frame (G; i1, i2, i3). By the
rigidity constraint, the points P1, . . . , PN will have coordinates (Pi −G)ℓ, ℓ =
1, 2, i = 1, 2, . . . , N , which are given constants, ∀ ξ′ in the same connected
component of Σ, in the frame (G; i1, i2, i3). Suppose to have fixed i3 parallel
to (P2 − P1) and i2 parallel to the plane (P1, P2, P3) (but orthogonal to i3).

To prove Proposition 14, it will be sufficient to build a system of coor-
dinates, local near ξ0 ∈ Σ, regular, well adapted, and orthogonal to Σ with
respect to the scalar product of Eq. (3.7.1) and with the extra property that
W , the constraint structure function, has the property of Eq. (3.8.1).

9 Σ my consist of several connected parts: for instance, if N = 4 and the distances of
the points 0, 1, 2, 3 are d(0, 1) = 1, d(0, 2) = 1, d(1, 2) =

√
2, d(1, 3) =

√
2, d(2, 3) =

√
2,

respectively, then Σ contains two connected parts. The first consists of the configurations
obtained by rotations and translations of the configuration in Fig.3.2(a) and the other
of those in Fig. 3.2(b).
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Without loss of generality, suppose that the plane of the first two axes in

the co-moving frame (G0; i
(0)
1 , i

(0)
2 , i

(0)
3 ), associated with ξ0 ∈ Σ, i.e. the plane

(i
(0)
1 , i

(0)
2 ), is not parallel to the plane (i, j).

Let ξ be a configuration close to Σ: in general, ξ 6∈ Σ and with ξ are asso-
ciated 3N coordinates, obtained through the following construction. ξ can be
determined by assigning a configuration ξ′ ∈ Σ and the vectors κ(1), . . . ,κ(N)

providing the deviations of the points in ξ with respect to the corresponding
points P1, . . . , PN in ξ′. The (3N + 6) coordinates necessary to determine the
3N components of κ(1), . . . ,κ(N) in the frame (G; i1, i2, i3) fixed with ξ′ and
the six coordinates giving the position and orientation in space of (G; i1, i2, i3),
i.e., of ξ′, are redundant and six of them must be eliminated.

Coordinates that can be used to determine (G; i1, i2, i3) are the three
Cartesian coordinates of G in the fixed frame (0; i, j,k) and the three “Euler
angles” (θ, ϕ, ψ) of (G; i1, i2, i3) where n is the unit vector along the intersec-
tion between the plane (i, j) and the plane (i1, i2), arbitrarily oriented (the

“node lines”). The angles θ = î3k, ϕ = î n, ψ = n̂ i1 are illustrated in Fig.
3.3.

i 1

i 2

i 3

x

n

yO

z

ϕ

ψ

θ

Fig. 3.3

Fig.3.3.The Euler angles.

The components in (0; i1, i2, i3) of k, i3,n are, respectively:

k =(sin θ sinψ, sin θ cosψ, cos θ),

i3 =(0, 0, 1),

n =(cosψ, sinψ, 0)

(3.9.3)

and will be useful in the following.
To obtain a local system of regular coordinates near ξ0, remove from the

3N + 6 redundant coordinates, just introduced, six among them by imposing
the following six restrictions:

N∑

i=1

miκ
(i) = 0, (3.9.4)

N∑

i=1

(Pi −G) ∧mi κ
(i) = 0, (3.9.5)
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which signify that G is actually the baricenter of ξ as well as that of ξ′ and
that the configuration ξ′ ∈ Σ is so chosen that the system (miκ

(i))Ni=1 of
ξ′ ∈ Σ (“quantities of deviation”) have a vanishing “angular momentum”.
The above restrictions should be thought of as restrictions on the choice of
the reference configuration ξ′ ∈ Σ a priori arbitrary.

The six coordinates that can be eliminated via Eq. (3.9.4), and Eq. (3.9.5)
are, for instance, the first two components of κ(1) in (G; i1, i2, i3), the three
components of κ(2), and the first component of κ(3) still in (G; i1, i2, i3). The
“free coordinates” β = (β1, . . . , β3N will then be (orderly enumerated):

(κ
(1)
3 , κ

(3)
2 , κ

(3)
3 , κ

(4)
1 , κ

(4)
2 , κ

(4)
3 , . . . , θ, ϕ, ψ, (ξG)1, (ξG)2, (ξG)3,

where θ, ϕ, ψ are the Euler angles of (i1, i2, i3) with respect to (i, j,k), while

κ
(i)
j are the components in (G; i1, i2, i3) of the deviations κ(i).

Given the 3N coordinates β, the configuration ξ = Ξ(β) is built as follows:

(i) ξG = (β3N−2, β3N−1, β3N ) ≡ βG determines the baricenter G.
(ii) βrot = (β3N−5, β3N−4, β3N−3) ≡ (θ, ϕ, ψ) determine the orientation of the
axes i1, i2, i3. Therefore, the positions P1, . . . , PN of the N points of the aux-
iliary configuration, called ξ′ above, are determined.
(iii) The coordinates βV = (β1, . . . , β3N−6) determine (κ(4), . . . ,κ(N)) and,
hence, the positions in (G; i1, i2, i3) of the points labeled 4, 5, ..., N and, fur-

thermore, the coordinates κ
(1)
3 and κ

(3)
2 , κ

(3)
3 of κ(1),κ(3).

(iv) The coordinates of κ(2), as well as the remaining coordinates of κ(1),κ(3),
are determined from Eq. (3.9.4) and (3.9.5). Eq. (3.9.4) yields

κ(2) = −m1

m2
κ(1) −

N∑

i=3

mi

m2
κ(i) (3.9.6)

which, inserted into Eq. (3.9.5), yields

m1(P1 − P2) ∧ κ(1) +
N∑

i=3

mi(Pi − P2) ∧ κ(i) = 0 (3.9.7)

By scalar multiplication of Eq. (3.9.7) by (P1 − P2), it is

N∑

i=3

mi (P1 − P2) ∧ κ(i) · (Pi − P2) = 0 (3.9.8)

which determines the value of κ
(3)
1 . In fact, recalling that i3 is orthogonal to

the plane i1, i2 and that the latter three points are not aligned, (P3−P2)∧ i1 ·
(P1 − P2) 6= 0 so that Eq. (3.9.8) is a linear equation for κ

(3)
1 (with non-zero

coefficient in front of κ
(3)
1 ).

Once κ(3) is completely determined, Eq. (3.9.7) unambiguously provides
the first two components of κ(1), because Eq. (3.9.7) only leaves the component
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of κ(1)) along (P1 − P2) undetermined, which, however, is just κ
(1)
3 ) (recall

that i3 is parallel, by construction, to (P1 − P2), i.e., it is already known to
be β1).

Finally, once κ(1) and κ(3) are completely known, κ(2) is derived from Eq.
(3.9.5).

It is now possible to check the invertibility, near ξ0, of the transformation
associating with β = (βV ,βrot,βG) the configuration Ξ(β) = ξ built follow-
ing rules (i)-(iv). Such a transformation is also of class C∞ with non vanishing
Jacobian matrix near ξ0. However, we do not enter into the laborious analysis
of the check of the regularity, invertibility, and non singularity of Ξ: it does
not present any conceptual problem.

Hence, the transformation Ξ establishes a regular system of local coordi-
nates in some small enough neighborhood U of ξ0 ∈ Σ.

Clearly, the points in Σ ∩U are those described by β1 = . . . = β3N−6 = 0;
i.e., (U,Ξ) is adapted to Σ. Actually, (U,Ξ) is well adapted and orthogonal on
Σ, with respect to the scalar product of Eq. (3.7.1). To show this, try to find
the kinetic matrix associated with (U,Ξ) and Eq. (3.7.1). For this purpose the
kinetic energy of a motion t→ x(t) of N points has to be expressed through

in terms motion t→ b(t) = (bV (t),brot,bG(t))
def
= Ξ−1(x(t)), assuming that

the motion x takes place inside U for t ∈ [t1, t2].
By the definition of the coordinates β, one has, for t ∈ [t1, t2]:

x(i)(t) = bG(t) +

3∑

ℓ=1

(
κ

(i)
ℓ (t) + (Pi −G)ℓ iℓ(t)

)
(3.9.9)

and by differentiation one finds

ẋ(i)(t) = ḃG(t) +
3∑

ℓ=1

(
κ̇(i)(t) +

(
κ(i)(t) + (Pi −G)ℓ

)diℓ(t)
dt

)
(3.9.10)

We will now use a kinematic formula giving a simple expression to the time
derivative of three mutually orthogonal unit vectors which are time dependent:

d iℓ(t)

dt
= ω ∧ iℓ(t) (3.9.11)

here ω = ω(t) is a suitable vector called “angular velocity” of the triple
(i1, i2, i3).

10

10 To understand Eq. (3.9.11), note that, in general, the space orientation of three mutually
orthogonal axes i1, i2, i3 imagined as emerging from a fixed point Ω can only vary if
its three Euler angles (θ, ϕ, ψ) with respect to a fixed triple (i, j,k) change. If only θ
varies, it means that the reference frame (Ω; i1, i2, i3) rotates around the node line (see
Fig.3.3), and it is then clear a every point P co-moving with (Ω; i1, i2, i3) has velocity
vP = θ̇ n · (P −Ω). This holds, in particular, for the extremities of (i1, i2, i3; hence:



3.9 Rigid Motion. The König’s Theorem 203

A useful expression for ω is, in terms of the Euler angles (see p.202, foot-
note 10):

ω = θ̇ + ϕ̇k + ψ̇i3 (3.9.12)

Coming back to Eq. (3.9.10), we shall rewrite it by using Eq. (3.9.1)

ẋ(t) = ḃG +
˙̃
β

(i)

+ ω ∧ (κ(i) + (Pi −G)), (3.9.13)

diℓ

dt
= θ̇ n ∧ iℓ, ℓ = 1, 2, 3,

A similar argument shows that if i1, i2, i3 move because only ϕ or ψ vary, then

diℓ

dt
= ϕ̇k ∧ iℓ, or

diℓ

dt
= ψ̇ i3 ∧ iℓ,

More generally, if i1, i2, i3 vary because θ, ϕ, ψ simultaneously vary, it will be (by the
differentiation rule of composed functions):

diℓ

dt
= ω ∧ iℓ, ℓ = 1, 2, 3

with ω given by θ̇n + ϕ̇k + ψ̇i3, i.e., Eq. (3.9.11).
In connection with Eq. (3.9.11), it is natural to note one of its consequences: the

relation between a motion t→ P (t) in a frame (0; i, j,k) and the same motion in a frame
(Ω(t); i1(t), i2(t), i3(t)), time dependent. From the vector relation

P (t) −O = (P (t) −Ω(t)) + (Ω(t) − O)

written componentwise as

x(t)i + y(t)j + z(t)k = x1(t)i1(t) + x2(t)i2(t) + x3(t)i3(t) + x(t)i + y(t)j + z(t)k,

with obvious notations, it follows, by differentiation, that

V(a) = V(r) + x1
di1

dt
+ x2

di2

dt
+ x3

di3

dt
+ VΩ, .

where V (a) = ẋ(t)i + ẏ(t)j + ż(t)k is the velocity of t → P (t) in (O; i, j,k), V(r) is the
velocity of same motion “relative” to (Ω(t); i1(t), i2(t), i3(t)), i.e., V(r) = ẋ1(t)i1(t) +
ẋ2(t)i2(t) + ẋ3(t)i3(t) and VΩ is the velocity of the motion t→ Ω(t) in (O; i, j,k), i.e.,
VΩ = ẋ(t)i + ẏ(t)j + ż(t)k. Then, by using Eq. (3.9.11):

V(a) = V(r)+ω∧(x1(t)i1(t)+x2(t)i2(t)+x3(t)i3(t))+VΩ = V(r)+(ω∧(P−Ω)+VΩ).

The term in parentheses has the interpretation of the “drag velocity” that the point P
would have if it were fixed in (Ω; i1, i2, i3); hence, the above formula reads “the absolute
speed equals the sum of the relative speed plus the drag speed”. Furthermore, the velocity
of a point P fixed in a moving frame (Ω; i1, i2, i3) is given by

VP = VΩ +ω ∧ (P −Ω),

where VP is the velocity in (0; i, j,k) of P , ω is the angular velocity of the triplet
(i1, i2, i3) in (O; i, j,k), and VΩ is the speed of Ω in (O; i, j,k). The last relation is of
great interest in the theory of rigid motion.
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where we set ˙̃κ
(i)

=
∑3

ℓ=1 κ̇
(i)
ℓ iℓ(t) (which differs from κ̇(i)(t); in fact, it is

the velocity of the i-th point relative to the moving frame, while κ̇(i) is its
velocity relative to the fixed frame), and (Pi −G) =

∑3
ℓ=1(Pi −G)ℓiℓ(t).

It is now possible to compute the kinetic energy, using Eq. (3.9.13):

T =
1

2

N∑

i=1

mi(ẋ
(i))2 =

1

2

N∑

i=1

mi

(
ḃ2
G + ω ∧ (κ(i) + (Pi −G)) + ˙̃κ

(i))2

=
1

2
(

N∑

i=1

mi)ḃ
2
G +

1

2

N∑

i=1

mi(ω ∧ (κ(i) + (Pi −G)))2

+
1

2

N∑

i=1

mi( ˙̃κ
(i)

)2 +

N∑

i=1

miḃG · ω ∧ (κ(i) + (Pi −G))

+

N∑

i=1

miḃG · ˙̃κ
(i)

+

N∑

i=1

miω ∧ (κ(i) + (Pi −G)) · ˙̃κ
(i)

(3.9.14)

The fourth and fifth terms in the right-hand side vanish identically: which
follows by taking the constant vectors out of the summations and recalling
the definition of the baricenter (by which

∑N
i=1mi(Pi − G) = 0 as well as

Eq. (3.9.4). To study the second and the sixth terms of the right-hand side
(3.9.14), we will use the formula

(a ∧ b) · c = (b ∧ c) · a = (c ∧ a) · b (3.9.15)

to note that

N∑

i=1

miω∧(κ(i)+(Pi−G))· ˙̃κ(i)
= ω ·

( N∑

i=1

mi(κ
(i)+(Pi−G))∧ ˙̃κ

(i))
, (3.9.16)

and one can remark that the quantity within brackets in the right-hand of Eq.

(3.9.16) is the angular momentum K
(in)
G “relative” to the frame (G; i1, i2, i3)

(also called the “internal angular momentum”) and, furthermore, by Eq.

(3.9.5) written componentwise in (G; i1, i2, i3), by the ˙̃κ
(i)

definition and by
the time independence of the components of (Pi−G) in (G; i1, i2, i3) , it follows

that
∑N

i=1mi(Pi −G)) ∧ ˙̃κ
(i)

= 0,11 so that

K
(in)
G =

N∑

i=1

mi(κ
(i) + (Pi −G)) ∧ ˙̃κ

(i) ≡
N∑

i=1

mi κ
(i) ∧ ˙̃κ

(i)
(3.9.17)

11 Let s = 1, 2, 3 then Eq. (3.9.5) gives
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it is therefore true and, as it will be seen, important that K
(in)
G = 0 if κ(1) =

. . . = κ(N) = 0, i.e., if the system is, at the time considered, on Σ. The second
term of the right-hand side of Eq. (3.9.14) will be written as

1

2

N∑

i=1

mi

(
ω ∧ (κ(i) + (Pi −G))

)2

=
1

2
ω ·
[ N∑

i=1

mi(κ
(i) + (Pi −G)) ∧ (ω ∧ (κ(i) + (Pi −G)))

]

=
1

2
(ω · I(ω)),

(3.9.18)

where Eq. (3.9.15) has been used, having defined

I(ω)
def
=

N∑

i=1

mi(κ
(i) + (Pi −G)) ∧ (ω ∧ (κ(i) + (Pi −G))). (3.9.19)

Then define

TG
def
=

1

2
(

N∑

i=1

mi)ẋ
2
G, “baricenter kinetic energy”, (3.9.20)

T (in) def=
1

2

N∑

i=1

mi( ˙̃κ
(i)

)2, “internal kinetic energy”, (3.9.21)

TC
def
= K

(in)
G · ω, “complementary” or “Coriolis” kinetic energy, (3.9.22)

Trot
def
=

1

2
ω · I(ω), “rotational kinetic energy”, (3.9.23)

and remark that it has just been shown that

T = TG + T (in) + Trot + TC . (3.9.24)

When ω = 0, this relation is called “König’s theorem”.
From Eq. (3.9.24), it can be seen that the coordinate system defined by Ξ

near ξ0 is well adapted and orthogonal on Σ. In fact, one can note that at a

0 =
d

dt

NX

i=1

mi
“
(κ(i) + (Pi −G)) ∧ κ(i)

”
s

=
d

dt

NX

i=1

mi

1,3X

ℓ′,ℓ′′

(Pi −G)ℓ′κ
(i)
ℓ′′

(iℓ′ ∧ iℓ′′)s

=
NX

i=1

mi

1,3X

ℓ′,ℓ′′

(Pi −G)ℓ′ κ̇
(i)
ℓ′′

(iℓ′ ∧ iℓ′′)s =
“ NX

i=1

mi(Pi −G) ∧ ėκ(i)
”
s

since (iℓ′ ∧ iℓ′′)s is either 0 or ±1, ∀t, i.e. it has 0 t-derivative.
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point ξ ∈ Σ, the coordinates κ(1), . . . ,κ(N), hence, the βV ’s, vanish (i.e., the
β coordinates are adapted to Σ). Furthermore, if the motion t→ x(t) happens
to occupy the position ξ ∈ Σ at a certain time t0 we have TC(t0) = 0, by Eqs.
(3.9.17) and (3.9.22).

At the same time instant T (in)(t0), as one realizes from the determination
of κ(1),κ(2),κ(3), via Eqs. (3.9.4) and (3.9.5), is a quadratic form in ḃV (t0)
with coefficients only depending upon the structure of Σ via the coordinates
(Pi−G)ℓ, i = 1, 2, 3, ℓ = 1, . . . , N , which are given constants (ξ independent,
hence, βV independent).

Finally, TG(t0) is a quadratic form in ḃG(t0) with constant coefficients,
while Trot(t0) is a quadratic form in the components of ω in (G; i1, i2, i3)
with coefficients depending only on the structure of Σ via the (constant)
coordinates (Pi − G)ℓ, ℓ = 1, 2, 3, i = 1, . . . , N [see, for more details, Eq.
(3.9.29)]. Hence, since the components of ω in (G; i1, i2, i3) are, by Eq. (3.9.3),

ω1 =θ̇ cosψ + ϕ̇ sin θ sinψ

ω2 =− θ̇ sinψ + ϕ̇ sin θ cosψ

ω3 =ϕ̇ cos θ + ψ̇

(3.9.25)

it follows that the rotation kinetic energy is a quadratic form in ḃrot(t0) =
(θ̇, ϕ̇, ψ̇)t=t0 with coefficients solely dependent on θ, ϕ, ψ [by Eq. (3.9.25)].

Hence, the quadratic forms defining T on Σ do not contain any mixed
terms like or (ḃV )i(ḃrot)j or (ḃV )i(ḃG)j ; therefore, the coordinate system is
orthogonal on Σ (see Definition 12, §3.7, p.177). It is also well adapted by the
above observed constancy of the coefficients of the quadratic form in ḃV (t0)
expressing T (in)(t0).

From the definition of W , it appears that W depends only upon κ(1), . . . ,
κ(N) through their components in (G; i1, i2, i3), i.e., only upon βV [in fact, as
already remarked, such components can be reconstructed from the βV ’s via
Eqs. (3.9.4) and (3.9.5) and depend only on the βV ’s and do not depend on
(βrot,βG)].

This concludes the perfection proof for the constraint model (Σ,W, λ) in
the rigid case considered above. mbe

Observation. By deducing Eq. (3.9.24), it has been explicitly shown that the
kinetic energy of a rigid body, i.e., of a motion of a system of N masses in
R3 constrained to keep fixed mutual distances, can be expressed in terms of
six coordinates and their derivatives. If such coordinates are the baricenter
coordinates xG and the three Euler angles (θ, ϕ, ψ) of a co-moving frame
(G; i1, i2, i3) with respect to a fixed frame (O; i, j,k) and if ω1, ω2, ω3 are the
components in (G; i1, i2, i3) of the angular velocity [see Eqs. (3.9.12), (3.9.3),
and (3.9.25), then there exists a 3× 3 matrix I = (Iij)i,j=1,2,3 such that

T =
1

2
M ẋ2

G +
1

2

3∑

i,j=1

Iijωiωj , (3.9.26)
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where M =
∑N

i=1mi and T denotes the system kinetic energy. In fact, Eq.
(3.9.26) follows from Eq. (3.9.24), since in this case κ(i) = 0 (because the
motion is rigid) and T (in) ≡ 0 ≡ TC , and from Eq. (3.9.18) showing

Trot =
1

2
ω · I(ω) =

1

2

N∑

i=1

mi

[
(Pi −G) ∧ (ω ∧ (Pi −G))

]
· ω

=
1

2

N∑

i=1

mi(ω ∧ (Pi −G))2

(3.9.27)

by Eq. (3.9.15); then Eq. (3.9.27) permits us to obtain Eq. (3.9.26) as follows.
If θi is the angle between ω and (Pi −G):

(ω ∧ (Pi −G))2 = ω2 (Pi −G)2 (sin θi)
2 = ω2 (Pi −G)2 (1− (cos θi)

2)

= ω2 (Pi −G)2
[
1− (ω · (Pi −G))2

ω2 (Pi −G)2
]

= ω2 (Pi −G)2 − (ω · (Pi −G))2

= (

3∑

ℓ=1

ω2
ℓ ) (

3∑

ℓ′=1

(Pi −G)2ℓ′)−
3∑

ℓ,ℓ′=1

ωℓωℓ′(Pi −G)ℓ(Pi −G)ℓ′

≡
3∑

ℓ,ℓ′=1

ωℓωℓ′
(
(

3∑

ℓ̃=1

(Pi −G)2
ℓ̃
)δℓℓ′ − (Pi −G)ℓ(Pi −G)ℓ′)

(3.9.28)

hence,

Iℓℓ′ =

N∑

i=1

mi

{
(

3∑

ℓ̃=1

(Pi −G)2
ℓ̃
)δℓℓ′ − (Pi −G)ℓ(Pi −G)ℓ′)

}
, (3.9.29)

which are constants, ∀ℓ, ℓ′ = 1, 2, 3, characteristic of the rigid body because
such are the components (Pi − G)ℓ, ℓ = 1, . . . , N, ℓ = 1, 2, 3, of the vectors
(Pi − G) in the co-moving frame (G; i1, i2, i3). We shall come back to Eqs.
(3.9.26) and (3.9.29), deducing them independently of the constraint theory,
to help the readers who have not paid attention to the proofs of this section.

3.9.1 Exercises and Problems

1. Suppose that the reference system (G; i1, i2, i3), with origin at the baricenter of a system
of masses, has a purely translational motion in the reference system (0; i, j,k). Show that
the kinetic energy is T = TG + T (in).

2. Let t → ω(t), t ∈ R+, be the angular velocity for the triplet of orthogonal unit vectors
i1, i2, i3 moving in the reference frame (0; i, j,k). Let t → y(t), t ∈ R+, be a R3-valued
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function and write it as y(t) =
P3
ℓ=1 yℓ(t)iℓ(t). Define ėy(t) =

P3
ℓ=1 ẏℓ(t)iℓ(t) and show

that ẏ = ėy +ω ∧ y by using diℓ
dt

= ω ∧ iℓ. Show also that ω̇ = ėω.

3. Compute the components of ω, Eq. (3.9.12), in (0; i, j,k) in terms of the Euler angles
and their derivatives.

4. Evaluate the matrix Ijℓ for the rigid system in Fig. 3.2(a), assuming m0 = m1 = m2 =
m3 = 1 or m0 = 1, m1 = 2, m2 = 3, m3 = 4, taking for the moving frame the one with
axes parallel to those in Fig. 3.2(a) and origin in G (Hint: If the direct computation looks
cumbersome, replace G by O using Problems 5 and 6 below.)

5. Consider a rigid system constrained to have one of its points fixed at the origin of the fixed
frame of reference (O; i, j,k). Show that if (O; i1, i3, i3) is a co-moving frame, the kinetic
energy can be expressed as T = 1

2

P
ℓ,ℓ′ Jℓℓ′ωℓωℓ′ , where Jℓℓ′ are constants depending only

on the body structure.

6. In the context of Problem 5, consider the cases when O = G and when O 6= G, calling Iℓℓ′
or Jℓℓ′ the matrix expressing the kinetic energy in the frames (O; i1, i2, i3) or (G; i1, i2, i3).
Show that if M =

PN
i=1mi,

Jℓℓ′ = Iℓℓ′ +M [(G−O)2δℓℓ′ − (G−O)ℓ(G− O)ℓ′ ].

3.10 General Considerations on the Theory of
Constraints

The approximate constraint theory, in the analysis of Proposition 13, §3.8,
and Proposition 14, §3.9, still contains some unsatisfactory aspects that it is
useful to mention explicitly.

In applications in which a certain model (Σ,W, λ) of approximately ideal
constraint is a good model, the rigidity parameter λ has a well-defined value
λ < +∞ which is fixed and, therefore, cannot tend to +∞.

Therefore, the problem arises of how to estimate, in terms of λ, the error
encountered when approximating the “real motions” t → xλ(t) with their
limits as λ→ +∞ (which are described by the equations of motion relative to
ideal constraints, because (Σ,W, λ) is supposed to be an approximately ideal
constraint, i.e., by “simple” equations).

The theory of §3.8, if one carefully looks at the formulas derived in the
proof, also provides some estimates of the errors made in the mentioned ap-
proximation.

However, it is sufficient to simply look at the calculations made there to
realize that if N is a number of the order of magnitude of a few dozens (not
to speak of the cases when it is on the order of Avogadro’s number, as is
sometimes the case), such estimates become ridiculously rough for reasonable
values of λ and reasonable models of W .

As usual, the problem of finding good error estimates is a problem that
should not be posed in too great a generality but should be discussed in con-
nection with precise and concrete questions of a physical nature concerning
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the behavior of physical entities which, in each case, appear as interesting.
Even so, it remains a very difficult question and is a typical problem in statis-
tical mechanics. Except in a few simple cases, it is an essentially open problem
from a mathematical viewpoint.

Physicists and engineers have elaborated theories, mathematically non rig-
orous consequences of the dynamics of point masses, which allow them to
evaluate the errors involved in the perfect constraint approximation in a rea-
sonable way, often experimentally correct.12

However, it is often only through recourse to experiments that one is able
to understand whether a certain constraint can or cannot be approximated
by an ideal one.

It is good for the student to keep the above considerations in mind while
solving the standard book-made problems concerning the constrained motions
in order to appreciate their often purely didactic and abstract nature.

The above discussion, which we will not continue, gives an idea of the depth
of the ideal constraint notion, and it can perhaps be useful to understand why
long and learned discussions on the argument often take place. So many and
so diverse are these arguments that they may leave those who realize their
existence for the first time quite surprised.

Other problems naturally arise in the theory of the holonomous con-
straints. Some of them are:

(i) When an approximate constraint (Σ,W, λ) is not perfect, how can the
motion be described in the limit λ→ +∞? Is it possible, as the considerations
in §3.6 seem to suggest, to treat the constraint in this limit as ideal in the
sense of §3.5, modifying the potential energy of the active forces, possibly as
a function of the initial datum? See the example of §3.6, following Definition
10.

(ii) In case (i), how can we find the active forces? And how can we estimate
the errors involved in the approximation λ = +∞?

(iii) How can we treat the case when the constraint model (Σ,W, λ) is
ideal but the system moves under the influence of a force which is the sum of
the constraint force, with potential energy λW , and a force law, in C∞(RNd)

F(a) = F(a)(ξ(1), . . . , ξ(N)) (3.10.1)

which is not necessarily conservative?
(iv) This is the same as (iii), replacing the constraint model by an approx-

imate conservative model which is not approximately ideal.
(v) This is the same as (i) and (ii) in the situation described by (iii).

12 For instance, elasticity theory has, among other theories, this scope. Of course, elasticity
theory can be set up as a mathematically rigorous theory in itself: what is non rigorous
is the connection between elasticity theory and the above microscopic theory of con-
straints. In other words, elasticity theory is itself a mathematical model which in this
case “models” another mathematical model: even such things can happen!
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The preceding problems are not easy and are open problems to some extent
(in the sense that there do not seem to be in the literature any interesting
general propositions about them) except problem (iii) which is essentially
completely solved by the following proposition, proved exactly in the same
way as the analogous Proposition 13, §3.8, p.186:

15 Proposition. Let (Σ,W, λ) be a model for an ideal approximate bilateral
s-codimensional constraint for N points in Rd, with masses m1, . . . ,mN > 0.
Consider an initial datum (η0, ξ0) ∈ R2Nd such that ξ0 ∈ Σ. Let t → x(t)
be the motion that follows this initial datum and develops under the influence
of the field of conservative forces with potential energy λW and of a field
F(a) ∈ C∞lim(RNd) of uniformly bounded forces, not necessarily conservative.
Then the limit

lim
λ→+∞

xλ(t) = x(t) (3.10.2)

exists for every t ∈ R and it is a motion constrained to Σ with initial datum

x(0) = ξ0, ẋ(0) = ηΣ0 (3.10.3)

[see Eqs. (3.7.24) and (3.7.26)]. Suppose that for t ∈ [t1, t2] the motion x
dwells in a neighborhood U where a system (U,Ξ) of local regular coordinates
adapted to Σ is established. Then x is described in the basis Ω for (U,Ξ) by
a motion t→ b(t) verifying:

b1(t) = b2(t) = . . . = bs(t) = 0, (3.10.4)

d

dt

( ∂T
∂αi

(ḃ(t),b(t))
)
−
( ∂T
∂βi

(ḃ(t),b(t))
)

= Φi(b(t)), (3.10.5)

∀i = s+ 1, . . . , Nd, where

T (α,β) =
1

2

Nd∑

i,j=1

gij(β)αiαj , (α,β) ∈ RNd ×Ω (3.10.6)

if g is the kinetic matrix associated with the system (U,Ξ) and

Φi(β) =

N∑

k=1

F(a)(k)(Ξ(β)) · ∂Ξ
(k)

∂βi
(β) (3.10.7)

Observation. The functions in Eq. (3.10.7) on Ω are called the “force com-
ponents” of the force F(a) = (F(a)(1), . . . ,F(a)(N)) in the reference system
(U,Ξ). The proof of Proposition 15 is a repetition of that of Proposition 13.

A final comment on the theorems of §3.8 and §3.10 concludes this section.
The condition ξ0 ∈ Σ appears to be somewhat unnatural, and one would like
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to change it to “ξ0 close enough to Σ”. However, the problem is what is meant
by “close enough”?

It is quite clear that the closeness notion should be λ dependent: in fact,
we shall call ξ0 close to Σ only if the energy λW (ξ0) is not too large; i.e., if
the initial deviation out of Σ does not involve “too large constraint forces” or
“too large elastic deformation energy”.

It is then clear that it will be possible to try to prove propositions analo-
gous to Proposition 13 or Proposition 15 by replacing the hypothesis ξ0 ∈ Σ
with the hypothesis that the position of the initial datum is a function
of λ, ξ0(λ), such that the limit limλ→+∞ ξ0(λ) = ξ0 ∈ Σ. In this case,
λW (ξ0(λ))/λ−−−−−→λ→+∞ 0 (i.e., the initial “constraint deformation energy” is not
too large, being of lower order with respect to λ, which is the order of the
energy of a λ-independent deformation).

The proof of the analogues of Propositions 13 and 15 would be identical
under these more general assumptions: this could be realized via a detailed
examination of their proofs.

Historical Note: The idea that the constrained systems, ideal or not, could be
thought of as limiting cases of non constrained systems subject to strong forces
is naturally ancient. However, to the best of this author’s knowledge, it has
been written down in the form of a precise theorem to be interpreted as a proof
of the least-action principle in [1] (p.80-82). Here the idea is expressed and it
is shown how the least-action principle can be deduced through Proposition
13, §3.8, p.186. This is, in my opinion, the most interesting and deepest of
the “proofs” of the least-action principle (and, hence, of the virtual-work
principle). There exist other proofs, sometimes very ingenious, which, however,
are never more than pseudo-proofs in the sense well described by E. Mach
([31], e.g., in Chapter III, §5.6).

3.11 Equations of Hamilton and Lagrange. Analytical
Mechanics

Before beginning the study of concrete mechanical problems, it is convenient
to deduce from what has already been seen some abstract mathematical struc-
ture naturally arising in the context of constraint theory and the least-action
principle.

14 Definition. Let U ⊂ Rℓ ×Rℓ ×R be an open set and let L ∈ C∞(U) be
a real-valued function. L will be called a “regular Lagrangian function” on U
if the map Ξ transforming the point (α,q, t) ∈ U into the point

(π,q, t) ∈ Rℓ ×Rℓ ×R (3.11.1)

with
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πi =
∂L
∂αi

(α,q, t) (3.11.2)

maps the neighborhood U into a neighborhood V ⊂ Rℓ ×Rℓ ×R, V = Ξ(U)
invertibly and with a non vanishing Jacobian (“nonsingularly”).13

If L is a regular Lagrangian on U , the equations for the motion t →
(q̇(t),q(t), t) in U ,

d

dt

( ∂L
∂αi

(q̇,q, t)
)

=
∂L
∂qi

(q̇,q, t), (3.11.3)

are called the “Lagrangian differential equations” for the Lagrangian L.
Since the map (3.11.1) does not really involve q, the above definition makes
sense without change if U is an open subset of Rℓ×T ℓ×R or of Rℓ× (T ℓ1×
Rℓ2)×R, with ℓ1 + ℓ2 = ℓ, provided C∞(U) is understood in the natural sense
following Definition 13, p.101, §2.21.
In these cases, V will have to be a subset of Rℓ × T ℓ ×R or of Rℓ × (T ℓ1 ×
Rℓ2) × R, ℓ1 + ℓ2 = ℓ, and the points on the tori are to be thought of as
described in “angular coordinates”, see Definition 12, p.100, §2.21.
Observations:
(1) The usefulness of the clumsy-looking extension appearing in the second
part of the definition can be understood by noting that, for instance, a point,
with mass m > 0, bound to a vertically placed circle with radius R by an ideal
constraint and subject to gravity has, if ϕ is the natural angular coordinate on
the circle thought of as T 1, a Lagrangian description in the sense of Definition
14 in terms of L(α, ϕ, t) = 1

2mα
2 + mgR cosϕ. In this case, U = R × T 1 ×

R and Eq. (3.11.3) becomes the pendulum equation (g being gravitational
acceleration).

Similarly, a free particle ideally bound to a circle will be described on
R× T ℓ ×R by L0(α, ϕ, t) = 1

2mα
2.

Hence, when the surfaceΣ generated by an ideal constraint is topologically
a torus, we have the possibility of using “global angular coordinates” without
having to cover Σ, to describe the motions on Σ, with several local systems
of regular coordinates.
(2) When L does not depend explicitly on time, i.e., L(α,β, t) ≡ L̃(α,β),

∀(α,β, t) ∈ U , for some L̃, we say that L is “time independent” and we shall
write it without the variable t.

The following proposition holds.

16 Proposition. Let L be a regular Lagrangian on an open subset U ⊂
Rℓ × Rℓ × R (or Rℓ × (Rℓ1 × T ℓ2) × R, ℓ1 + ℓ2 = ℓ, ℓi ≥ 0), and let t →
(q̇(t),q(t), t) ∈ U be a motion defined for t ∈ [t1, t2], verifying Eq. (3.11.3).
Setting

13 The Jacobian determinant coincides with the determinant of the matrix Jij =
∂2L(α,q,t)
∂αi∂αj

, i, j = 1, . . . , ℓ.
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(α(p,q, t),q, t) = Ξ−1(p,q, t), (3.11.4)

H(p,q, t) =

ℓ∑

i=1

piαi(p,q, t)− L(α(p,q, t),q(t), t) − L(α(p,q, t),q, t),

(3.11.5)
for (p,q, t) ∈ V (see Definition 14), the motion in V , image of the preceding
motion in U via Eq. (3.11.1), t→ (p(t),q(t), t) = Ξ(q̇(t),q(t), t), verifies the
equations:

ṗi = −∂H
∂qi

(p(t),q(t), t), i = 1, . . . , ℓ (3.11.6)

q̇i =
∂H

∂pi
(p(t),q(t), t), i = 1, . . . , ℓ (3.11.7)

Observation. Note that Eqs. (3.11.6) and (3.11.7) are equations to which the
local existence, uniqueness, and regularity theorems for differential equations
can be immediately applied; this is not the case for Eq. (3.11.3), where the
highest derivatives do not necessarily appear with constant coefficients: see
also the final part of the proof of §3.8 p.196, to realize that this is really an
inconvenience.

Proof. We only discuss the case U ⊂ Rℓ × Rℓ × R, leaving the other two
cases (U ⊂ Rℓ × T ℓ × R or U ⊂ Rℓ × (Rℓ1 × T ℓ2) × R, ℓ1 + ℓ2 = ℓ) as
exercises. In any case, the proof is just an algebraic check. Equation (3.11.3)
can be written by Eq. (3.11.2) as

d

dt
pi(t) =

∂L
∂qi

(q̇(t),q(t), t), i = 1, . . . , ℓ, (3.11.8)

but, by Eq. (3.11.5), ∀i = 1, . . . , ℓ,

∂H

∂qi
=
∂L
∂qi
−

ℓ∑

j=1

∂L
∂αj

∂αj
∂qi

+
ℓ∑

j=1

pj
∂αj
∂qi

, (3.11.9)

and by Eqs. (3.11.2) and (3.11.4), implying pj ≡ ∂L
∂αj

(α(p,q, t),q(t), t), the

two sums cancel and Eqs. (3.11.8) and (3.11.9) become Eq. (3.11.6).
Furthermore, by Eqs. (3.11.5) and (3.11.2),

∂H

∂pi
= αi +

ℓ∑

j=1

pj
∂αj
∂pi

= αi = q̇i (3.11.10)

i.e., Eq. (3.11.7) follows. mbe

The above proposition suggests a definition.
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15 Definition. Let V be an open set in W × Rℓ × R (or Rℓ × T ℓ × R or
Rℓ× (Rℓ1×T ℓ2)×R, ℓ1 + ℓ2 = ℓ, ℓi > 0)14 and let H be a real-valued C∞(V )
function. H will be said to be a “regular Hamiltonian function” on V if the
map Ψ transforming the point (π,β, t) ∈ V into the point

ψ(π,β, t) = (α,β, t) (3.11.11)

with

αi =
∂H

∂πi
(π,β, t), i = 1, . . . , ℓ, (3.11.12)

maps V in a neighborhood U ⊂ Rℓ×R (or Rℓ×T ℓ×R or Rℓ×(Rℓ1×T ℓ2)×
R, ℓ1+ℓ2 = ℓ, ℓ2 > 0, respectively), U = Ψ(V ), invertibly and nonsingularly.15

If H is a regular Hamiltonian on V , the equations for the motion t →
(p(t),q(t), t) in V :

ṗi(t) = −∂H
∂βi

(p(t),q(t), t) (3.11.13)

q̇i(t) =
∂H

∂πi
(p(t),q(t), t) (3.11.14)

are called the “Hamiltonian differential equations” for the Hamiltonian H.

A proposition similar to Proposition 16 holds.

17 Proposition. Let H be a regular Hamiltonian function on V ⊂ RRℓ ×
R (or Rℓ × T ℓ × R or Rℓ × (Rℓ1 × T ℓ2) × R, ℓ1 + ℓ2 = ℓ, ℓ2 > 0). Let
t → (p(t),q(t), t) be a motion in V defined for t ∈ [t1, t2] and verifying Eqs.
(3.11.13) and (3.11.14). Setting

(π(α,β, t),β, t) = Ψ−1(α,β, t) (3.11.15)

for (α,β, t) ∈ U (see definition 15) and

L(α,β, t) =

ℓ∑

j=1

πj(α,β, t)αj −H(π(α,β, t),β, t) (3.11.16)

the motion in U , t → (a(t),q(t), t) = Ψ−1(p(t),q(t), t), t ∈ [t1, t2], verifies
the equations:

q̇(t) = a(t), (3.11.17)

d

dt

( ∂L
∂αi

(q̇(t),q(t), t)
)

=
∂L
∂βi

(q̇(t),q(t), t), i = 1, . . . , ℓ (3.11.18)

14 As in Definition 14, this definition makes sense without change if V is an open subset of
Rℓ × T ℓ ×R or Rℓ × (Rℓ1 × T ℓ2) ×R, ℓ1 + ℓ2 = ℓ (see Definition 14 and Observation
(1) to Definition 14).

15 i.e., with non vanishing Jacobian determinant. Such a Jacobian determinant is easily
seen to be the determinant of the matrix Jij = (∂2H/∂πi∂πj), i, j = 1, . . . , ℓ.
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Proof. The proof is basically identical to that of Proposition 16.

Observations.
(1) Propositions 16 and 17 show that “a system of Lagrangian equations,
regular on U , is equivalent to a system of Hamiltonian equations, regular on
V , and vice versa”. The sets U and V are related by the relations:
(i) V is the image of U via the map

Ξ : (α,β, t)→ (π,β, t) =
(∂L
∂α

(α,β, t),β, t
)

(3.11.19)

where L is the Lagrangian function on U .
(ii) U is the image of V via the map

Ψ : (π,β, t)→ (α,β, t) =
(∂H
∂π

(π,β, t),β, t
)

(3.11.20)

where H is the Hamiltonian function on V corresponding to L.
(iii) L and the corresponding H are related by

H(π,β, t) =

ℓ∑

i=1

πiαi(π,β, t)− L(α(π,β, t),β, t), (3.11.21)

L(α,β, t) =

ℓ∑

i=1

πi(α,β, t)αi −H(π(α,β, t),β, t). (3.11.22)

(2) In the applications met so far, L(α,β, t) has always had the form

L(α,β, t) =
1

2

ℓ∑

i,j=1

gij(β)αiαj − V (β) (3.11.23)

where g is a positive definite matrix. L is usually defined in neighborhoods
U = R×U0 ×R, U0 ⊂ T ℓ (or U0 ⊂ Rℓ1 ×T ℓ2 , ℓ1 + ℓ2 = ℓ, ℓi > 0) open. Eq.
(3.11.23) is regular on U because Eq. (3.11.19) [or Eq. (3.11.2)] becomes

πi =

ℓ∑

j=1

gij(β)αj , i = 1, . . . , 1, (3.11.24)

which is invertible and nonsingular if thought of as defining [see Eq. (3.11.19)]
a map of U onto V = Rℓ×U0×R: this is so by virtue of Proposition 11, §3.7,
p.182, on the kinetic matrices (implying det g(β) 6= 0).
The Hamiltonian function associated with Eq. (3.11.23) is, by Eqs. (3.11.24)
and (3.11.21),

H(π,β, t) =
1

2

ℓ∑

i,j=1

(g(β)−1)ij πi πj + V (β), (3.11.25)
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where g(β)−1 is the inverse matrix to g(β).
(3) In the case of the Lagrangian (3.11.23), Eq. (3.11.2) [i.e., Eq. (3.11.24)] is
simply the condition expressing that the gradient of the function of α ∈ Rℓ,

α→ π ·α− L(α,β, t) (3.11.26)

vanishes. One can check that for such a value of α, Eq. (3.11.26) actually
reaches its only absolute maximum [Note that in the case considered here,
Eq. (3.11.26) is a quadratic form in α plus a linear form in α.] So

H(π,β, t) = max
α∈Rℓ

(π ·α− L(α,β, t)) (3.11.27)

when L is given by Eq. (3.11.23) or, more generally, whenever the function
of Eq. (3.11.26) has only one stationarity point in a which is a maximum
(exercise). Similarly,

L(α,β, t) = max
π∈Rℓ

(π ·α−H(π,β, t)) (3.11.28)

if H is given by Eq. (3.11.25) or, more generally, whenever the function of π
inside the parenthesis on the right-hand side has only one stationarity point
in a which is a maximum.
Equations (3.11.27) and (3.11.28) are often called “Legendre’s duality” or
“Legendre’s transformations” on L or H , respectively.
(4) Definitions 14 and 15 and Propositions 16 and 17 assume a simpler
form if one is interested in Lagrangian or Hamiltonian functions not ex-
plicitly depending on time and defined on sets U or V of the form Û × J
or V̂ × J with J = {open interval in R} and Û , V̂ ⊂ Rℓ or Rℓ × T ℓ or
Rℓ × (Rℓ1 × T ℓ2), ℓ1 + ℓ2 = ℓ, open sets.
In such cases, the t parameter can be eliminated from the definition of the
sets U, V (replacing them by Û , V̂ ) and of the maps Ξ,Ψ in Definitions 14

and 15, and L or H will be functions in C∞(Û ) or on C∞(V̂ ). L or H will
be called “time-independent” Lagrangian or Hamiltonian functions and they
generate autonomous Lagrangian or Hamiltonian equations via Eqs. (3.11.3),
(3.11.6), and (3.11.7).

When V̂ = Rℓ × U0, the space V̂ is usually called the “phase space” if it
is regarded as the initial data space for some time-independent Hamiltonian
equations: this name is often used even when V is just an open set (not

necessarily of the form Rℓ × U0). Similarly, when Û = Rℓ × U0, the space

Û is called the “data space” if it is regarded as the initial data space for a
time-independent Lagrangian equation.

The formal wording of the above concepts is straightforward and will be
left to the reader. We shall freely refer to time-independent Lagrangian or
Hamiltonian functions and equations on the data space or the phase space.

It is interesting to note the following abstract version of the energy con-
servation theorem.
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18 proposition. Consider a system of Hamiltonian equations in a neighbor-
hood U = R×U0×R, U0 ⊂ Rℓ, (or U0 ⊂ T ℓ or U0 ⊂ Rℓ1 ×T ℓ2 , ℓ1 + ℓ2 = ℓ)
and let (π,β, t) → H(π,β, t) be the (regular) Hamiltonian function. If
t→ (p(t),q(t), t) ∈ U, t ∈ [t1, t2], is a motion verifying in U the Hamiltonian
equations, then

d

dt
(H(p(t),q(t), t)) =

∂H

∂t
(p(t),q(t), t), (3.11.29)

Hence, if H is time independent, i.e., H(π,β, t) ≡ h(π,β) for some h ∈
C∞(Rℓ×U0), Eq. (3.11.29) implies the existence of a constant E, depending
on the motion under investigation, such that

h(p(t),q(t)) = E, t ∈ [t1, t2]. (3.11.30)

Observations.
(1) In the cases met so far, the Lagrange function had the form of Eq. (3.11.23)

and 1
2

∑ℓ
i,j=1 gij(q(t))q̇i(t)q̇j(t) had the interpretation of kinetic energy T (t)

of the motion, while V (q(t)) had the interpretation of potential energy V (t).
Furthermore, the relation between p(t) and q̇(t) was [Eq. (3.11.24)]:

p(t) = g(q(t))q̇(t). (3.11.31)

Then, by Eq. (3.11.31),

1

2

ℓ∑

i,j=1

(
g(q(t))−1

)
ij
pi(t)pj(t) =

1

2

ℓ∑

i,j=1

g(q(t))ij q̇i(t)q̇j(t) ≡ T (t). (3.11.32)

Hence Eq. (3.11.30) becomes

T (t) + V (t) = E. (3.11.33)

(2) When a system of N points without constraints, with the Lagrangian
function

L(α,β) =
1

2

ℓ∑

i=1

miα
2
i − V (β) (3.11.34)

is considered, we see that π = (π(1), . . . ,π(N)) with π(i) = miα
(i), i =

1, . . . , N , so that if t→ x(t), t ∈ [t1, t2], is a system motion:

pi(t) = mi q̇i(t), i = 1, . . . , ℓ (3.11.35)

which explains the name “generalized momenta” given to the variables πi in
general.
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The variables πi are also called the “conjugated momenta” with respect to
βi, i = 1, . . . , ℓ, and the 2ℓ variables (π,β) are called “canonical” variables in
the phase space of a Hamiltonian equation.
The word conjugation is used here because of the obvious symmetric role
played by the p and q variables in the Hamiltonian equations. This symmetry
could be used to build even more abstract structures associated with the
theory of mechanical equations of motion for conservative systems; however,
this aim will not be pursued here.

Proof. In fact,

d

dt
H(p(t),q(t), t) =

∂H

∂t
(p(t),q(t), t) +

ℓ∑

i=1

(∂H
∂πi

ṗi +
∂H

∂βi
q̇i
)

=
∂H

∂t
(p(t),q(t), t) +

ℓ∑

i=1

(q̇iṗi − ṗiq̇i
)

=
∂H

∂t
(p(t),q(t), t)

(3.11.36)

mbe
Another consequence, already mentioned in Problem 10, §2.24, p.137, of

the symmetry of Hamiltonian equations is the following:

19 Proposition. Let V = Rℓ × U0 with U0 open subset of Rℓ (or Rℓ1 ×
T ℓ2 , ℓ1 + ℓ2 = ℓ). Let h ∈ C∞(Rℓ ×U0) be a time-independent regular Hamil-
tonian function.16 Call St(π,β) the point into which the initial datum (π,β)
evolves through the equations:

ṗ = − ∂h
∂β

(p,q), q̇ =
∂h

∂π
(p,q). (3.11.37)

Suppose that for τ ∈ [0, t], the data (π,β) ∈ A ⊂ U are such that Sτ (π,β) ∈
U , i.e., SτA ⊂ U if τ ∈ [0, t], i.e. the evolution of the points in A takes place
inside U for all τ ∈ [0, t], and suppose that A is measurable; then

volumeStA =

∫

StA

dpdq = volumeA. (3.11.38)

Observation. This is read by saying “the Hamiltonian flow preserves the phase
space volume” and it is called the “Liouville theorem”.

Proof. This is a consequence of the fact that the Hamiltonian equations have

zero divergence:
∑ℓ
i=1− ∂2

∂πi∂βi
+
∑ℓ
i=1

∂2

∂βi∂πi
= 0 (see the hint to Problem

10, §2.24, where the argument is given in detail).
mbe

16 see observation (4) to Proposition 17; the function H(π,β, t) ≡ h(π,β) is a regular
Hamiltonian on e=V ×R in the sense of the Definition 15, p.214.
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A corollary to the above proposition is the following.

20 Proposition. Given the same assumptions as in Proposition 19, suppose,
also, that the set of the (π,β) such that h(π,β) < E is a set ΩE whose closure
in Rℓ × Rℓ (or Rℓ × T ℓ or Rℓ × (Rℓ1 × T ′ℓ2), ℓ1 + ℓ2 = ℓ) is contained in
V and is bounded. Then given any (π0,β0) ∈ ΩE, t0 > 0 and a neighborhood
W ⊂ ΩE of (π0,β0), there exists t > t0 such that StW ∩W 6= ∅.
Observation. So “if the energy E surface is bounded”, close to every point
“inside” it there is another point coming “as close” after any given time: this
is Poincaré’s recursion theorem.
If the system contains N (e.g. ∼ 1024) points enclosed in a box (modeled by
a potential tending very quickly to +∞ outside the box) and if it is initially
in a configuration ξ in which all points are confined to the left half of the
box (say), then as close to it as we wish there is another configuration which
evolves so that, waiting “long enough”, we shall be surprised to see that all
the particles will again occupy the left half of the box. This nice paradox
(“Zermelo’s paradox”) gave some problems to Boltzmann.

Proof. The proof is a very simple consequence of Proposition 19 and is
described in greater generality (for divergenceless differential equations) in
Problem 11, §2.24, p.138 (see hint). mbe

In connection with the Hamiltonian equations, the notion of “canonical
transformation” plays an important role. A transformation of coordinates
is canonical when it leaves the structure of the Hamiltonian equations un-
changed. Such a notion has remarkable importance in the algorithms used in
the theory of perturbations, which we shall introduce in Chapter 5.

16 Definition. Let V be an open set in Rℓ × Rℓ × R (or in Rℓ × T ℓ × R
or Rℓ × (Rℓ1 × T ℓ2) × R, ℓ1 + ℓ2 = ℓ) and let H be a regular Hamiltonian
function on V (see Definition 15).
Suppose that on V a C∞ map C is defined such that:
(i) The image of (p,q, t) ∈ V has the form (π,κ, t) = C(p,q, t), i.e., C is an
“isochronous map” (since it does not affect t).
(ii) The map C maps V onto W = C(V ), which is an open subset of Rℓ×Rℓ×R
(or in Rℓ ×T ℓ ×R or Rℓ × (Rℓ′1 ×T ℓ′2)×R, ℓ′1 + ℓ′2 = ℓ) and it is invertible
and nonsingular, 17 i.e., C is a regular change of coordinates on V .
(iii) There is a real-valued function H ′ ∈ C∞(W ) such that if t→ (p(t),q(t), t)
∈ V, t ∈ [t1, t2], is any motion in V verifying the Hamiltonian equations with
Hamiltonian H, then t → (π(t),κ(t), t) = C(p(t),q(t), t) ∈ W, t ∈ [t1, t2],
verifies the Hamiltonian equations relative to H ′ and vice versa. One says
that C is a “canonical transformation of V in W with respect to the pair of
conjugate Hamiltonians H and H ′”.

17 i.e., its Jacobian determinant does not vanish. Hence, C−1 has the same properties by
the implicit function theorem.
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Observation. In general, if a map C is canonical for the pair H,H ′, it will not
be canonical for the pair (H,H ′′) no matter how H ′′ is chosen, if H ′′ 6= H ′

(for an example, see Problem 38, at the end of this section).
It is therefore tempting to call “completely canonical” a map C between

V and W such that for any choice of a Hamiltonian function H on V , one
can find a conjugated Hamiltonian function H ′ on W in some standard way
(Levi-Civita).

We shall make the notion of “complete canonicity” precise only in the
simple case of “time-independent” canonical transformations.

17 Definition. Let V = V̂ × R be an open subset of Rℓ × Rℓ × R (or of
Rℓ × T ℓ × R or of Rℓ × (Rℓ1 × T ℓ2) × Rℓ, ℓ1 + ℓ2 = ℓ) and let C have

the form C(p,q, t) = (Ĉ(p,q), t) with Ĉ being a regular change of coordi-

nates between V̂ and its image Ŵ Ŵ ⊂ Rℓ × Rℓ (or Ŵ ⊂ Rℓ × T ℓ or

Ŵ ⊂ Rℓ × (Rℓ′1 × T ℓ′2), ℓ′1 + ℓ′2 = ℓ).

We shall say that Ĉ is a “completely canonical time-independent” or, sim-
ply, a “completely canonical” transformation if Ĉ is a transformation which
conjugates canonically every regular Hamiltonian function H on V with

H ′(π,κ, t)
def
= H(Ĉ−1(π,κ), t), ∀(π,κ) ∈ Ŵ . (3.11.39)

Observation. In other words, a time-independent completely canonical trans-
formation is one with the property that any Hamiltonian function is conju-
gated to itself computed in the new coordinates.

The following proposition provides a very general method of construction
of canonical transformations and of completely canonical transformations.

21 Proposition. Let H be a regular Hamiltonian function on the open set
V ⊂ Rℓ ×Rℓ ×R (or in Rℓ × T ℓ or Rℓ × (Rℓ1 ×Rℓ2)×R, ℓ1 + ℓ2 = ℓ). Let
F ∈ C∞(R2ℓ+1) be a function denoted

(q,κ, t)→ F (q,κ, t) ∈ R (3.11.40)

For i = 1, . . . , ℓ, set t′ = t and

pi =
∂F

∂qi
(q,κ, t), πi = − ∂F

∂κi
(q,κ, t) (3.11.41)

and assume that Eq. (3.11.41) establishes a one-to-one map CF between
(p,q, t) ∈ V and (π,κ, t) = CF (p,q, t) ∈ W . Suppose that CF is a reg-
ular change of coordinates18 between V and W (W ⊂ Rℓ × Rℓ × R or
Rℓ × T ℓ × R or Rℓ × (Rℓ1 × Rℓ2) × R, ℓ1 + ℓ2 = ℓ). Then if we define
(p(π,κ, t), q(π,κ, t)) ≡ C−1

F (π,κ, t) and

18 i.e., it is one-to-one and with non vanishing Jacobian determinant.
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H ′(π,κ, t) = H(p(π,κ, t),q(π,κ, t), t) +
∂F

∂t
(q(π,κ, t),κ, t), (3.11.42)

the map CF is a canonical transformation of V onto W with respect to H and
H ′.

Observations.
(1) Note that F is required to be in C∞(R2ℓ+1) even when V is in Rℓ ×
T ℓ × R or in Rℓ × (Rℓ1 × T ℓ2) × R, ℓ1 + ℓ2 = ℓ. Recall that the points
on a torus are, in the present contexts, always thought of as described in
“flat or angular coordinates”, i.e., by thinking of the torus T ℓ as obtained by
identifying mod 2π the points of Rℓ (see Definition 14, p.211).
(2) From the proof of Proposition 21, it will follow that other coordinate
transformations analogous to Eq. (3.11.41) are canonical: for instance, from a
function Φ ∈ C∞(R2ℓ+1),

(q,π, t)→ Φ(q,π, t) ∈ R, (3.11.43)

one builds a canonical transformation19 CΦ by setting, ∀i = 1, 2, . . . , ℓ,

pi =
∂Φ

∂qi
(q,π, t), κi =

∂Φ

∂πi
(q,π, t), (3.11.44)

H ′(π,κ, t) = H(p(π,κ, t),q(π,κ, t), t) +
∂Φ

∂t
(q(π,κ, t),π, t) (3.11.45)

where we denote (p(π,κ, t),q(π,κ, t), t) = CΦ(π,κ, t)
Similarly, with analogous notations, if Ψ ∈ C∞(R2ℓ+1), setting

(p,κ, t)→ Ψ(p,κ, t) ∈ R, (3.11.46)

one defines a canonical transformation19 CΨ by setting ∀i = 1, . . . , ℓ:

qi =− ∂Ψ

∂pi
(p,κ, t), πi = − ∂Ψ

∂κi
(p,κ, t),

H ′ =H +
∂Ψ

∂t
,

(3.11.47)

and if R ∈ C∞(R2ℓ+1),

(p,π, t)→ R(p,π, t) ∈ R, (3.11.48)

defines a canonical transformation19 CR by setting, ∀i = 1, 2, . . . , ℓ,

19 between regions where the regularity, invertibility and nonsingularity requirements for
the maps CΦ (or, see below, CΨ , CR) similar to those put on CF are verified. Such regions
V,W may be very small or even nonexistent: in the last cases no canonical transformation
is really associated with F,Φ, Ψ, R.
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qi =− ∂R

∂pi
(p,π, t), κi =

∂R

∂πi
(p,π, t),

H ′ =H +
∂R

∂t
.

(3.11.49)

(3) However, it will appear that the class of canonical transformations built
starting from F as described by Proposition 20 is not essentially less ample
than that obtained by adding to it the canonical transformations associated
with the functions Φ, Ψ and R as described in the preceding observation.
With some natural exceptions, to every F it is possible to associate a Φ, a Ψ ,
and an R producing the same canonical transformation.
(4) If F is time independent, then CF defines a completely canonical (time-
independent) map.
(5) F is in general called a “generating function” of CF . So one calls also the
functions Φ, Ψ,R above.

Proof. The proof by direct check is of course possible. However, if performed
straightforwardly, it quickly becomes quite intricate. It is certainly more con-
venient to proceed in the following elegant fashion, which also exhibits a new
form of the least-action principle: the “Hamilton’s principle”.

LetMV =Mt1t2(p1,q1, t;p2,q2, t2;V ) = {set of the motions in V having
the form t → m(t) = (p(t),q(t), t) ∈ V, t ∈ [t1, t2] and such that p(t1) =
p1,q(t1) = q1,p(t2) = p2,q(t2) = q2} (“synchronous motions m in V s”).
Consider the function onMV :

S(m) =

∫ t2

t1

( ℓ∑

i=1

pi(t), q̇i(t)−H(p(t),q(t), t)
)
dt. (3.11.50)

With the methods of §2.2.1 and §3.4 by now familiar, one checks that the
stationarity condition for S on m inMV is simply that the motion m verifies
the Hamiltonian equations in V with Hamiltonian function H [which are,
essentially, the Euler-Lagrange equations for the action of Eq. (3.11.50)].

Now let t → µ(t) = (π(t),κ(t), t) = CF (p(t),q(t), t), t ∈ [t1, t2] be the
image motion of a motion m ∈MV : it is a motion in
CF (p1,q1, t1)MW = CF (MV ) =Mt1t2(CF (p1,q1, t1), CF (p2,q2, t2);W )
If µ verifies the Hamiltonian equations for some Hamiltonian H ′ on W in

m ∈MW , it must make the action

Σ(µ) =

∫ t2

t1

{ ℓ∑

i=1

πi(t)κ̇i(t)−H ′(π(t),κ(t), t)
}
dt (3.11.51)

stationary. A sufficient condition for this to occur is that

S(m) = Σ(CF (m)) + constant, ∀m ∈MV , (3.11.52)

of course. Equation (3.11.52) is certainly verified if the differential form on V :
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ℓ∑

i=1

pidqi −H(p,q, t) dt (3.11.53)

and the differential form

ℓ∑

i=1

πidκi −H ′(π,κ, t)dt (3.11.54)

are transformed into each other by the transformation CF , up to a total differ-
ential. This condition can be imposed by requiring the existence of a function
G on W such that

ℓ∑

i=1

pidqi −H(p,q, t) dt =

ℓ∑

i=1

πidκi −H ′(π,κ, t)dt+ dG (3.11.55)

where (p,q, t) are to be thought of as functions of (π,κ, t) via the transfor-
mation CF .

To use Eq. (3.11.55), it is more convenient to think of G as a func-

tion of (q,κ, t) instead of (π,κ, t) via Eq. (3.11.41); i.e., set G̃(q,κ, t) =
G(∂F∂q (q,κ, t),κ, t). Then it follows from Eq. (3.11.55) that

dG̃ =

ℓ∑

i=1

pidqi −
ℓ∑

i=1

πidκi − (H −H ′)dt, (3.11.56)

so we realize that Eq. (3.11.56) holds if and only if there is a function G̃ which
is such that, ∀i = 1, . . . , ℓ,

pi =
∂G̃

∂qi
, πi = − ∂G̃

∂κi
, H −H ′ = ∂G̃

∂t
(3.11.57)

thinking the coefficients of the right-hand side differentials in Eq. (3.11.56)
as functions of q,κ, t, via Eq. (3.11.41). Such relations are satisfied by the

function F , setting G̃ = F . mbe

Observations. Subtracting the differential d(
∑ℓ

i=1 piqi) from both sides of Eq.
(3.11.56) and thinking of

Ψ = F −
ℓ∑

i=1

piqi (3.11.58)

as a function of p,κ, t via Eq. (3.11.41)20 one finds that the transformation
CF may also be thought of as CΨ described by Eq. (3.11.47). Similarly, setting

20 assuming that the necessary inversions can actually be made.
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Φ = F +

ℓ∑

i=1

πidκi (3.11.59)

and thinking of Φ as a function of (q,π, t) via Eq. (3.11.41)20 one finds that
CF may also be thought of as CΦ described by Eq. (3.11.44). Finally, setting

R = F +

ℓ∑

i=1

πidκi −
ℓ∑

i=1

piqi (3.11.60)

and thinking of R as a function of (p,π, t) via Eq. (3.11.41),20 one finds that
the CF may also be thought of as CR described by Eq. (3.11.49).

In the problems at the end of this section, it will appear that the inversions
mentioned above (see footnote 20) can be performed at least in small regions

under the respective conditions that the matrices ∂2F
∂κi∂κj

, ∂2Φ
∂κi∂qj

, ∂2Ψ
∂qi∂qj

have

non vanishing determinants.
This somewhat clarifies Observation (3) to Proposition 21. A complete

clarification arises from the analysis of Problems (6)-(11) at the end of this
section. The reader should try to think of these observations again after look-
ing at the problems.

A simple corollary to the proof of Proposition 21 is the following.

22 Proposition. Let (π,κ) → C(π,κ) be a nonsingular invertible C∞ map
of the open set V ⊂ R2ℓ or Rℓ × (Rℓ1 × T ℓ2), ℓ1 + ℓ2 = ℓ, onto W ⊂ R2ℓ or
Rℓ × (Rℓ′1 × T ℓ′2), ℓ′1 + ℓ′2 = ℓ. Write C explicitly as

p = P(π,κ), q = Q(π,κ) (3.11.61)

and consider the differential form on V ,

π · dκ − p · dq ≡
ℓ∑

i=1

(πidκi − pidqi) (3.11.62)

Write it as −∑i(Xidπi + Yidκi) with

Xj = P(π,κ) · ∂Q
∂πi

(π,κ), Yi = P(π,κ) · ∂Q
∂κi

(π,κ) − πi. (3.11.63)

Suppose that the form in Eq. (3.11.62) is exact: i.e. ∀ i, j = 1, . . . , ℓ

∂Xi

∂πj
=
∂Xj

∂πi
,

∂Xi

∂κj
=
∂Yj
∂πi

,
∂Yi
∂κj

=
∂Yj
∂κi

, (3.11.64)

Then C is a completely canonical time-independent map.
In particular, if π · dκ − p · dq = 0 the map C is completely canonical: it is
called “homogeneous” in the variables (κ,q).
Similar results hold if p dq + κ · fπ, or −q · dp + κ · dπ, or −q · dp− π · dκ
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are exact differentials: one similarly defined the homogeneous canonical maps
with respect to (q,π), or (p,π), or (p,κ).

Observations.
(1) If C is as above and homogeneous in (κ,q) variables, then it cannot gen-
erated by a generating function F (κ,q) as in Eq. (3.11.41). The vanishing of
the differential in Eq. (3.11.62) and the Eqs. (3.11.41), (3.11.42) written as

dF = π · dκ− p · dq + (H ′ −H)dt (3.11.65)

imply that dF = (H ′−H)dt, i.e. H ′−H is a function of t only and so is F as
well, so that Eq. (3.11.41) gives π = 0, p = 0 which is obviously not usable
to define an invertible map between q,p and κ,π.
(2) If C is homogeneous as in Observation (1), it might be generated by func-
tions Φ(π,q) or Ψ(κ,p) or R(π,p): for instance, the map p = aπ, q = a−1κ

is homogeneous in (q, κ) variables (as pdq = πdκ) and it is generated by
Ψ(p, κ) = a−1pκ !
(3) A very interesting homogeneous canonical mapping is met in the theory
of the motion of a rigid body (see Problems to §4.11).

Proof. If π · dκ − p · dq is an exact differential, one sees, by going through
the proof of Proposition 11, that Eq. (3.11.56) can be satisfied by choosing
H = H ′. mbe

Observations.
(1) From the proof of Proposition 22 and from Eqs. (3.11.41), (3.11.44),
(3.11.47), and (3.11.49), we see that a sufficient condition in order that any
Hamiltonian H on V is conjugated to a Hamiltonian H ′ on W given by

H ′(π,κ, t) = H(C−1(π,κ, t)) (3.11.66)

is that the transformation C mapping V onto W be generated by a time-
independent function F or Φ or Ψ or R or be homogeneous in the sense of
Proposition 22.
(2) The interest in canonical transformations consists of the fact that some-
times it is possible to solve the Hamiltonian equations by finding a canonical
transformation transforming the system of Hamiltonian equations into a con-
jugate system with “trivial” HamiltonianH ′, i.e., trivially soluble (e.g.,H ′ = 0
or H ′(π,κ) = h(κ) which yield trivial Hamiltonian equations, indeed).

A concrete method to look for such a transformation (“Hamilton-Jacobi
method”) consists in trying to find, using Proposition 21, a function F defined
in a suitable neighborhood Ω ⊂ R2ℓ+1 such that, ∀(q,κ, t),

H ′ = H(
∂F

∂q
(q,κ, t),q, t) +

∂F

∂t
(q,κ, t) = 0 (3.11.67)

or, for some h,
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H ′ = H(
∂F

∂q
(q,κ, t),q, t) +

∂F

∂t
(q,κ, t) = h(κ) (3.11.68)

Equations (3.11.67) and (3.11.68) are to be considered as equations in which
κ is a parameter and, therefore, as partial differential equations for a function
(q, t)→ f(q, t):

H(
∂f

∂q
(q, t), ,q, t) +

∂f

∂t
(q, t) = 0 (3.11.69)

or

H(
∂f

∂q
(q, t),q, t) +

∂f

∂t
(q, t) = constant (3.11.70)

(“Hamilton-Jacobi” equations). We wish to find solutions to Eq. (3.11.69) or
Eq. (3.11.70) which depend on ℓ parameters κ = (κ(1), . . . , κ(ℓ)).

If we were able to find such a family, i.e., if we were able to find a C∞

solution F of Eq. (3.11.69) or Eq. (3.11.70) depending on (q,κ, t) ∈ Ω = {
some open set in R2ℓ+1 }, we could consider the transformation (3.11.41) and

hope that it defines a canonical map CF of some open set Ṽ ⊂ V into a set
W : the transformation CF would then transform the Hamiltonian equations
associated with H into trivial Hamiltonian equations in W , with Hamiltonian
function 0 or h(κ).

However, it is obvious that the difficulty of solving Eqs. (3.11.67) and
(3.11.68) in the above sense is equivalent to or harder than solving the origi-
nal Hamiltonian equations, and one should not think of Eq. (3.11.67) or Eq.
(3.11.68) as a miraculous equation.

The usefulness of the above discussion on Hamilton-Jacobi equations con-
sists of the possibility of finding approximation algorithms to the solutions to
Eq. (3.11.67) or Eq. (3.11.68) and, therefore, to the original Hamiltonian equa-
tions, which are essentially different from the general recursive method seen
in §2.3, valid for solving the most general first-order differential equations.

The methods devised to construct recursively successive approximations to
Eq. (3.11.67) or Eq. (3.11.68) are methods in which the particular structure of
the Hamiltonian equations is explicitly used. It is therefore not too surprising
that they reveal themselves to be quite appropriate to the analysis of such
equations and provide better approximations for a given amount of formal
work done.

The reader can convince himself of the truth of the above statement only
by seeing some concrete problems studied on the basis of approximation al-
gorithms to the solutions of the Hamilton-Jacobi equations. The best known
and most celebrated of these methods or some of its variants can be found
in the theory of the motion of heavenly bodies and, more generally, in the
stability theory of the motion of conservative systems. An important example
will be illustrated in §5.9–§5.12. Some “trivial” examples can be found in the
upcoming problems.
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3.11.1 Exercises, Problems and Complements

1. Construct the canonical transformation with generating function f(q, κ) = m
2
ωq2 tanκ,

q ∈ R, κ ∈ T 1, and note that the above transformation simplifies the HamiltonianH(p, q) =
p2

2m
+ ω2m

2
q2. Find the harmonic oscillator motion with the help of this transformation.

2. Consider a one-dimensional mechanical system consisting of a point with mass m subject
to a force with potential energy V ∈ C∞(R). Assume that V (0) = 0, V ′(q) 6= 0 if q 6= 0,
V (q)−−−−−−→|q|→+∞ +∞. Consider the canonical map (p, q)→ (E, τ) with generating function,

see p. 222, f(E, q) =
R q
0

p
2m(E − V (q′)) dq′ near a point (p, q) where p2

2m
+ V (q) > 0.

Write it explicitly, finding the Hamiltonian in the new coordinates and the physical inter-
pretation of the τ and E coordinates. (Hint: Do not try to “compute” the integral, but
rather perform the necessary differentiations on the integral and then use the formulae for
the one-dimensional motions found in §2.7).
3. Interpret f defined in Problem 2 as a solution of the equation m

2

“
∂f
∂q

”2
+ V (q) = E

and interpret this as a one-parameter solution of the Hamilton-Jacobi equation for the
mechanical system in Problem 2, in the sense of Eq. (3.11.67), of the form f(E, q)−Et (or,
in the sense of Eq. (3.11.68), of the form f(E, q) with h(κ) = E).

4. In the context of Problem 2, define, for E > 0,

ω(E) =
π

R q+(E)

q−(E)
dq′
q

2
m

(E − V (q′))
,

where q±(E) are the roots of E−V (q) = 0. For E > 0, let a(E) =
R E
E0

dE′

ω(E′)
dE′ and let A→

e(A) be its inverse function (such that e(a(E)) ≡ E). Consider the canonical transformation
(p, q) → (A, ϕ) with generating function S(A, q) =

R q
q0

p
2m(e(A) − V (q′)) dq′ near some

(p, q) 6= (0, 0).
Compute the new Hamiltonian and show that the canonical map may be extended to a

canonical map of R2/(0, 0) into (0,
R+∞
E0

dE′

ω(E′)
) × T 1. (Hint: Let ϕ = ∂S

∂A
(A, q) mod 2π,

p = ∂S
∂a

(A, q) and show that this is a C∞ map between the indicated sets.)

5. Show that the transformation in Problem 4 is a natural generalization of the Cartesian-
polar coordinates in the plane (Hint: Consider the special case (p2 + q2)/2, where it gives
exactly the Cartesian-polar coordinates. Draw the curves A = const and compare them
with the circles.)
The angle defined in Problem 4 is called the “average anomaly” and, therefore, the time

evolution of the average anomaly is always a uniform rotation.

6. Let A,B, C be ℓ× ℓ matrices and A,C be symmetric. Define on R2ℓ

F (q,κ, t)
def
=

1

2
Aq · q +

1

2
Cκ · κ+ Bκ · q.

Show that if detB 6= 0 the map CF is well defined and completely canonical between R2ℓ+1

and itself. Show that its Jacobian determinant is 1, at least in the case ℓ = 1 (the case
ℓ > 1 is discussed in §3.12). (Hint: First deal in detail with the case ℓ = 1 when A,B, C are
simply numbers.)

7. In the context of Problem 6, show that detB 6= 0 is a necessary and sufficient condition for
CF to be defined. Hence, F (q, κ, t) = (κ2+q2)/2 does not define a canonical transformation.

8. Let F be as in Problem 6. Construct explicitly the other generating functions for the
canonical map [Eqs. (3.11.58), (3.11.59), and (3.11.60)] and check that, via Eqs. (3.11.44),
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(3.11.46), and (3.11.49), they all generate the same completely canonical transformation
if detA,detB, detC 6= 0. Check that all the inversions mentioned in connection with the
quoted formulae can actually be performed, in the present situation.

9.* Let F be as in Proposition 21. Let (p0,q0, t0), (π0,κ0, t0) be two points related by Eq.
(3.11.41). Define the ℓ× ℓ matrices

Aij =
∂2F

∂qi∂qj
(q0,κ0, t0), Bij =

∂2F

∂κi∂qj
(q0,κ0, t0), Cij =

∂2F

∂κi∂κj
(q0,κ0, t0).

Show that if detB 6= 0 then the map CF is defined in a neighborhood of (p0,q0, t0) (Hint:

Use Problem 6 and apply the implicit function theorem to take into account that F no
longer has constant second derivatives as in the cases of Problems 6 and 8.)

10.* Is it possible that CF exists near (p0,q0, t0) in the context of Problem 9 when detB =
0? (Answer: No; hence, F (q, κ, t) = f(q) + g(κ) does not define a canonical transformation.
Check this directly.)

11. Show that the invertibility properties of the matrices A,B, C mentioned in connection
with the quotation of Eqs. (3.11.58), (3.11.59), and (3.11.60) in Problem 8 are necessary,
in general, in order to be able to express CF as CΦ, CΨ or CR. (Hint: Consider, for ℓ = 1,
F (q, κ) = qκ: this is a case where A = C = 0 and the inversion cannot be realized. In this
case, it is impossible to generate the corresponding canonical transformation with a function
Ψ(p, κ, t), since the transformation is easily checked to be homogeneous with respect to (κ, p)
as qdp + πdκ = 0. See Proposition 22, p.224, and the subsequent Observation (1). Similar
considerations hold for κ2 + κq, as qdp + πdκ = −κdκ, which is equally impossible for
reasons similar to those used in observation (1) to Proposition 22.)

12. Consider x ∈Mt1,t2 (ξ1,ξ2) and y ∈ Vx. Call the variation y “nontrivial” if t→ z(t) =
∂y
∂ε

(t, 0), t ∈ [t1, t2], is such that z 6= 0. Define x to be a “strict local minimum” for the
action A relative toM if for every variation y ∈ Vx(M) which is nontrivial, there exists ηy >
0 such that A(yε) > A(x), ∀|ε| < η, or if Vx(M) only contains trivial variations. Examine
the proof of Proposition 38, §2.24.1, 132, to show that in the statements of Proposition 38,
§2.24.1, Proposition 6, §3.3, p.152, Proposition 8, §3.5, p.163, one can replace the words
“local minimum” by “strict local minimum” (Hint: Just look at the proof of Proposition
38, p. 132, and Eq. (2.24.33).)

13. Let t → x(t), t ∈ [0, T ], be a motion verifying the equations associated with the
Lagrangian (3.11.23) and taking place in the open set U0 ⊂ Rℓ. Let E be the energy of x [see
Eq. (3.11.33)]. Consider x for t ∈ [t1, t2] ⊂ [0, T ] and fix t1: so x ∈ Mt1,t2(x(t1),x(t2);E) =
{space of the motions inMt1,t2(x(t1),x(t2)) taking place in U0 and with energy E }.
Show that x makes stationary and (if t2 is close enough to t1) strictly locally minimal (see
Problem 12) the action

eA(x) =

Z t2

t1

T (t) dt

in Mt1,t2(x(t1),x(t2);E). (Hint: Simply note that if A is stationary or strictly locally
minimal on x in Mt1,t2 (x(t1),x(t2)) it is such in any M ⊂ Mt1,t2(x(t1),x(t2)). Then
remark that A(x′) =

R t2
t1

(T (t)−V (t)) dt = eA(x′)−E (t2−t1) if x′ ∈ Mt1,t2(x(t1),x(t2);E),

as T (t) + V (t) ≡ E.)

14. Show through examples that it is possible that the set Mt1,t2(x(t1),x(t2);E) consid-
ered in Problem (13) contains finitely many points (hence Vx(Mt1,t2 (x(t1),x(t2);E)) only
contains trivial variations). Nevertheless, even in such cases the statement of Problem 12 is
not an empty one: for instance, deduce from Problem 12 that the free motion in Rd takes
places along straight lines. (Hint: Let t→ x(t) be a free motion in Rd, then T (t) = 1

2
ẋ(t)2.
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If t→ x(t) were not a straight line, then Vx(Mt1,t2(x(t1),x(t2);E)) would not consist only
of trivial variations: however, eA(x′) ≡ E (t2 − t1) for all x′ ∈ Mt1,t2(x(t1),x(t2);E) and,
therefore, x could not be a strict local minimum!)

15. On RNd, consider the metric associated with the scalar product of Eq. (3.7.1) and let
dℓ be the line element of the curve in RNd with equations t → x(t), t ∈ [ti, t2], which is
a motion of energy E of N points, with masses m1, . . . , mN > 0, under the influence of a
force with potential energy V ∈ C∞(RNd). Show that

A(x) =

Z x2

x1

p
2(E − V (ξ(ℓ))) dℓ−E (t2 − t1) if dℓ =

p
2T (t) dt,

where A(x) =
R t2
t1

(T (t) − V (t)) dt and ℓ→ ξ(ℓ) is the description of the trajectory of x in

terms of the curvilinear abscissa ℓ on it and the integral
R x2
x1

is the curvilinear integral on
the trajectory.

16. Consider N points in Rd, with masses m1, , . . . ,mN . Assume that such a system is
subject to an active force with potential energy V (a) and to an ideal holonomous constraint
to a regular ℓ-dimensional surface Σ ⊂ RNd. On Σ consider two points ξ1,ξ2 and the set,
M0,1(ξ1,ξ2|Σ), of the C∞ curves joining ξ1 to ξ2 and parameterized by some parameter
τ varying between 0 and 1. Given E ∈ R, define onM0,1(ξ1, ξ2|Σ) the curvilinear integral

on the curve bx ∈ M0,1(ξ1,ξ2|Σ) as

S(bx) = (bx)

Z ξ2
ξ1

p
(E − V (ξ)) ds,

where ds is the line element on E, measured with the kinetic energy metric ds2 =PN
i=1mi (dx

(i))2, Eq. (3.7.1).
Show that the least-action principle implies that S is stationary on the curve bx if and
only if bx is a trajectory of a motion with energy E leaving ξ1, and reaching ξ2, (“Mau-
pertuis’ principle”). (Hint: Consider a local system of local coordinates near Σ permit-
ting representation of the points of Σ ∩ U through some parametric equations ξ = x(a),

a = (a1, . . . , aℓ) ∈ Ω ⊂ Rℓ. Suppose, for simplicity, that bx(t) ⊂ U ∩Σ, ∀t ∈ [t1, t2]. Assume
L to be a Lagrangian of the form of Eq. (3.11.23) describing the system in these coordinates.
Write the stationarity conditions of S in M0,1(ξ1, ξ2|Σ) for the curve bx with parametric
equations τ → ba(τ), τ ∈ [0, 1], in the chosen coordinates. Then, in the resulting Euler-
Lagrange equations, perform the change of coordinates τ←→t:

t =

Z τ

0

vuut
Pℓ
i,j=1 gij(a(θ))a′i(θ)a

′
j (θ)

2(E − V (x(a(θ))))
dθ,

where the prime denotes differentiation with respect to τ or θ. One finds that the motion
t→ x(a(τ(t))) has energy E and verifies the Lagrangian equations for L.
A more interesting alternative proof: consider a variation τ → eξ(τ) of the path bx in
M0,1(ξ1,ξ2|Σ) and imagine it run at constant energy eE chosen so that starting at time

t1 in ξ1 the point ξ2 is reached at time t2 (eE will differ by some δE from E): call ex(t)
this motion which is a variation of bx in Mt1,t2 (ξ1,ξ2|Σ) and remark that its time law is

determined by t− t1 =
R eξ(t)
ξ1

ds√
2(E−V (ex))

. Then by Problem (13) the action of ex is

A(ex) = 2

Z t2

t1

eT (t)dt − eE(t2 − t1) =

Z t2

t1

q
2eT (t)

q
2eT (t)dt − eE(t2 − t1)

and the latter expression can be written (ex)
R ξ2
ξ1

√
2

q
eE − V (ex(s))ds− eE(t2 − t1). Thus
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δA =
√

2δS +

Z ξ2
ξ1

dsp
2(E − V (ex(s)))

δE − (t2 − t1) δE ≡
√

2δS

hence stationarity of S on a curve in M0,1(ξ1,ξ2|Σ) implies stationarity of A on the
corresponding motion running on the curve with energy E.)

17. In the context of Problem 16, show that the Maupertuis’ principle can be interpreted
as saying that the motions developing on Σ with energy E take place along the geodesics
of Σ with respect to the metric on Σ:

dh =
p

2(E − V (ξ)) ds,

where ds the kinetic energy metric on Σ. (We recall that by definition, a curve on Σ is
called a geodesic for a given line element on Σ if it makes stationary the distance between
any two of its points measured along the curve itself using the given line element.)
In other words, if we call the distance between two points ξ1, ξ2 ∈ Σ measured with the line
element dh along a given curve on Σ, with the name “mechanical path” with energy E on
Σ, we can say that the “motions with energy E on Σ take place along trajectories making
stationary the mechanical path with energy E”. As usual, it is possible to show that the
mechanical systems with Lagrangian Eq. (3.11.23) have the property that a trajectory of
any of their motions with energy E, taking place on Σ, not only makes the mechanical path
stationary but actually strictly minimizes it on short enough segments.

18.* Under the assumptions of Problem 17, let s→ bx(s), s ∈ [s1, s2], be a geodesic segment
on Σ for the line element dh. Suppose that E − V (bx(s)) > 0,∀s ∈ [s1,bs]. Show that there
is s > s1, such that if s2 ∈ [s1, s], the curve s → bx(s), s ∈ [s1, s2], makes strictly locally
minimal the mechanical path with energy E between bx(s1) and bx(s2).

19. A point with mass m > 0 is bound to a surface Σ ⊂ R3 by an ideal constraint and
it is subject to no other forces. Show that as a consequence of the Maupertuis principle,
Problems 16-18, the point runs on Σ in such a way that if two points on its trajectory are
close enough, then the trajectory itself is the one minimizing the distance on Σ between the
two points, i.e., the trajectory is the shortest path on Σ joining the two points, the distance
being measured in the ordinary R3 sense (“geodesics” or Fermat’s principle”). (Hint: Note
that dh and ds are now proportional, and use Problem 18.)

20. Consider the line segment (dx2 + dy2)/y2 defined on the half-plane y > 0. Determine
its geodesics by thinking of them via the mechanical interpretation, permitted by Problem
16, which allows us to regard them as the zero energy motions of the mechanical system
with Lagrangian L = 1

2
(ẋ2 + ẏ2) + 1

2y2
.

21. Calling the geodesics of the Problem 20 “straight lines for the geometry (“Lobachevski
geometry” or “noneucidean geometry”) defined by the line element ds”, check the truth or
the falsity of the following statements:
(i) Given two points in the half-plane y > 0, there is one and only one straight fine through
them.

(ii) Two points in the y > 0 region are joined by just one straight line segment (if a straight
line segment is defined as a connected closed subset of a straight line).
(iii) Given a point, and a straight line not containing it, there exists just one straight line
containing the point and “parallel” to the first straight line (i.e., without common points
with it).

22. Same as Problems 20 and 21 for the geometries associated with the following line
elements:



3.11 Analytical Mechanics 231

(i) ds2 = (x2 + y2)(dx2 + dy2), (x, y) ∈ R2\0;

(ii) ds2 = (1− x2 − y2)α(dx2 + dy2), (x, y) ∈ R2, x2 + y2 < 1, α ∈ R;

(iii) ds2 =
dx2 + dy2p
x2 + y2

, (x, y) ∈ R2\0.

23. Same as Problems 20 and 21 for the geometry defined on a sphere by the line element
induced by the Euclidean distance of Rℓ; i.e., ds2 = dθ2 + sin2 θdϕ2 in polar coordinates.

24. Consider the geometry defined in the half-plane y > 0 by the line element of Problem 20.
Define a “triangle” as a figure formed by the three points pairwise connected by geodesic
segments. Given a triangle, denote α, β, γ the three angles relative to its three vertices
(defined as the angles between the tangents to the two geodesic segments meeting at the
various vertices). The quantity α + β + γ − π is called the “geodesic defect”: show that it
is < 0. Show that the same quantity computed in the analogous situation for the sphere’s
geometry of Problem 23 is > 0.

25. A light ray moves in a plane strip x ∈ R, |y| < 1 with refraction index

n(x, y) =
p

1− εy2, ε < 1.

Using Fermat’s principle, show that the ray proceeds along a sinusoidal path, if it is assumed
that the ray starts at the origin with an initial direction close to the horizontal. Recall, for
this purpose, that Fermat’s principle says that the rays follow a path that makes stationary
the “optical path” between any two of its points, within the set of the paths joining them.
The optical path, in a medium with index of refraction n(x, y), associated with the curve
bx ∈M0,1(ξ1, ξ2), is

(bx)

Z ξ2
ξ1

n(x, y)ds, ds =
p
dx2 + dy2.

(Hint: Interpret the above problem as a mechanical problem via Problems 16 and 17.)

Hence, via Maupertuis’ principle, the problem of the determination of a light path can

be interpreted as a purely mechanical problem.

26. Solve the problems at the end of §18, §20, §21, §24, §32,§39,§44 in [28].

27. Perform the the Legendre transformation on the Lagrangian L =
p
ẋ2 + ẏ2 and explain

why one gets strange results.

28. Consider the function on R2ℓ : L(q̇,q) = 1
2
Aq̇ · q̇ + 1

2
Cq · q + Bq̇ · q where A,C are

ℓ×ℓ symmetric matrices and B is an ℓ×ℓ matrix. Under which conditions on A,B, C is L a
regular Lagrangian on R2ℓ? In these cases, write the corresponding Hamiltonian function.
Similarly, consider the function on R2ℓ: H(p,q) = 1

2
Ap ·p + 1

2
Cq ·q +Bp ·q and find the

conditions for H to be a regular Hamiltonian and write the corresponding Lagrangian.

29. In the cases when the Lagrangian in Problem 28 is regular, write the energy conservation
theorem, Proposition 18, §3.11, in terms of q̇ and q. (Hint: H = p · q − L(q̇,q), and then
express p in terms of q̇,q and use Proposition 18.)

30. Show that the time-independent completely canonical linear transformations of R2ℓ

onto R2ℓ form a group Sℓ, under the natural composition law.

31. The set G of the linear completely canonical transformations on R2 with generating
functions Φ(π, q) = 1

2
aπ2 + 1

2
cq2 + bπq, b 6= 0, which we denote (a, c, b), does not form

a subgroup of S1. Prove this by finding the composition law of (a, c, b) and (a′, c′, b′).
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Show that (a, c, b) · (a′, c′, b′) ∈ G if and only if a′c 6= 1. (Hint: The composition law, if
δ = ac − b2, δ′ = a′c′ − δ2, is

(a, c, b) · (a′, c′, b′) =

„
a− a′δ
1− a′c ,

−c′ + cδ′

1− a′c ,
bb′

1− a′c

«
.)

32. Same as Problem 31 for the class G′ of the canonical transformations generated by
functions F (κ, q) = 1

2
aq2 + 1

2
cκ2 + bqκ, b 6= 0. (Hint: The composition law is now, for

suitable δ, δ′

(a, c, b) · (a′, c′, b′) =

„
aa′ − δ′
a+ c′

,
cc′ − δ
a + c′

,
−bb′
a+ c′

«
.)

33. Find a generating function for the transformation (π,κ) → (p,q) defined by p =
Rπ, q = (RT )−1κ, where R is a nonsingular ℓ× ℓ matrix: this transformation is completely
canonical. (Hint: Look for a generating function like Φ(π, q) = Bπ ·q with B being an ℓ× ℓ
matrix.)

34. Let κ→ q = f(κ) be an invertible nonsingular transformation of Rℓ onto itself. Find
out how to define p = F(π,κ) so that the map (π,κ) → (p,q) = (F (π,κ), f(κ)) will be
completely canonical. (Answer: If Rij(κ) = ∂fi

∂κj
(κ), then p = (R(κ)T )−1π.)

35. Let f ∈ C∞(Rℓ) be multi periodic with periods 2π. Is the function A′ · ϕ+ f(ϕ) a
generating function of a canonical map of Rℓ×T ℓ onto Rℓ×T ℓ? Find a sufficient condition.

36. Let (A′,ϕ)→ f(A′,ϕ) be a C∞(R2ℓ) function multi periodic with periods 2π in the
ϕ’s. Suppose that the transformation

ϕ′ = ϕ+
∂f

∂A′ (A
′,ϕ) mod 2π

establishes a nonsingular invertible map of T ℓ onto itself for each A′ ∈ Rℓ. Suppose, also,
that the transformation

A = A′ +
∂f

∂ϕ
(A′,ϕ)

establishes a nonsingular invertible map of Rℓ onto itself for each ϕ ∈ T ℓ.
Show that the function Φ(A′,ϕ) = A′ ·ϕ+ f(A′,ϕ) generates a completely canonical map
of Rℓ × T ℓ onto itself.

37. Find a “local version” of Problem 36 when Rℓ × T ℓ is replaced by V × T ℓ, V ⊂ Rℓ
open.

38. Consider the maps (p, q) → C(p, q) = (A,ϕ) and (p, q) → eC(p, q) = (B, ϕ) of
R2/0←→R+ × T ℓ defined by

ϕ = polar angle of (p, q), A =
1

2
(p2 + q2), B =

√
A.

Show that while C is completely canonical, the map eC is such that the Hamiltonians H =
1
2
(p2 + q2) and H′ = B are canonically conjugated by it, but the Hamiltonian 1

2
p2 has no

canonically conjugated Hamiltonian with respect to eC. (Hint: C is studied in Problems 1 and
2. Show that a general measure-preserving flow on R2/0 is not mapped by eC into a measure-
preserving flow on R+ × T ℓ: the evolution associated with H′ = 1

2
p2 is actually mapped

by eC into a non-measure preserving one. So the image flow cannot be a Hamiltonian flow

since the latter would, instead, preserve the measure, by the Liouville theorem, Proposition
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19, in the case of a time-independent Hamiltonian (or by an extension of Proposition 19 in
the time-dependent case; see Problem 39).)

39. Extend Proposition 19, §3.11 to the case of time-dependent Hamiltonian equations.
(Hint: Replace the semigroup property StSt′ = St+t′ used in the proof of proposition 19
(see Problem 10, §2.24) by the more general relation S(t, t′) ·S(t′, t0) = S(t, t0), t > t′ > t0,
where S(t, t′) denotes the solution map of the non autonomous Hamiltonian equations when
the initial data are assigned at t′. The proof proceeds unchanged.)

40. Let (q, t) → S(q, t) be defined and C∞ on a set U × J, U ⊂ Rℓ, J ⊂ R, both open,
and connected. Let H be a regular Hamiltonian on V = Rℓ ×U × J and suppose that S is
a solution to the Hamilton-Jacobi equation

H(
∂S

∂q
(q, t), q, t) +

∂S

∂t
(q, t) = 0.

Consider the differential equation for t→ q(t),

q̇ =
∂H

∂p

“∂S
∂q

(q, t), q, t
”
, q(t0) = q0

and suppose that for all (q0, t0) ∈ U × J , one can solve it for t near t0 by t → q(t). Show
that setting

p(t) =
∂S

∂q
(q(t), t),

the functions t→ (p(t), q(t)) are solutions to the Hamiltonian equations with initial data

q(t0) = q0, p(t0) =
∂S

∂q
(q0, t0);

i.e., “every solution to the Hamilton-Jacobi equation provides a bundle of solutions to the

corresponding Hamilton equation”. (Hint: Check it directly by substitution.)

3.12 Completely Canonical Transformations: Their
Structure

Among the canonical transformations, the completely canonical transforma-
tions are very simple and interesting [see Eq. (3.11.39)]. It is therefore impor-
tant to obtain general results about the structure of such maps.

Let V ⊂ Rℓ × Rℓ or Rℓ × T ℓ or Rℓ × (Rℓ1 × T ℓ2), ℓ1 + ℓ2 = ℓ, be an
open set which is regarded as the phase space of a Hamiltonian systems of
differential equations with regular Hamiltonian functions H ∈ C∞(V ) (see
Observation (4) to Proposition 17, p.216.)

18 Definition. Let V,W be open sets as above and let C be an invertible
nonsingular21 C∞ map between V and W . Denote C

p = P(π,κ), q = Q(π,κ) (3.12.1)

21 i.e., with non vanishing Jacobian determinant.
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Let (p0,q0) = C(π0,κ0), (p0,q0) ∈ V , (π0,κ0) ∈ W be two C-corresponding
points. Define the “linearized C map near (π0,κ0)” as the map of Rℓ ×Rℓ

p
def
= p0 +A(π − π0) +B(κ − κ0),

q
def
= q0 + C(π − π0) +D(κ− κ0),

, (3.12.2)

where A,B,C and D are the four ℓ× ℓ matrices:

Aij
def
=

∂Pi
∂πj

(π0,κ0), Bij
def
=

∂Pi
∂κj

(π0,κ0),

Cij
def
=

∂Qi
∂πj

(π0,κ0), Dij
def
=

∂Qi
∂κj

(π0,κ0),

(3.12.3)

i, j = 1 . . . , ℓ, and in Eq. (3.12.2), π0,κ0,p0,q0 are regarded as elements of
Rℓ (even though κ0,q0 might be in T ℓ or Rℓ1 × T ℓ2).22 The 2ℓ× 2ℓ matrix

L =

(
A B
C D

)
(3.12.4)

is the Jacobian matrix of the map C and, therefore, detL 6= 0, ∀(π0,κ0) ∈W .

The main structure theorem for the completely canonical time independent
maps transforming V onto W is:

23 Proposition. A necessary and sufficient condition for the complete canon-
icity of a map C of the type considered in the Definition 18, Eq. (3.12.1), is
that the map obtained by linearizing C at (π0,κ0) ∈W is a completely canon-
ical map of R2ℓ onto R2ℓ, ∀(π0,κ0) ∈W .
This is the case if and only if the inverse matrix to the matrix (3.12.4) is

L−1 =

(
DT −BT
−CT AT .

)
(3.12.5)

where the superscript T denotes the transposition of the matrix.

Observations.
(1) In other words, C is completely canonical in W if and only if its lineariza-
tion around any point in W is completely canonical.
(2) Hence, complete canonicity is a “purely local” property of a map: this
explains why the completely canonical maps are sometimes called “contact
transformations” (although it does not explain why they are often called “sym-
plectic”).

Proof. Let H ∈ C∞(V ) and H ′(π,κ) = H(C(π,κ)) = H(P(π,κ),Q(π,κ)).
The Hamiltonian equations in V are

22 We recall that on T ℓ we use the flat coordinates: the ambiguity mod 2π of some of the
coordinates of κ0 or q0 is arbitrarily solved here and it is irrelevant in the following.
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ṗ = −∂H
∂q

(p,q), q̇ =
∂H

∂p
(p,q) (3.12.6)

and if C is completely canonical, they must be equivalent to the equations

π̇ = −∂H
′

∂κ
(π,κ), κ̇ =

∂H ′

∂π
(π,κ) (3.12.7)

i.e., if t→ (π(t),κ(t)) solves Eq. (3.12.7), then the motion t→ C(π(t),κ(t)) =
(P(π(t),κ(t)),Q(π(t),κ(t))) ≡ (p(t),q(t)) has to solve Eq. (3.12.6). Differ-
entiating pi(t) = Pi(π(t),κ(t)), Qi(t) = qi(π(t),κ(t)) with respect to t,

ṗi =

ℓ∑

i=1

(
Aikπ̇k +Bikκ̇k

)
=

ℓ∑

k=1

(
−Aik

∂H ′

∂κk
+Bik

∂H ′

∂πk

)
,

q̇i =

ℓ∑

i=1

(
Cikπ̇k +Dikκ̇k

)
=

ℓ∑

k=1

(
− Cik

∂H ′

∂κk
+Dik

∂H ′

∂πk

)
,

(3.12.8)

for i = 1, . . . , ℓ, where the matrices A,B,C,D and the derivatives of H ′ are
evaluated at (π(t),κ(t)), to simplify the notations. Using the expression of
H ′ in terms of H , we find from Eq. (3.12.8), ∀i = 1, . . . ℓ:

ṗi =
∑

k,s

{(
−Aik(

∂H

∂ps
Bsk +

∂H

∂qs
Dsk) +Bik(

∂H

∂ps
Ask +

∂H

∂qs
Csk)

)}

q̇i =
∑

k,s

{(
− Cik(

∂H

∂ps
Bsk +

∂H

∂qs
Dsk) +Dik(

∂H

∂ps
Ask +

∂H

∂qs
Csk)

)}
,

(3.12.9)
where the derivatives of H are computed in the point (P(π,κ),Q(π,κ)), and
the matrices A,B,C, and D have to be computed in (π,κ). Equation (3.12.9)
can be more compactly written with matrix-product notations:

(
ṗ
q̇

)
=

(
(ABT −BAT ) (−ADT +BCT )

(−DAT + CBT ) (−CDT +DCT )

)(−∂H∂p
∂H
∂q

)
(3.12.10)

We now impose that Eq. (3.12.10) reduces to Eq. (3.12.6), ∀H ∈ C∞(V ).
Since the vector in the right-hand side of Eq. (3.12.10) can be made arbitrary
by varying H , if the point (p,q) where the derivatives are evaluated is kept
fixed, it follows that

ABT −BAT = 0, CDT −DCT = 0, −ADT +BCT = −I, (3.12.11)

where I = (ℓ× ℓ identity matrix). Note that
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(
(ABT −BAT ) (−ADT +BCT )

(−DAT + CBT ) (−CDT +DCT )

)
=

(
A B
C D

)(
BT −DT

−AT CT

)

(3.12.12)
hence, Eq. (3.12.11) can be written as

(
A B
C D

)(
BT −DT

−AT CT

)
=

(
0 −I
−I 0

)
(3.12.13)

or, multiplying both sides on the right by

(
0 −I
−I 0

)
:

(
A B
C D

)(
DT −BT
−CT AT

)
=

(
I 0
0 I

)
(3.12.14)

which implies Eq. (3.12.5).
Vice versa, if Eq. (3.12.5) holds everywhere in W , the above equalities can

be run backwards.
If H is explicitly time dependent, its conjugacy via C with H ′ defined by

H ′(π,κ, t) = H(C(π,κ), t) follows in an identical fashion. mbe

24 Proposition. The Jacobian determinant of any completely canonical
transformation is ±1.

Proof. Equation (3.12.14) can be written

(
A B
C D

)(
0 −I
−I 0

)(
AT CT

BT DT

)(
0 −I
−I 0

)
= −1 (3.12.15)

where 1 denotes the 2ℓ× 2ℓ identity matrix; i.e.,

L

(
0 −I
−I 0

)
LT

(
0 −I
−I 0

)
= −1. (3.12.16)

Hence, taking the determinant of both sides and remarking that the matrix

E =

(
0 −I
I 0

)
has determinant detE = +1, it follows that

(detL)2 = 1 (3.12.17)

mbe
It could be shown that, actually, detL = +1, see problem (16) below.
The conditions (3.12.15) or (3.12.11) for complete canonicity, equivalent

to Eq. (3.12.5), can be expressed in terms of the following notion of “Poisson
bracket” of two observables.

19 Definition. Let V be an open subset of Rell × Rℓ or Rℓ × T ℓ or Rℓ ×
(Rℓ1 × T ℓ2), elll + ℓ2 = ℓ, regarded as the phase space for the Hamiltonian
equations in V . Let F,G ∈ C∞(V ) be two “observables”. One defines the
“Poisson bracket” {F,G} ∈ C∞(V ) of F and G as
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{F,G}(p,q) =

ℓ∑

s=1

( ∂F
∂ps

(p,q)
∂G

∂qs
(p,q)− ∂F

∂qs
(p,q)

∂G

∂ps
(p,q)

)
. (3.12.18)

Observations.
(1) Clearly, ∀i, j = 1, . . . , ℓ,

{pi, qj} = δij , {pi, pj} = 0, {qi, qj} = 0 (3.12.19)

Also, if ϕ1, . . . , ϕr are C∞ functions on Rn and F1, . . . , Fn ∈ C∞(V ), and if
one defines

Φj(p,q) = ϕj(F1(p,q), . . . , Fn(p,q)), (3.12.20)

one finds:

{Φi, Φj} =

n∑

h,k=1

∂ϕi
∂Fh

∂ϕj
∂Fk
{Fh, Fk}. (3.12.21)

(2) Sometimes the definition (3.12.18) is given with the opposite sign: this is
totally irrelevant despite claims to the contrary.
(3) Equations (3.12.19) are also called the “canonical commutation” relations.

The notion of Poisson bracket is remarkable as it appears from the follow-
ing corollary to the Proposition 23, p.234.

25 Corollary. A necessary and sufficient condition for the complete canon-
icity of an invertible nonsingular map C between V and W (as in Definition
17, p.220, above) is that the functions defining it, P(π,κ),Q(π,κ), have the
property, ∀(π,κ) ∈W, ∀i, j = 1, . . . , ℓ:

{Pi, Qj} = δij , {Pi, Pj} = 0, {Qi, Qj} = 0 (3.12.22)

Observations.
(1) So C is completely canonical if and only if it “preserves the canonical com-
mutation relations”.
(2) If C preserves the canonical commutation relations, it follows that it pre-
serves the Poisson brackets of any pair of observables: this means that if
F,G ∈ C∞(V ) and if we define

FC(π,κ) = F (C(π,κ)), GC(π,κ) = G(C(π,κ)), (3.12.23)

then, as is checked by Eqs. (3.12.21) and (3.12.22):
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{F,G}(p,q) = {FC , GC}(π,κ) if (p,q) = C(π,κ). (3.12.24)

So C is completely canonical if and only if it “preserves the commutation
relations of any pair of observables”.

Proof. Explicitly write Eq. (3.12.22) in terms of the derivatives of Eq.
(3.12.3): one finds that they become Eq. (3.12.11), i.e., Eq. (3.12.5).

mbe

In §3.11 it has been shown that a class of completely canonical transfor-
mations can be built from a generating function. One can wonder how general
this construction is.

26 Proposition. Let C be a completely canonical map between V and W
as in Definition 17, p.220. Given two corresponding points (p0,q0) ∈ V ,
(π0,κ0) ∈ W , (p0,q0) = C(π0,κ0), consider the matrices (3.12.3). Then
C can be generated near (p0,q0), (π0,κ0) by a generating function, as in
Proposition 21, p.220, and in the observations following it, having the form:

(i) F (q,κ) if detC 6= 0,

(ii) Φ(p,κ) if detA 6= 0,

(iii) Ψ(π,q) if detD 6= 0,

(iv) R(p,π) if detB 6= 0,

(3.12.25)

Observations.
(1) There exist completely canonical transformations for which detA =
detB = detC = detD = 0. For instance, the map of R2 ×R2←→R2 ×R2

(p1, p2; q1, q2)←→(p1,−q2; q1, p2). (3.12.26)

This canonical transformation cannot be generated by a generating function
of the above types.
(2) If C is completely canonical, defined on V ⊂ R2ℓ, it must have a Jacobian
matrix L with non vanishing determinant, (see Proposition 24, p.236). Hence,
there must be a choice of indices i1, . . . , is, j1, . . . jℓ−s, pairwise distinct, with

det
∂(pi1 , . . . , pis , qj1 , . . . , qjℓ−s

)

∂(π1, . . . , πℓ)
6= 0 (3.12.27)

This means, as it can be understood with a little thought, that C can be locally
constructed by composing a canonical transformation of the type:

(p1, . . . , pℓ; q1, . . . , qℓ)←→
(pi1 , . . . , pis ,−qj1 , . . . ,−qjℓ−s

; qi1 , . . . , qis , pj1 , . . . , pjℓ−s
)

(3.12.28)

[like Eq. (3.12.26)] with a completely canonical transformation generated by
a function Φ(p,κ).
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(3) So any completely canonical transformation is, near a point, a composition
of a trivial (“permutation type”) completely canonical transformation and a
completely canonical transformation with a generating function (Arnold).

Proof. Suppose, for instance, detD 6= 0. Then it is possible to invert the
equation q = Q(π,κ) to express

κ = G(π,q), (3.12.29)

for (q,π,κ) near (q0,π0,κ0), using the implicit function theorem (see Ap-
pendix G). Then we can write

p = P(π,G(π,q)) ≡ F(π,q), κ = G(π,q) (3.12.30)

and we must show existence of Ψ (π,q) such that

∂ψ

∂q
(π,q) = F(π,q),

∂ψ

∂π
(π,q) = G(π,q) (3.12.31)

defined near π0,q0. This means checking the integrability conditions:

∂Fi
∂qj

=
∂Fj
∂qi

,
∂Fi
∂πj

=
∂Gj
∂qi

,
∂Gi
∂πj

=
∂Gj
∂πi

, (3.12.32)

Differentiation of the first of Eqs. (3.12.30) yields

∂Fi
∂πj

= Aij +

ℓ∑

k=1

Bik
∂Gk
∂πj

,
∂Fi
∂qj

=

ℓ∑

k=1

Bik
∂Gk
∂qj

(3.12.33)

∀i, j = 1, . . . , ℓ, with the obvious choice of arguments of these functions; e.g.
π = π0,q = q0. Differentiation of the identity κ ≡ G(π,Q(π,κ)) gives

∂Gi
∂qj

= (D−1)ij ,
∂Gi
∂πj

+

ℓ∑

s=1

∂Gi
∂qs

Csj = 0, (3.12.34)

∀i, j = 1, . . . , ℓ. More concisely, rewrite Eqs. (3.12.33) and (3.12.34) as

∂F

∂π
= A−BD−1C,

∂F

∂q
= BD−1,

∂G

∂q
= D−1,

∂G

∂π
= −D−1C

(3.12.35)

and the conditions (3.12.32) become

A−BD−1C = (D−1)T , (3.12.36)

BD−1 = (BD−1)T , i.e. BD−1 = (D−1)TBT , i.e DTB = BDT ,

D−1C = (D−1C)T , i.e. D−1C = CT (D−1)T . i.e. CDT = DCT .
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So after checking xthat Eqs. (3.12.36) are a disguised form of the complete
canonicity conditions (3.12.11) and the proof will be complete.

In fact, the third of Eqs. (3.12.36) is implied by the second of Eqs. (3.12.11).
Furthermore, using the first and the transposition of the third of Eqs. (3.12.11)
we see that23

ABT = BAT = BD−1DAT = BD−1(I + CBT ) = BD−1 +B(D−1C)BT

(3.12.37)
which shows that BD−1 is symmetric since such is ABT and B(D−1C)BT

(having already seen that D−1C is symmetric). So the second of Eqs. (3.12.36)
also holds. Finally the first of Eq. (3.12.36) means

ADT −BD−1CDT = I (3.12.38)

which, since CDT = DCT by the Eq. (3.12.11), shows that the second equality
in Eqs. (3.12.38) simply means that ADT − BCT = I which is true, because
it is the first of Eqs. (3.12.11). mbe

3.12.1 Problems and Complements

1. Let C be a map of W onto W ′ and suppose that there is Φ ∈ C∞(G(C)), G(C) ≡
{p,q,p′,q′ | (p,q,p′,q′) ∈ W ×W ′, (p,q) = C(p′,q′)}, such that

p · dq = p′ · dq′ + dΦ.

Show that C is a time independent completely canonical map and that it is also “action
preserving” in the sense that, if λ is a closed curve in W ′ and Cλ is its C-image in W , it is

Z

Cλ
p · dq =

Z

λ
p′ · dq′

2. Consider in R2 the annulus D = {(q1, q2) |α < q21 + q22 < β, α, β > 0}, and let
f(q1, q2)dq1 + g(q1, q2)dq2 be an exact but non integrable differential form on D. Define

C(p1, p2, q1, q2)
def
= (p′1, p

′
2, q

′
1, q

′
2) ≡ (p1 + f(q1, q2), p2 + g(q1, q2), q1, q2).

Show that it is completely canonical (time independent, of course). (Hint: Note that p′1dq
′
1+

p′2dq
′
2 = p1dq1+p2dq2+f(q1, q2)dq1+g(q1, q2)dq2 and recall that every exact form is locally

integrable and that the complete canonicity is a local property and use problem (1).)

3. Show that not all completely canonical maps are action preserving in the sense of problem
(1). (Hint: Consider the map in Problem 2 and choose λ to be the curve p1 = p2 =
0, q21 + q22 = 1

2
(α + β).)

4.* Show that the existence of Φ ∈ C∞(G(C)) verifying the property introduced in Problem
(1) is a necessary and sufficient condition in order that C be an action preserving time
independent completely canonical map of W onto W ′.

23 We use the fact that if M is a symmetric ℓ× ℓ matrix and E is an arbitrary ℓ× ℓ matrix,
then ETME is a symmetric matrix (exercise).



3.12 Completely Canonical Transformations 241

5. Show that the map C(px, , py, x, y) = (p1, p2, q1, q2) between R2 × (R × R+)/(set of
points with px = 0) and R4/(set of points with p1q1 + p2q2 ≤ 0 or with p1 ≤ 0) defined by
the following relation, setting i =

√−1:

p ≡ px + i py =
i

2
(p1 + i q2)

2, q ≡ x+ i y =
p2 + i q1

p1 + i q2

is completely canonical (time independent). (Hint: Check that it is one-to-one and pxdx+
pydy ≡ Re pdq = p1dq1 + p2dq2 − 1

2
d(p1q1 + p2q2).)

6. Let (p′, q′) = C(p, q) be a map from W ⊂ R2 onto W ′ ⊂ R2. Show that a necessary
and sufficient condition for C being completely canonical is that it is orientation and area
preserving (recall that a map is “orientation preserving” if its Jacobian matrix L has positive
determinant). (Hint: Note that the matrices A,B, C,D are numbers and therefore (3.12.5)
holds if and only if detL = 1.)

7. Extend the notion of completely canonical time independent map by replacing (hence
extending) (3.11.52) by S(m) = λΣ(µ) + constant. Discuss the case λ = −1 and prove a
proposition like Proposition 23. Find the physical meaning of λ.

8.* Consider the Hamiltonian on R2×(R×R+): H0(px, py, x, y) = 1
2
y2(p2x+p2y), (“Hamil-

tonian for the geodesic motion for the geometry ds2 = dx2+dy2

y2
on R × R+, see Prob-

lems 19-24, p.230), and show that the canonical map in Problem (5) transforms H0 into
1
8
(p1q1 + p2q2)2. Write and solve the Hamilton’s equations in the new coordinates.

9.* In the context of Problem (8) consider the canonical map p′1 = p1+q1√
2
, q′1 = p1−q1√

2
, p′2 =

p2+q2√
2
, q′2 = p2−q2√

2
and show that H is transformed by it into 1

2
((p′1)2 − (q′2)

2 + (p′2)
2 −

(q′2)2)2. Interpret this as saying that the geodesic motions of H0 taking place at a given
energy E can be thought of as describing the motions of two independent hyperbolic oscil-
lators (i.e. two particles on a negative quadratic potential). How does this picture change
as E varies?

10.* Show that the map (p1, p2, q1, q2) → (px, py, x, y) defined in Problem 5 is one-to-one
from eG = R4/(set of points for which p1q1 + p2q2 ≤ 0) onto G′ = R2 × R × R+/(set
of points for which px = py = 0). If however the “opposite” points (p1, p2, q1, q2)
and (−p1,−p2,−q1,−q2) are identified, the map becomes one-to-one. Then remark that
(p1, p2, q1, q2) may be regarded as coordinates (modulo the sign) for the points of the set
G′ = {eG with opposite points identified} in the same sense as a point ϕ ∈ Rℓ can be
regarded as a coordinate (modulo 2π) for a point in T ℓ.
Using this remark extend the notion of time independent completely canonical maps to
cover the case when W instead of being a subset of V × (T ℓ1 ×Rℓ2) is a subset of G′ and
show that the map under consideration is completely canonical, in this new sense, as a map
between eG and G′.

11. Try to extend the notion of completely canonical time independent map to maps of ar-
bitrary open surfaces of dimension 2ℓ by abstracting the essential properties of the examples
discussed in definition 17, p.220, and in Problem (10) where the 2ℓ-dimensional surfaces are
very special, i.e. they are, respectively, of the form V ×T ℓ1 ×Rℓ2 , ℓ1 + ℓ2 = ℓ, V ⊂ Rℓ, or
the set eG with opposite points identified.

12. Let W be the phase for a regular time independent Hamiltonian function H, see ob-
servation (4), p.216. Let T > 0, (p,q) ∈ W , and suppose that the solution St(p,q) to the
Hamiltonian equations with initial datum (p,q) stays in W for all t ∈ [0, T ]: St(p,q) ∈ W .
Define Ft(p,q) ≡ F (St(p,q)) and show that
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dFt(p,q)

dt
= {H,Ft}(p,q)

i.e., “the time derivative of an observable F is given by its Poisson bracket with the Hamil-
tonian”

13. In the context of (12) show that {H,Ft}(p,q) ≡ {H,F}(St(p,q)): since in Physics
the operation of associating with F ∈ C∞(W ) the function LF = H,F is called the
“Liouville’s operator action” this can be read: the “Liouville operator commutes with the
time evolution”.

14. Let E,F,G be in C∞(W ), where W is the phase space for a regular time independent
Hamiltonian H. Show that

{E, {F,G}} + {F, {G,E}}+ {G, {E,F}} = 0, {E,F} = −{F,E}

{E,FG} = {E,F}G+ {E,G}F

These relations are called respectively “the Jacobi identity”, the “antisymmetry” and the
“derivation property” of the Poisson bracket.

15. Show that, in the context of Problem (12), the relations (“Liouville’s equations”)

dF (St(p,q))

dt
= {H,F}(St(p,q)) = LF (St(p,q))

imply, if valid for all F ∈ C∞(W ), for all (p,q) ∈ W and for t small (depending possibly
on (p,q)), that t → St(p,q) verifies the Hamilton’s equations, (“equivalence between the
Hamilton’s equations and the Liouville’s equations”).

Other problems on canonical maps can be found at the end of §4.9-4.12 and §5.10 and
§5.12.
16. Let C(π,κ) = (p,q) be a completely canonical map defined between sets U,W ⊂ R2ℓ.
Then the Jacobian determinant of C is a matrix L with determinant detL = 1. (Hint:

Write L as
∂(p,q)
∂π,κ and suppose that C has a generating function F (q,κ), for instance. Then

express (p,q) as functions of (κ,q) first and remark that the Jacobian of this map is

∂(p,q)

∂κ,q
=

„− ∂2F
∂κ∂q − ∂2F

∂q2

0 1

«

whose determinant is (−1)ℓ det ∂2F
∂κ∂q . Similarly the Jacobian of the map (κ, q)→ (π,κ) is

∂(κ, q)

∂(π,κ)
=

 
(∂

2F
∂κ2 )−1 1

( ∂
2F
∂qκ

)−1 0

!

whose determinant is (−1)ℓ(det ∂2F
∂κ∂q )−1. The identity

L =
∂(p,q)

∂(π,κ)
=
∂(p,q)

∂(κ,q)
· ∂(κ,q)

∂(π,κ)

implies, therefore, detL = 1 (from [28] p.199.))

Concluding Comments to Chapter 3

(1) We have described by the word “action” certain quantities which, in fact,
do not motivate such a nice name [see Eqs. (3.3.4), etc.]. Actually, in contem-
porary literature, the convention of calling Eq. (3.3.4) “action of a motion”,
or “least action principle” the corresponding variational principle, prevails.
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This is perhaps historically incorrect: the action was introduced by Mau-
pertuis when he formulated the variational principle bearing his name, Prob-
lem (16) p.229.24 The numerical value of the quantity that Maupertuis called
“action of a motion”, computed on the real motion developing under the in-
fluence of given conservative forces and ideal constraints, is related, in a very
simple way, to the value of the action of Eq. (3.3.4) computed on the real
motion (see Problem 15, §3.11 p.229). The same occurs for the numerical
value of other quantities also sometimes called “action”, see, for instance, Eq.
(3.11.50). These simple relations explain why there is so much confusion in
the names. However, it should be stressed that among the various notions
of action there are simple relations only if we compare the numerical values
that they have on the real motions: it would not make sense to ask if there
is a simple relation between the values taken on the varied motions (mainly
because in the different variational principles, the motions are described and
parameterized differently and, therefore, one cannot compare them).
(2) It is interesting to quote Maupertuis in connection with his definition of
action, afterwards interpreted by Euler as in Problem 16, p.229 (quoted from
[31], Chapter III, §2.8):

We must explain what is meant by quantity of action. When a body is
moved from one point to another, a certain action is necessary. This action
depends upon the velocity of body, upon the space it covers, but it is neither
the velocity nor the space separately considered. The greater the body’s velocity
and the longer the path that it covers, the greater the action; the action is pro-
portional to the sum of the spaces, each multiplied by the speed with which the
bodies cover them. It is the quantity of action, the true expenditure of Nature,
which she administers with as much economy as possible in the movement of
light

The last line refers to Maupertuis’ application of his principle to the prop-
agation of light. The other lines are a nice way of saying

A =

∫ ξ2

ξ1

v · dq =
1

m

∫ ξ2

ξ1

p · dq,

and the condition of stationarity of A on a motion t → (p(t),q(t)) of given
energy E can be shown to be equivalent to the stationarity of the quantity in
Problem 16, §3.11 (a further problem for the reader).

For a comment on Maupertuis’ definition, see the angry pages of E. Mach
([31], Chapter III, §8.4).
(3) To understand the historical development of the various principles, one
can consult Mach, where they are critically discussed, paying due attention to
history. In his book ([31], Chapter IV, §2), one also finds an interesting com-

24 The original formulation was, in fact, quite obscure and it was later clarified by Euler
(see [31], Ch. III).
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ment on the “theological, animistic and mystical points of view in mechanics”
(see, also, Observation (2), p.164).
(4) Concrete and interesting exercises for this chapter can be found in the
book [32].

For §3.1 and §3.3 see:
Chapter 3 §10, §11, §12;
Chapter 4 §21, §22, §23;
Chapter 9 §26, §27, §28, §29, §30, §31, §32, §33;
Chapter 10 §4, §35, §36, §38.

For §3.3, §3.4, §3.5, and §3.8 see:
Chapter 4, §13, §14;
Chapter 5, §15, §16, §17, §18; Chapter 10, §37, §39, §43;
Chapter 11, §46, §47, §48;
Chapter 6, §19, §20.

For §3.11 and §sec:III-12, see:
Chapter 11 §49.

One can also consult the book [16]
For §3.1 and §3.2 see:
Chapters 6 and 11.
For §3.3, §3.4, §3.5, and §3.8 see:
hapters 2, 3, 5, 7, 8, 10, 12, 13, 14, 17, 18, and 21.
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Special Mechanical Systems

4.1 Systems of Linear Oscillators

In this chapter we adhere systematically to the convention of denoting and
writing the Lagrangian functions that we shall meet as L(ẋ,x, t) or L(ẋ,x) or
L(q̇,q, t), rather than as functions of generic variables (α,β, t): the notation
is obviously improper since in such cases the variables ẋ and x are not Carte-
sian coordinates but local (or toroidal) coordinates, and often the mechanical
systems will be described directly in local coordinates omitting the obvious
but tedious discussion necessary when the local coordinates are not global
(i.e., they are not globally equivalent to Cartesian coordinates).

A typical example of this situation is when one says that a point mass
ideally bound to remain on the sphere of radius ̺ is described by a Lagrangian
function given, in polar coordinates, by

L(θ̇, ϕ̇, θ, ϕ, t) =
m

2
̺2(θ̇2 + (sin θ)2 ϕ̇2) (4.1.1)

After a little practice and thought, this notational convention, very common
in literature, will appear natural and should not give rise to any confusion.

Hence, a system of linear oscillators, each with 1 degree of freedom, is the
mechanical system defined by

L(ẋ,x) =
1

2

ℓ∑

ij=1

gij ẋiẋj −
1

2

ℓ∑

ij=1

vijxixj , (4.1.2)
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where G = (gij)i,j=1,...,ℓ, V = (vij)i,j=1,...,ℓ are two ℓ× ℓ symmetric positive-
definite matrices (see Appendix F, p.525). The Lagrangian equations corre-
sponding to Eq. (4.1.2) are

ℓ∑

j=1

gij ẍj = −
ℓ∑

j=1

vijxj , i = 1, . . . , ℓ. (4.1.3)

They can be treated in full generality and their theory is summarized by
following proposition stating that essentially Eq. (4.1.3) is equivalent through
a “simple” transformation, to ℓ equations of the type:

ÿi = −ω2
i yi, i = 1, . . . , ℓ. (4.1.4)

I Proposition. The most general solution of Eq. (4.1.2) for t ∈ R can written
in terms of ℓ arbitrary non-negative constants A = (A1, ..., Aℓ) and of ℓ angles
ϕ = (ϕ1, . . . , ϕℓ) as

x(t) =

ℓ∑

i=1

√
2Ai
ωi

η(i) cos(ωit+ ϕi), (4.1.5)

where ω1, . . . , ωℓ are the ℓ positive solutions of the ℓ-th order equation for ω2:

det(−ω2G+ V ) = 0 (4.1.6)

and the vectors η(1), . . . ,η(ℓ) verify the equation:

−ω2
i Gη

(i) + V η(i) = 0, i = 1, . . . , ℓ (4.1.7)

and they can be chosen so that

(Gη(i)) · η(j) = δij , i, j = 1, . . . , ℓ. (4.1.8)

Observations.
(1) In Eq. (e4.1.5), one could of course write Ai instead of

√
2Ai/ωi: however,

the square root is more convenient since in this way the map (ẋ(0),x(0)) →
(A,ϕ) can be related to a canonical transformation [see Exercises for §4.1 and
Observation (3) to Corollary 3, p.249].
(2) Therefore, Eq. (4.1.3) admits periodic solutions like

√
2A

ω
η cos(ω t + ϕ). (4.1.9)

Such oscillations are called “normal vibration modes” or “normal motions”.
The preceding proposition tells us that there exist ℓ (independent) normal
modes, orthogonal in the sense of Eq. (4.1.8) and that every oscillation is a
“superposition” of normal modes.
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To underline the interest of the orthogonality of the normal oscillation
modes, let us deduce from Proposition I, and before its proof, the following
corollary.

2 Corollary. The energy of the oscillations in Eq. (4.1.5) is

E =

ℓ∑

i=1

ωiAi (4.1.10)

i.e. it is the sum of the energies of each normal mode component.

Proof. The energy is [see §3.11, Observation (1), p.217]

E =
1

2

ℓ∑

ij=1

gij ẋiẋj +
1

2

ℓ∑

ij=1

vijxixj , (4.1.11)

which can be written in vector form as E = 1
2 (Gẋ) · ẋ+ 1

2 (V x) ·x or, explicitly,
from Eq. (4.1.5):

E =
1

2

ℓ∑

i,j=1

{√4AiAj
ωiωj

ωiωj sin(ωi t+ ϕi) sin(ωj t+ ϕj) · (η(i), Gη(j))

+

√
4AiAj
ωiωj

cos(ωi t+ ϕi) cos(ωj t+ ϕj) · (η(i), V η(j))
}

(4.1.12)
and, using Eq. (4.1.5), we can replace (η(i), V η(j)) with ω2

j (η
(i), Gη(j)), and

by Eq. (4.1.8) plus trigonometry, one realizes that Eq. (4.1.12) becomes Eq.
(4.1.10). mbe

Proof of Proposition I. Assume the existence of ω1, . . . , ωℓ, the ℓ positive
roots of Eq. (4.1.6), and of ℓ linearly independent vectors η(1), . . . ,η(ℓ) verify-
ing Eq. (4.1.7). Then by direct substitution of Eq. (4.1.5) into Eq. (4.1.3). one
sees that the function in Eq. (4.1.5) satisfies, ∀A ∈ Rℓ+, ∀ϕ = (ϕ1, . . . , ϕℓ) ∈
T ℓ, the equations Eq. (4.1.3).

It is also easy to see that given (η, ξ) ∈ R2ℓ arbitrarily, it is possible to
determine A ∈ Rℓ+, ϕ ∈ T ℓ so that Eq. (4.1.5) verifies the datum x(0) = ξ,
ẋ(0) = η for t = 0. In fact the conditions

ξ =

ℓ∑

j=1

√
2Aj
ωj

η(j) cosϕj , η = −
ℓ∑

j=1

√
2ωjAj η

(j) sinϕj , (4.1.13)

imply, by scalar multiplication of both sides of Eq. (4.1.13) by Gη(i), i =
1, . . . , ℓ:
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(Gη(i)) · ξ̇ =

√
2Ai
ωi

η(i) cosϕi, (Gη(i)) · η = −
√

2Aiωi sinϕi (4.1.14)

by Eq. (4.1.8). Equation (4.1.14) determines Ai and ϕi because

(
√
Ai, ϕi) = {polar coordinates of the point with Cartesian coordinates

(√ωi
2
Gη(i) · ξ, 1√

2ωi
Gη(i) · η

)
∈ R2 (4.1.15)

Viceversa, if (Ai, ϕi) verifies Eq. (4.1.14), it is easy to see that, since the vectors
η(1), . . . ,η(ℓ) are ℓ linearly independent vectors in Rℓ (by assumption) and,
therefore, form a basis in Rℓ, Eq. (4.1.13) necessarily follows.

By virtue of the existence and uniqueness theorems of differential equa-
tions, Eq. (4.1.3) is the most general C∞ solution to Eq. (4.1.3), t ∈ R.

It remains to show the actual existence of ℓ linearly independent vectors
η(1), . . . ,η(ℓ) and of ℓ numbers ω1, . . . , wℓ > 0. This is a well-known proposi-
tion of algebra (see Appendix F, p.525). mbe

It will be useful to stress a simple corollary of Proposition I. For this
purpose, we recall the definition of the ℓ-dimensional torus T ℓ obtained by
identifying opposite sides of the square [0, 2π]ℓ, see Definitions 12 and 13,
p.100 and 101, and that of a function in C∞(T ℓ) and set:

1 Definition. Given ϑ = (θ1, . . . , θℓ) ∈ Rℓ, the transformation of T ℓ into
itself,

ϕ = (ϕ1, . . . , ϕℓ)→ ϕ+ ϑ = (ϕ1 + θ1, . . . , ϕℓ + θℓ), mod 2π (4.1.16)

will be called a “rotation of T ℓ with parameters ϑ = (θ1, . . . , θℓ) ∈ Rℓ”. The
group (St)t∈R of transformations of T ℓ into itself defined by

Stϕ = St(ϕ1, . . . , ϕℓ) = (ϕ1 + ω1t, . . . , ϕℓ + ωℓt), mod 2π() (4.1.17)

will be called the “flow on T ℓ generated by the rotation of T ℓ with speed ω or
the “quasi-periodic flow on T ℓ with pulsation ω”.

The following is then a corollary to Proposition I.

3 Corollary. It is possible to establish a correspondence between all the initial
data (η, ξ) ∈ R2ℓ for Eq. (4.1.3) and the set of the points (A,ϕ) ∈ Rℓ+ × T ℓ
via Eq. (4.1.15).
The correspondence is one to one, nonsingular, and of class C∞ between
(0,+∞)× T ℓ and its image in R2ℓ.
In (A,ϕ) coordinates, the motion of Eq. (4.1.5) is simply
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t → (A,ϕ+ ω t), (4.1.18)

i.e., it is a quasi-periodic flow on the torus {A} × T ℓ.
Observations.
(1) Corollary 3 and Eq. (4.1.18) say that the motion of ℓ harmonic oscillators
“consists of quasi-periodic motions taking place on a family of ℓ-dimensional
tori” parameterized by ℓ parameters A. If one discards the data for which
some of the normal modes are at rest (i.e., those for which some of the A’s
vanish), one can also say that the initial data space can be thought of as
“foliated” by an ℓ-dimensional family of ℓ-dimensional tori.
(2) The parameter Ai is called the “action of the i-th normal mode”. If one
describes the system in (A,ϕ) coordinates in the region where A ∈ (0,+∞)ℓ,
it is clear that it can be regarded as a Hamiltonian system on (0,+∞)ℓ × T ℓ
with Hamiltonian

h(A,ϕ) =

ℓ∑

i=1

ωiAi = ω ·A (4.1.19)

which leads immediately to Eq. (4.1.18).
(3) Observation (2) leads us to think that if the original system with La-
grangian (4.1.2) is described in the Hamiltonian form by the Hamiltonian

H(p,x) =
1

2
G−1p · p +

1

2
V x · x (4.1.20)

[see Eq. (3.11.25)], the map (A,ϕ)←→(p,x) between (0,+∞)ℓ × T ℓ and the
part of phase space where all the normal modes are excited (i.e. Ai > 0, ∀ i) is
a completely canonical transformation: this is in fact true and it is the reason

for writing Eq. (4.1.5) with
√

2Ai

ωi
instead of the simpler Ai (see exercises).

4.1.1 Exercises

1. Using Problems (1), (2), and (33), §3.11, show that the maps (p, q)←→(π, κ) with π =
p√
ωm

, κ = q
√
mω, and (π, κ)←→(π

2+κ2

2
, ϕ)

def
= (A,ϕ) with ϕ = {polar angular coordinate

of (κ, π) ∈ R2} are completely canonical maps. Show that performing such transformations

successively, one builds a completely canonical transformation changing H = p2

2m
+ mω2q2

2
into H = ωA.

2. Let H(p,q) = 1
2
G−1p ·p+ 1

2
V q ·q with G,V being two positive-definite matrices, ℓ× ℓ.

By Problem (33) of §3.11, the map (p,q)←→(π,κ) defined by p =
√
Gπ, q =

√
G−1κ (see

Appendix F, p.525, for the definition and the existence of the positive matrix
√
G such that√

G
2

= G) is completely canonical. Show that it transforms H into 1
2
π ·π+ 1

2
eV κ · κ with

eV =
√
G−1V

√
G−1.

Let R be an orthogonal matrix (see Appendix E), transforming eV into a diagonal matrix
Ω with diagonal elements ω2

1 , . . . , ω
2
ℓ , i.e., RT eV · R = Ω (see Appendix F for an existence

theorem on R). Show that the further completely canonical change of coordinates π =
RT bπ, κ = (RT )−1bκ changes H into
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1

2
bπ2 +

1

2
Ωbκ · bκ ≡ 1

2

ℓX

i=1

(bπ2
i + ω2

i bκ2
i )

Then, for each i , by further applying the maps in Exercise 1, the Hamiltonian is changed
in
Pℓ
i=1 ωiAi: prove also this as well.

3. Check that the variables (A,ϕ) constructed in Exercise 2 are the same as those appearing

in Proposition I.

4.2 Irrational Rotations on ℓ-Dimensional Tori

In §4.1 a natural description of the motion of a system of harmonic oscillators
was given as a quasi-periodic flow on T ℓ of the form

Stϕ = (ϕ+ ωt) = (ϕ1 + ω1t, . . . , ϕℓ + ωℓt) (4.2.1)

Hence it is convenient to analyze a few properties of the quasi-periodic flows.

2 Definition. The flow of Eq. (4.2.1) is “irrational” if (ω1, , . . . , ωℓ) ∈ Rℓ
are “rationally independent” numbers, i.e., if the relation

n · ω =

ℓ∑

i=1

niωi = 0, n1, . . . , nℓ integers, (4.2.2)

implies n1 = . . . nℓ = 0.

From the definition it follows:

4 Proposition. Let (St)t∈R be a quasi periodic flow defined on T ℓ by Eq.
(4.2.1) with ω ∈ Rℓ. If ϕ ∈ T ℓ and t0 ∈ R, the trajectory

Ω(t0) = {ϕ′ |ϕ′ = Stϕ, for some t ≥ t0} (4.2.3)

is dense on T ℓ if and only if the flow is irrational.

Observation. It would be possible to provide a direct proof of Proposition 4
along the lines of the analogous Proposition 27, p.92, §2.20, in the case ℓ = 2.
However, we prefer to give an alternative proof based on the Fourier series
and on the following proposition which is interesting in itself.

5 Proposition. Let f ∈ C∞(T ℓ) and let (St)t∈R+ be a flow of the type of
Eq. (4.2.1) on T ℓ which is irrational. Then, ∀ϕ ∈ T ℓ, the average value

f(ϕ) = lim
T→+∞

1

T

∫ T

0

f(Stϕ)dt (4.2.4)

exists and is ϕ-independent and equal to

f =

∫

T ℓ

f(ϕ′1, . . . , ϕ
′
ℓ)
dϕ′1 . . . dϕ

′
ℓ

(2π)ℓ
≡
∫

T ℓ

f(ϕ′)
dϕ′

(2π)ℓ
. (4.2.5)
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Proof. Since f ∈ C∞(T ℓ), it may be represented as

f(ϕ) =

−∞,+∞∑

n1,...,nℓ

f̂n1...nℓ
e
i
∑

j
njϕj ≡

∑

n∈Zℓ

f̂n e
in·ϕ, (4.2.6)

where (f̂n)n∈Zℓ are the Fourier harmonics of f (see Proposition 28, p.103),
and they decrease faster than any power in in |n| as |n| → ∞.

Furthermore, the right-hand side of Eq. (4.2.5) is just f̂0 [see Eq. (2.21.13].
Then

1

T

∫ T

0

f(Stϕ)dt =
∑

n∈Zℓ

f̂n e
in·ϕ

{ 1

T

∫ T

0

ei tn·ω
}
dt (4.2.7)

and the series in Eq. (4.2.7) is bounded above by the convergent series

∑

n∈Zℓ

|f̂n| < +∞ (4.2.8)

because the number in curly brackets in Eq. (4.2.7) clearly has a modulus not
exceeding 1, being an average of numbers of modulus 1. Then we can take the
limit in Eq. (4.2.7), as T → +∞, term by term.

But the integral in the right-hand side of Eq. (4.2.7) is

1

T

ei T n·ω − 1

in · ω −−−−−→
T→+∞ 0, if n · ω 6= 0 (4.2.9)

while it is 1 if n · ω = 0. However, n · ω = 0 only for n = 0 and all the terms
in Eq. (4.2.7) vanish except that with n = 0 as T → +∞, and Eq. (4.2.5) is
proved. mbe

Note that Proposition 5 is also an immediate consequence of Proposition
30, p.105. The same method of proof of Proposition 5 could be used to prove
the following proposition which we describe before proving Proposition 4.

6 Proposition. With the same hypothesis as that of Proposition 5, let T ∈
R, T 6= 0, and consider the limit

lim
N→+∞

1

N

N−1∑

h=0

f(ShTϕ). (4.2.10)

Such a limit exists and is given by Eq. (4.2.5) if the (ℓ + 1) numbers

ω
def
= 2π

T , ω1, . . . , ωℓ are rationally independent.

Observations.
(1) Proposition 6 is the generalization to the ℓ > 1 case of the Observations
(5) and (6), p.111. The proof is left to the reader as an exercise on the proof
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of Proposition 5.
(2) A simple analysis of the proof of the Propositions 5 and 6 allows us to
conclude that the limits of Eqs. (4.2.4) and (4.2.10) exist in general, but they
will not generally be ϕ independent unless ω1, . . . , ωℓ (or 2π

T , ω1, . . . , ωℓ) are
rationally independent.

An immediate corollary to Proposition 5 is the following proof of Propo-
sition 4.

Proof of proposition 4. Assume that St is an irrational flow. Let ϕ0 ∈ T ℓ
and let χ ∈ C∞(T ℓ) be a non-negative function having the value 1 in ϕ0, and
zero outside a small ball σε ⊂ T ℓ with center ϕ0 and radius ε in the metric
of T ℓ [see Eq. (2.21.5), p.101.]

Apply Proposition 5 to χ. We see that the average value of t → χ(Stϕ)
cannot approach zero, ∀ϕ ∈ T ℓ. Hence, for every t0, there must be t > t0
such that χ(Stϕ) > 0, i.e., Stϕ is closer to ϕ0 than ε. This means that Ω(t0)
is dense. Viceversa, if there exist integers n1, . . . , nℓ not all equal to zero such
that n · ω = 0, the function on T ℓ defined by

ϕ → cos(n ·ϕ) (4.2.11)

is not constant on T ℓ but is constant on the trajectory t → St(ϕ), t ∈ R+ ,
for all ϕ ∈ T ℓ (since n · ω = 0). Therefore, for instance, the origin trajectory
of the origin cannot approach too closely any point ϕ such that cosϕ · n < 1
and vice versa. So Ω(t0) is not dense. mbe

In the same way in which Proposition 5 implies Proposition 4, one sees
that Proposition 6 implies the following corollary.

7 Corollary. With the same hypothesis as that of Proposition 4, let τ > 0.
The denumerable subset of T ℓ,

Ωτ (t0) = {ψ | ∃h integer hτ ≥ t0,ψ = Sh τϕ } (4.2.12)

is dense in T ℓ if and only if the ℓ + 1 numbers ω, ω1, . . . , ωℓ, ω = 2πτ−1, are
rationally independent.

Proof. Exercise.

4.3 Ordered Systems of Oscillators. Phenomenological
Discussion and Heuristic Formulation of the Model of
the Perfect Elastic Body (String, Film, and Solid)

In applications, serious difficulties may be met in the use of the general the-
ory of §4.1, and §4.2. Such use, in fact, presupposes the actual possibility of
constructing the proper pulsations ω1, . . . , ωℓ and the respective eigenvectors
η(1), . . . ,η(ℓ): their construction, in fact, passes through the solution of an ℓ-th
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degree algebraic equation, Eq. (4.1.6), and of ℓ linear systems of ℓ equations,
Eq. (4.1.7).

However, it is also true that in important applications, the matrices G and
V of §4.1 are not arbitrary, but rather they have special properties sometimes
permitting the explicit solution of the normal modes construction.

In §4.3-4.6, some of the most interesting cases will be examined, while this
section is devoted to the precise mathematical formulation of the models that
will be considered.

Let Zda be the d-dimensional lattice of the points ξ ∈ Rd with coordinate
which are integer multiples of a > 0:

ξ = (n1a, n2a, . . . , nda), n1, . . . , nd integers (4.3.1)

Imagine that around every site ξ ∈ Zda , a mass m oscillates bound by ideal
constraints to move on a straight line through ξ and orthogonal to Rd.

Furthermore, suppose that if yξ is the elongation with respect to ξ of the
oscillator in ξ then:

Figure 4.1: chain of oscillators elastically bound by nearest neighbors and to centers aligned

on an axis orthogonal to the vibrations.

(i) Every oscillator is subject to a restoring elastic force with potential energy

K

2
y2
ξ, (4.3.2)

(ii) Every oscillator is subject to an external force with potential energy

mg(ξ) yξ, (4.3.3)

where g ∈ C∞(Rd) (“weight”).
(iii) Between the oscillators adjacent in Zda , an elastic force acts whose poten-
tial energy is

1

2
K ′ [(yξ − yξ′)2 + a2], (4.3.4)

where |ξ′ − ξ| = a and the term in square brackets represents the square of
the elongation of a spring between the two oscillators.
(iv) An ideal constraint forcing all the oscillators outside an open connected
bounded region Ω, with boundary ∂Ω which is a C∞-regular surface, to have
zero elongation. Set Ωa = Ω ∩ Zda .

Only consider the cases d = 1 or d = 2 will be considered. The d = 3 case
being a not too interesting model of an elastic solid since it can only “vibrate
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in one direction”. The situation in the d = 1 case is pictured in Fig. 4.1 while
the d = 2 case is pictured in Fig. 4.2.

Figure 4.2: System of oscillators elastically bound to their nearest neighbors and to a lattice

of centers on a plane orthogonal to the vibrations.

Analytically, the system is described by the Lagrangian function:

L0 =
1

2

∑

ξ∈Ωa

m ẏ2
ξ −

K

2

∑

ξ∈Ωa

y2
ξ −m

∑

ξ∈Ωa

g(ξ)yξ

− K ′

2

∑

ξ∈Ωa

∑

e

1

ν(e, ξ)
(yξ − yξ+a e)2,

(4.3.5)

where Σe denotes the sum over the 2d unit vectors directed as the axes of
Zda : e = e1,−e1, e2,−e2, . . . , ed,−ed are the d unit vectors associated with
Zd, and, to avoid double counting, ν(e, ξ) = 2 if ξ, ξ + a e ∈ Ωa, ν(e, ξ) = 1
otherwise.

In the last sum in the right-hand side of Eq. (4.3.5), the term a2 appearing
in Eq. (4.3.4) has been dropped since it produces an additive constant to L0

(dynamically irrelevant).
In Eq. (4.3.5) there appear terms yξ, with ξ 6∈ Ωa (in fact, if ξ is close to

∂Ω it can happen that ξ+ a e 6∈ Ωa. Such terms, conforming to (iv), must be
interpreted by setting yξ = 0.

From a physical viewpoint, the interest of the mechanical system in Eq.
(4.3.5) lies in the fact, suggested by the above pictures, that if a is very small,
it can be considered as a discrete model for an elastic string or film (if d = 1
or d = 2).

We can imagine that for small a, every “regular” initial datum (ẏξ, yξ)ξ∈Ωa ,
i.e., every datum having the form

ẏξ = u(ξ), ẏξ = v(ξ), ξ ∈ Ωa (4.3.6)
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where u, v are functions in C∞(Rd) vanishing outside Ω, a space that will
be denoted C∞0 (Ω), evolves remaining approximately regular, thus simulating
the motion of a string or film. In order for this to occur, it is, however, clear
that the parameters m,K,K ′ must be suitably chosen as functions of a: their
choice, which we adopt in the following, is motivated by a heuristic discussion.

(a) The mass m of each oscillator must have the form

m = µad, µ > 0, (4.3.7)

since each oscillator should intuitively correspond to a small piece of the body
with dimension a: the body will then have density µ.
(b) The constants K,K ′ have to be determined so as to produce forces pro-
portional to ad on the oscillator in ξ; otherwise their effects would vanish in
the a → 0 limit (if ≪ ad) or they would produce infinite accelerations (if
≫ ad). Hence, since the force associated with K is −Ky, it must be:

K = σ ad, σ > 0 (4.3.8)

The force exerted by the two oscillators in ξ−a e and ξ+a e on the oscillator
in ξ is

−K ′[(yξ − yξ+a ei) + (yξ − yξ−aei)], (4.3.9)

and if yξ can be assimilated to u(ξ), u ∈ C∞0 (Ω), we can compute Eq. (4.3.9)
using the Taylor-Lagrange expansion to second order as

yξ − yξ±aei ≃ u(ξ)− u(ξ ± a ei) = ∓a ∂iu(ξ)−
a2

2
∂2
i u(ξ) +O(a3), (4.3.10)

where ∂iu, ∂
2
i u are short notations for ∂u

∂ξi
, ∂

2u
∂ξ2i

. Then Eq. (4.3.9) becomes

K ′a2 ∂2
i u(ξ) +O(a3) (4.3.11)

which indicates that it must be set

K ′a2 = τ ad, τ > 0. (4.3.12)

With the above choices of K,m,K ′, Eq. (4.3.5) becomes

L(a)
0 =

µ

2
ad
∑

ξ∈Ωa

ẏ2
ξ −

σ

2
ad − σ

2
ad
∑

ξ∈Ωa

y2
ξ − µad

∑

ξ∈Ωa

g(ξ) yξ

− τ

2
ad
∑

ξ∈Ωa

∑

e

1

ν(e, ξ)

(yξ − yξ+a e)
2

a2
.

(4.3.13)

This model is not yet completely correct from a physical point of view. The
heuristic discussion so far presented has been dealt with by supposing that ξ
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was far from ∂Ω: if ξ is adjacent to ∂Ω, it is not quite clear what is meant
by yξ being regular since the functions u, v approximating it in Eq. (4.3.6)
cannot be a independent, as supposed. A look at Fig. 4.3 suffices to realize
this. The points outside Ω and adjacent to it have a rather erratic structure
and, quite delicately, are a dependent.

∂Ω

Figure 4.3: The erratic mismatches between the regular lattice and the boundary of Ω.

Though this point may superficially appear irrelevant, it in fact has some
importance at least as far as the correct formulation of the meaning of “regular
datum yξ, ẏξ” is concerned.

In the d = 1 case, the difficulty can be simply avoided by supposing that
a is chosen always so that ∂Ω (which now consists of two points) is always on
Z1
a : in this case, therefore, we shall actually do so and we shall assume that

the system (4.3.13), with the above restriction on the “allowed values” of a,
is a “vibrating” or “elastic string” model.

In the d = 2 case, it is obviously not possible to circumvent so easily the
difficulty and, to understand what to do: let us again refer to some heuristic
physical considerations.

When one imagines an elastic homogeneous film oscillating with a fixed
boundary ∂Ω, one probably has in mind the following situation: one deposits
an elastic homogeneous film on a plane and then “glues” the film on the plane
at ∂Ω and, afterwards, lets it oscillate and studies (or watches) the oscillations.

When the surface is described, as in our case, by linked oscillators, the
corresponding procedure is that of setting the oscillators in their equilibrium
positions on Za and then pinching (with “glue” or “nails”) the springs con-
necting the points ξ ∈ Ω to the points ξ′ = ξ + a e 6∈ Ω at the point ξ + ε e
where the segment ξξ′ crosses ∂Ω. Once this is done, the system is allowed
to oscillate.

ξ ε
ξ′+a e

yξ

∂Ω

Figure 4.4: The pinching to adapt to the boundary condition.
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On the boundary of Ω, the situation drawn in Fig. 4.4. is produced. This
means that the elastic constant binding yξ to ∂Ω is different from K ′ contrary

to what, instead, is hypothesized in L(a)
0 , Eq. (4.3.13). In fact, yξ is pulled

from ∂Ω by a spring with elastic constant

K̃ = K ′
a

ε
(4.3.14)

because the elastic constant of a piece of spring with elastic constant K ′

obtained by pinching it at a distance ε when the spring is elongated by a is
given by Eq. (4.3.14).

∂Ω

Figure 4.5: Illustration of the system of oscillators corresponding to Eq. (4.3.16).

Then, for ξ ∈ Ωa, we set

εd(ξ, a) =a if ξ + a e ∈ Ωa
εd(ξ, e) ={distance between ξ and ∂Ω ∩ ξ(ξ + a e) otherwise

(4.3.15)

and the above considerations are summarized in the following Lagrangian
function which will be supposed to be our discrete model of the elastic string
or film (see Fig. 4.5), discarding the simpler but more naive model of Eq.
(4.3.13):

L(a) =
µ

2
ad
∑

ξ∈Ωa

ẏ2
ξ −

σ

2
ad − σ

2
ad
∑

ξ∈Ωa

y2
ξ − µad

∑

ξ∈Ωa

g(ξ) yξ

− τ

2
ad
∑

ξ∈Ωa

∑

e

1

ν(e, ξ)

a

εa(ξ, e)

(yξ − yξ+a e)
2

a2
.

(4.3.16)

Here the values of yξ′ when ξ′ 6∈ Ω, present in Eq. (4.3.16) if ξ is close to
∂Ω and ξ+ εa(ξ, e) = ξ′ ∈ ∂Ω, have to be thought of as vanishing. Or, more
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generally, we may fix the film or string at preassigned elongations on ∂Ω,
described by a function h ∈ C∞(∂Ω).1

In this case, the values of yξ′ , for the above ξ’s are to be thought of as
given by

yξ′ = h(ξ′) (4.3.17)

It is clear that Eq. (4.3.16) differs from Eq. (4.3.13) only because of the
terms for which ξ is adjacent to ∂Ω.

It is also clear that the critique to Eq. (4.3.13) raised above can no longer
be applied. For instance, if h ≡ 0, the initial datum yξ, yξ, very naturally, can
be called “regular” if, ∀ ξ ∈ Ωa,

yξ = u(ξ), ẏξ = v(ξ) (4.3.18)

and u, v ∈ C∞0 (Ω) = { set of the C∞ functions defined in a neighborhood of
Ω and vanishing outside Ω}.

In the upcoming sections, we shall study some properties of the motions
of the system in Eq. (4.3.16) and (4.3.17), paying attention to the problem
of regularity for the motions with initial conditions Eq. (4.3.18) and to their
interpretability as motions of a string or film.

If d = 3, Eq. (4.3.16) still makes sense, but it not longer provides a natural
model of an elastic solid. However, it becomes much more natural if yξ, instead
of being a scalar quantity (yξ ∈ R), is thought of as a vector inR3. In this case,
by thinking yξ ∈ R3, instead of yξ ∈ R (as done so far), Eq. (4.3.16) would
yield an interesting (though rather special) model for the elastic deformations
of a solid. However, the case d = 3 will not be further examined.

4.4 Oscillator Chains and the Vibrating String

Consider the Lagrangian function of Eqs. (4.3.16) and (4.3.17), supposing
Ω = [0, L] and a such that L/a = N is an integer.

Therefore, this function describes a system of N + 1 oscillators, the first
and the last of which are fixed at given heights. The Lagrangian of Eqs. Eq.
(4.3.16) and (4.3.17) becomes

N−1∑

i−1

(µ
2
aẏ2
ia + µag(ia)iy2

ia −
σ

2
a y2

ia

)
− τ

2
a

N∑

i=0

(yia − yia+a)2
a2

, (4.4.1)

y0 = h0, yL = hL, g ∈ C∞(R). (4.4.2)

1 A function f defined on a regular surface Σ ⊂ Rd is said to be in C∞(Σ) if in any local
system (U,Ξ) of regular coordinates, its restriction to Σ ∩ U is a C∞ function of the
coordinates of the points of U ∩ § in (U,Ξ) (see Definition 10, §3.6, p.170).
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The equations of motion for Eqs. (4.4.1) and (4.4.2) become

µÿia = µag(ia)− σayia −
τ

a
(2yia − yia+a − yia−a) (4.4.3)

for i = 1, . . . , N − 1, where y0 = h0, yL = hL, µ > 0, σ ≥ 0, τ > 0.
This is a system of linear non homogeneous differential equations which, as

usual, we shall study by writing its solutions as sums of a particular solution
and of a solution of the homogeneous equation, which is obtained by setting
g = 0 and h0 = hL = 0.

Let us first study the homogeneous equation. The results of the following
analysis are summarized by Proposition 9 at the end of this section.

In the homogeneous case, Eq. (4.4.3) correspond to the Lagrangian equa-
tions Eq. (4.4.1) and (4.4.2) with g = 0, h0 = hL = 0. This is a system of
oscillators of the type considered in §4.1 with, i, j = 1, . . . , N − 1,

Gij = µa δij , (4.4.4)

Vij = σ a δij +
τ

a
(2δij − δij+1 − δij−1), (4.4.5)

This can be checked immediately by noting that if γ = (γi)i=1,...,N−1, one
finds (setting γ0 = γN = 0) that Eq. (4.4.5) yields

N−1∑

i,j=1

Vijγiγj = aσ

N−1∑

j=1

γ2
j +

τ

a

N−1∑

j=0

(γi − γi+1)
2 (4.4.6)

To solve the system ω2η − V η = 0 [see Eqs. (4.1.6) and (4.1.7)] remark that
such a system has the explicit form

−µω2ηja = −σηja − τ
(2ηja − ηja+a − ηja−a)

a2
, (4.4.7)

where j = 1, . . . , N − 1 and η0 = ηL = 0.
The manifest analogy between this equation and the linear differential

equation −ω2η = −ση − τη′′, suggests to look for solutions of Eq. (4.4.7)
having the form

ηja =
∑

̺

β̺e
α̺ ja, β̺, α̺ ∈ C, (4.4.8)

where ̺ is a summation index.
In order that eα̺ja is a solution of Eq. (4.4.7) for j = 2, . . . , N −2, it must

be [by substitution of Eq. (4.4.8) into Eq. (4.4.7), j = 2, . . . , N − 2]:

(−µω2 + σ) = −2τ

a2

(
1− eα̺a + e−α̺a

2

)
(4.4.9)

If ω2 is such that this equation for α̺ has a solution α, then −α is also a
solution. Hence it seems natural to try to solve Eq. (4.4.7) with η given by
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ηja = β+ e
α ja + β− e

−α ja, j = 1, . . . , N − 1, (4.4.10)

where α and ω are related by Eq. (4.4.9).
The only equations of the system of Eq. (4.4.7) that Eq. (4.4.10) still may

fail to verify are the first and last. If η has the form of Eq. (4.4.10), such
equations become equations for β±:

∑

̺=±

(
(−µω2 + σ) +

τ

a2
(2 − e−̺αa)

)
β̺e

̺α (N−1)a = 0 (4.4.11)

corresponding to Eq. (4.4.7) with i = (N − 1) or, for i = 1,

∑

̺=±

(
(−µω2 + σ) +

τ

a2
(2− e−̺αa)

)
β̺e

̺αa = 0 (4.4.12)

which, by using Eq. (4.4.9), become, respectively,

∑

̺=±

τ

a2
e̺αNaβ̺ = 0,

∑

̺=±

τ

a2
β̺ = 0. (4.4.13)

The latter two homogeneous equations, in the two unknowns β+ and β−,
have a nontrivial solution if the determinant of the coefficients vanishes, i.e.,
it must be

e2αNa = 1 (4.4.14)

and, in this case, β+ = −β−. Hence, (i =
√
−1):

α = i
π

Na
h, h = O, 1, . . . , N − 1, . . . (4.4.15)

to which correspond the solutions [see Eq. (4.4.10)]

η
(h)
ja = β sin

π

N
h j, h = 0, 1, . . . , N − 1 (4.4.16)

with the respective eigenvalues ω2
h given by Eq. (4.4.9):

ω2
h =

σ

µ
+
τ

µ

2(1− cos π hNaa)

a2
. (4.4.17)

The N − 1 solutions (4.4.16) are linearly independent vectors: they are, in
fact, orthogonal. This follows from the general theory of Appendix F, p.525,
since ω2

h+1 > ω2
h, h = 1, . . . , N−2, but the following direct check is somewhat

instructive. Let, in fact, 1 ≤ h, h′ ≤ N − 1; then2

2 Since cosϕ = Re (eiϕ).
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N−1∑

j=1

η
(h)
ja η

(h′)
ja ≡β2

N−1∑

j=1

sin
π h

N
j sin

π h′

N
j

=
β2

2

N−1∑

j=1

(
cos

π(h− h′)j
N

− cos
π(h+ h′)j

N

)

=
β2

2

N−1∑

j=1

Re
(
eiπ(h−h′)j/2 − eiπ(h+h′)j/2

)

=
β2

2
Re
( eiπ(h−h′) − 1

eiπ(h−h′)/N − 1
− eiπ(h+h′) − 1

eiπ(h+h′)/N − 1

)

which, if h = h′, has to be interpreted as β2N/2 and, if h 6= h′, is zero since
eiπ(h−h′) = eiπ(h+h′) = ±1 and Re (eiα − 1) ≡ 1

2 ≡ − 1
2 , ∀α ∈ R. Therefore,

η(h) · η(h′) = β2N

2
δh′ . (4.4.18)

Hence, using the results of §4.1, the most general motion of theN−1 oscillators
described by Eqs. (4.4.1) and (4.4.2) with h0 = hL = 0 and g = 0 is, ∀ j =
1, . . . , N − 1,

yja =

N−1∑

h=1

Ah

√
2

N
(sin

jh

Na
ja) cos(ωht+ ϕh). h = 1, . . . , N − 1, (4.4.19)

where ωh > 0 is given by Eq. (4.4.17) and Ah ≥ 0, ϕh ∈ [0, 2π] are arbitrary
constants.

A particular solution to Eq. (4.4.3) can be found as follows. Obviously, the
simplest particular solution is, if existing, a stationary one, y(t) = c, i.e. a
solution of the system

σ cja + τ
2cja − cja+a − cja−a

a2
= µg(ja) +

τ

a2
(δj,N−1hL + δj,1h0) (4.4.20)

for j = 1, . . . , N − 1, where c0 = cL = 0. These equations immediately follow
from Eq. (4.4.3) in which the terms with the time derivatives have been elimi-
nated and the inhomogeneous terms depending on g and h have been brought
to the right-hand side.

Call γ the vector γ = (γia)i=1,...,N−1 defined by the right-hand side of Eq.
(4.4.20). Recalling the definition of V , Eq. (4.4.5), Eq. (4.4.20) can be written
as

a−1 V c = γ. (4.4.21)

This equation has one and only one solution because V , by Eq. (4.4.6), is
positive definite (so detV > 0) if σ ≥ 0, τ > 0 and its solution c is a particular
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solution to Eq. (4.4.3) and, in fact, it is the only stationary solution to Eq.
(4.4.3).

It is even possible to find a useful expression for c.

If in Eq. (4.4.16) we choose β =
√

2
N , we see that Eq. (4.4.18) says that

η(1), . . . ,η(N−1) are (N − 1) vectors with N − 1 components forming an or-
thonormal basis in RN−1. Furthermore, these vectors are such that, by con-
struction, [see, also, Eq. (4.4.7)]

a−1 V η(h) = µω2
h η

(h). (4.4.22)

Hence it follows

γ =

N−1∑

k=1

γ̂(k)η(k), (4.4.23)

c =

N−1∑

k=1

ĉ(k)η(k), (4.4.24)

where the ĉ(k) are unknown and, setting Na = L,

γ̂(k) = (η(k) · γ) =

√
2

N

{(N−1∑

j=1

µg(ja) sin
π k

L
ja
)

+
τ

a2
(h0 sin

π k

L
a + hL sin

πk

L
(N − 1)a)

}
(4.4.25)

Using Eq. (4.4.22), Eq. (4.4.21) becomes

ĉ(k) = µ−1ω−2
k γ̂(k) (4.4.26)

and provides an explicit expression for the components of c on the “natural
basis” η(1), . . . ,η(N−1).

Before stating a proposition summarizing all of the above remarks, it is
useful to give a very interesting definition allowing a suggestive interpretation
of Eq. (4.4.21).

3 Definition. Let Ω = [0, L], L/a = N = integer. Define the “finite differ-
ences Laplace operator relative to Za” as the (N − 1) × (N + 1) matrix D
associating the vector ((Dδ)ja)

N−1
j=1 with the vector δ = (δja)

N
j=0 so that3

(Dδ)ja =
δja+a − 2δja + δja−a

a2
, j = 1, . . . , N − 1. (4.4.27)

3 The matrix elements of D are Di,j = − 2
a2
δi,j +

δi,j+1+δi,j−1

a2
, i = 1 . . . , N − 1, j =

0, . . . , N .
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In this notation, Eq. (4.4.21) can be written as

(σc − τDc)ξ = µ g(ξ), ξ ∈ Ωa/∂Ω,
cξ = hξ, ξ ∈ ∂Ω. (4.4.28)

4 Definition. Equation (4.4.28) for the vector c will be called, for σ ≥ 0, τ >
0, a “discrete non homogeneous Dirichlet problem for the region Ω on Z1

a with
boundary datum h, interior datum µg”.

The already remarked existence and uniqueness of the solutions of Eq.
(4.4.21) can be phrased as follows.

8 Proposition. Equation (4.4.28) admits one and only one solution for ar-
bitrarily given boundary and interior data and for all σ ≥ 0, τ > 0.

Concluding this section its results are summarized by:

9 Proposition. The motions associated with Eqs. (4.4.1) and (4.4.2) have
the form

y
(a)
ξ (t) = c

(a)
ξ +

N−1∑

h=1

Ah

√
2

N

(
sin

π h

L
ξ
)
cos(ωht+ ϕh) (4.4.29)

for ξ ∈ Ωa with

ωh =

√
σ

µ
+
τ

µ

2(1− cos π hNaa)

a2
. (4.4.30)

and the vector c(a) = (cξ)ξ∈Ωa is the solution to the Dirichlet problem (4.4.28)
with boundary datum h and interior datum g. The vector c(a) is given by

c
(a)
ξ =

N−1∑

k=1

sin π
L kξ

ω2
k

{( 2

N

∑

ξ′∈Ωa

g(ξ′) sin
π

L
kξ′
)

+
τ

a2

(
h0 sin

π k

L
a + hL sin

πk

L
(N − 1)a

)}
(4.4.31)

Observation. The normal modes have a remarkable “spatial structure”, i.e., a
remarkable ξ dependence. They are in fact interpolated by sinusoidal functions
with “two nodes”, i.e., two zeros, at the “extremes of the string”, 0 and L,
and in the h-th normal mode such a function has exactly (h− 1) other nodes
in [0, L]. This is a complete description of the “wave-form” of the modes.
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4.5 The Vibrating String as a Limiting Case of a Chain
of Oscillators. The Case of Vanishing g and h. Wave
Equation

The motivation for the choice of the Lagrangian (4.4.1) and (4.4.2) lies in the
request that the mechanical system described by it be a good model for the
oscillations of an elastic string.

In this section it will be shown in a mathematically precise sense how this
property is actually realized in the models of Eqs. (4.4.1) and (4.4.2) when g
and h vanish. We shall suppose σ ≥ 0, τ > 0.

To get an idea of what to try to prove, remark first that Eq. (4.4.3) has a
formal limit given by

µ
∂2yξ
∂t2

= µgξ − ̺yξ − τ
∂2yξ
∂ξ2

(4.5.1)

y0 = h0, yL = hL, (4.5.2)

as a→ 0, while Eq. (4.4.28) for the “center” of the oscillations becomes, still
formally,

σcξ −
d2

dξ2
cξ = µg(ξ), ξ ∈ [0, L], c0 = h0, cL = hL. (4.5.3)

Hence the following proposition should look natural..

10 Proposition. Let t → y(a)(t), t ∈ R, be the solution of Eq. (4.4.3) with
g = h = 0, σ ≥ 0, τ > 0, µ > 0, following the initial datum

y
(a)
ja (0) = u0(ja), j = 1, . . . , N − 1 (4.5.4)

ẏ
(a)
ja (0) = v0(ja), j = 1, . . . , N − 1 (4.5.5)

where u0, v0 ∈ C∞0 ((0, L)) ≡ {functions in C∞([0, L]) vanishing in a neigh-
borhood of 0 and L}. Then, ∀ t ∈ R, ∀x ∈ [0, L], the limit

lim
a→0
ξ→x

y
(a)
ξ (t) = w(x, t) (4.5.6)

exists and defines a C∞ function on [0, L]×R, verifying the equations:

µ
∂2w

∂t2
− τ ∂

2w

∂x2
+ σw = 0, ∀ (x, t) ∈ [0, L]×R (4.5.7)

w(x, 0) = u0(x), ∀x ∈ [0, L], (4.5.8)

∂w

∂y
(x, 0) = v0(x), ∀x ∈ [0, L], (4.5.9)

w(0, t) = 0 = w(L, t), ∀ t ∈ R. (4.5.10)
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Equations (4.5.7)-(4.5.10) admit one and only one C∞ solution: this solution
is explicitly given by Eq. (4.5.19) below.

Observations.
(1) This proposition makes precise the fact that a “regular” initial datum
evolves through Eq. (4.4.3) into a “regular configuration”. Furthermore, it ex-
plains why Eq. (4.5.7) is called the “wave equation” describing the oscillations
of a string with density µ, tension τ , and restoring constant σ. In the case
σ = 0, Eq. (4.5.7) is the “D’Alembert wave equation” for the vibrating string
oscillating under the only action of its tension τ .
(2) The derivation of the wave equation presented here and its theory, as ex-
pressed by Proposition 10, starting from the theory of harmonic oscillators, is
a celebrated theorem of Lagrange.
(3) Another explicit solution to Eqs. (4.5.7)-(4.5.10) can be found in Problem
11, p.270, (see, also, §4.7).

Proof. Write Eq. (4.4.29) as

y
(a)
ξ =

N−1∑

h=1

{
Ãh

√
2

N
sin

π h

L
ξ · cosωht+ B̃h

√
2

N
sin

π h

L
ξ · sinωht

}
, (4.5.11)

where ξ = ia, i = 1, . . . , N − 1 and try to determine Ãh, B̃h by imposing the
initial data.

Consider the initial data of Eqs. (4.5.4) and (4.5.5) as (N − 1)-component
vectors and express them as linear combinations with suitable coefficients, of

the vectors η(1), . . . ,η(N−1) with components (η(h))i =
√

2
N sin πia h

L , which

(as seen in §4.4) form an orthogonal basis in RN−1 [see Eqs. (4.4.16) and
(4.4.18)]:

u0(ξ) =
N−1∑

h=1

û0(h)

√
2

N
sin

πh

L
ξ, ξ = iq, i = 1, . . . , N − 1,

v0(ξ) =
N−1∑

h=1

v̂0(h)

√
2

N
sin

πh

L
ξ, ξ = iq, i = 1, . . . , N − 1.

(4.5.12)

After Eq. (4.5.12), it becomes immediate to impose the initial data of Eqs.
(4.5.4) and (4.5.5) to Eq. (4.5.11):

Ãh = û0(h), B̃h =
v̂0(h)

ωh
(4.5.13)

Since, on the other hand, û0(h) and v̂0(h) can be obtained by scalar multipli-
cation of the vectors of Eqs. (4.5.4) and (4.5.5) by η(h), Eq. (4.5.13) yields
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√
2

N
Ãh =

2

N

∑

ξ

(
sin

πh

L
ξ
)
u0(ξ), (4.5.14)

√
2

N
B̃h =

1

ωh

2

N

∑

ξ

(
sin

πh

L
ξ
)
v0(ξ), (4.5.15)

and
∑

ξ runs over ξ = ia, i = 1, . . . , N − 1.
Then, by the assumptions on u0 and v0, Eqs. (4.5.14) and (4.5.15) contain

summations over ξ which, after being multiplied by a, are the Riemann sums
for the integrals between 0 and L of the functions x → (sin πh

L x)u0(x) and

x→ (sin πh
L x)v0(x), x ∈ [0, L]. Hence,

lim
a→0

√
2

N
Ãh =

2

L

∫ L

0

u0(x)
(
sin

πh

L
x
)
dx, (4.5.16)

lim
a→0

√
2

N
B̃h =

1

ωh

2

L

∫ L

0

v0(x)
(
sin

πh

L
x
)
dx, (4.5.17)

where, for h = 1, 2, . . . [see Eq. (4.4.30)],

ωh = lim
a→0

ωh =

√
σ

µ
+
τ

µ
(
πh

L
)2 (4.5.18)

Hence, we see that the sum (4.5.11), thought of as a series in h (with vanishing
terms for h ≥ N), converges term by term, as a → 0 and ξ → x ∈ [0, L], to
the series

w(x, t) =

∞∑

h=0

sin
πh

L
x
{
(
2

L

∫ L

0

u0(x
′) sin

πh

L
x′ dx′) cosω(h)t

+ (
2

L

∫ L

0

v0(x
′) sin

πh

L
x′ dx′)

sinω(h)t

ω(h)

}
.

(4.5.19)

We now show that the series in Eq. (4.5.19) is uniformly convergent in
t and x and defines a function w verifying Eqs. (4.5.7)-(4.5.10). This will
mean that a function w verifying Eqs. (4.5.7)-(4.5.10) does exist. Then we
shall prove Eq. (4.5.6), and the proof will finally be concluded by proving the
uniqueness of the solution to Eqs. (4.5.7)-(4.5.10).

All of the above deductions are based on the following lemma, a corollary
to the Fourier theorem, proved in Appendix I, p.536.

11 Lemma. Let C
∞

([0, L]) be the set of the C∞([0, L]) real functions van-
ishing together with all their even derivatives in the points 0 and L. Set

uk =
2

L

∫ L

0

u(x′) sin
πk

L
x′ dx′ (4.5.20)
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∀u ∈ C∞([0, L]); then it follows that:
(i) ∀α > 0, ∃Cα such that

|uk| ≤ Cα (1 + kα)−1, ∀ k = 1, 2, . . . (4.5.21)

(ii)u(x) =

∞∑

h=0

uk sin
πh

L
x (4.5.22)

(iii) Equation (4.5.22) can be differentiated term by term an arbitrary number
of times, giving rise to uniformly convergent series.
(iv) Every function of the form of Eq. (4.5.22) with uk verifying Eq. (4.5.21)
is in C

∞
([0, L]).

Observation. Clearly C
∞

([0, L]) ⊃ C∞0 ((0, L)).

The proof of Proposition 10 can be continued as follows.
The uniform convergence in t and x of Eq. (4.5.19), as well as the admis-

sibility of its term-by-term differentiations, follow from (i), Eq. (4.5.21). Call
w the sum of the series (4.5.19): it verifies Eq. (4.5.7) because every term of
Eq. (4.5.19) does [see Eq. (4.5.18) and do a direct check].

Equation (4.5.10) holds since sin πh
L x vanishes in 0 and in L, for all integers

h. Equations (4.5.8) and (4.5.9) can be checked by computing w(x, 0) and
∂w
∂t (x, 0), from Eq. (4.5.19), using (ii) of Lemma 11.

It remains to prove Eq. (4.5.6) and uniqueness. Since Eq. (4.5.11), thought

of as a series in h by setting Ãh, B̃h ≡ 0 for h ≥ N , converges term by term to
the function in Eq. (4.5.19), we simply have to show that the series (4.5.11)
is uniformly convergent in a and ξ (or, what amounts to the same, in N and
ξ). It suffices to show that given α > 0 there exists C′α such that

√
2

N
|Ãh| ≤

C′α
1 + hα

, h = 1, 2, . . . (4.5.23)

√
2

N
|B̃h| ≤

C′α
1 + hα

, h = 1, 2, . . . (4.5.24)

Let us, for instance, prove Eq. (4.5.23). From Eqs. (4.5.14) and (4.5.22),
one obtains, ∀h = 1, . . . , N − 1,

√
2

N
Ãh =

2

N

∑

ξ=ia
i=1,...,N−1

sin
πh

L
ξ (
∞∑

k=1

u0k sin
πk

L
ξ)

=

∞∑

k=1

u0k

( 2

N

∑

ξ=ia
i=1,...,N−1

sin
πh

L
ξ sin

πk

L
ξ)

(4.5.25)

and, by Eqs. (4.4.16) and (4.4.18), it follows that for h = 1, . . . , N − 1 and k
arbitrary (even for k > N),
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2

N

∑

ξ=ia
i=1,...,N−1

sin
πh

L
ξ sin

πk

L
ξ = δk,h − δk,2N−h + δk,h+2N − . . .

=
∞∑

p=0

δk,h+2pN −
∞∑

p=1

δk,2pN−h.

(4.5.26)

Hence, by Eq. (4.5.21), ∀α > 0, ∀h = 1, . . . , N − 1,

|
√

2

N
Ãh| =|u0k − u0 2N−h + . . . | ≤

∞∑

p=0

|u0h+p| ≤
∞∑

p=0

Cα
1 + (h+ p)α

≤
∞∑

p=0

Cα√
1 + hα

1√
1 + pα

=
Cα√

1 + hα

( ∞∑

p=0

1√
1 + pα

)
(4.5.27)

implying Eq. (4.5.23) by the arbitrariness of α and because Ãh ≡ 0 for h ≥ N .
To show uniqueness, it is enough to show that if w0 ∈ C∞([0, L]×R) and

verifies Eqs. (4.5.7)-(4.5.10), with u0 = v0 = 0, then w0 ≡ 0.
The idea of the proof is based on energy conservation. Equations (4.5.7)-

(4.5.10) should “keep memory” of the fact that they are a formal limit of Eq.
(4.4.3) and it should be possible to define, for every motion w verifying them,
a function which is constant as t varies and which can be obtained as the limit
a → 0 of the energy expression for Eq. (4.4.3). If y0 = yL = 0, the energy of
the motions of Eq. (4.4.3) is [see Eq. (4.3.13)]

E(a) =
aµ

2

∑

ξ=ja
j=1,...,N−1

ẏ2
ξ +

aσ

2

∑

ξ=ja
j=1,...,N−1

y2
ξ

+
aτ

2

∑

ξ=ja
j=0,...,N−1

(yξ − yξ+a)2
a2

,

(4.5.28)

formally becoming, in the limit a→ 0,

E(w, t) =
µ

2

∫ L

0

(
∂w

∂t
)2dx+

σ

2

∫ L

0

w2dx+
τ

2

∫ L

0

(
∂w

∂x
)2dx. (4.5.29)

If we show that the solutions of Eqs. (4.5.7)-(4.5.10) in C∞([0, L] × R)
are such that E(w, t) remains constant as t varies, uniqueness is proved. In
fact, if w(x, 0) = 0 and ∂w

∂t (x, 0) = 0, then E(0) = 0, on the other hand
E(w, t) = 0 ⇒ w(t, x) = 0, ∀x ∈ [0, L], if σ ≥ 0, τ > 0. But, the difference
between two solutions of Eqs. (4.5.7)-(4.5.10) is a solution with u0 = v0 = 0
with zero energy: hence, it vanishes identically.

To show the constancy of Eq. (4.5.29) remark that

d

dt
E(w, t) =

∫ L

0

(
µ
∂w

∂t

∂2w

∂t2
+ σw

∂w

∂t
+ τ

∂w

∂x

∂

∂x

∂w

∂t

)
dx (4.5.30)
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Then integrate the last term in the right-hand side by parts using ∂w
∂t (0, t) =

∂w
∂t (L, t), by Eq. (4.5.10). Collecting the integrals into a single integral and
taking Eq. (4.5.7) into account, one finds

dE

dt
=

∫ L

0

∂w

∂t
(µ
∂2w

∂t2
+ σw − τ ∂

2w

∂x2
) = 0 (4.5.31)

mbe

Observations.
(1) From the proof, one can see that the condition u0, v0 ∈ C∞0 ((0, L)) has only
been used to apply the Lemma 11 through the observation that C∞0 ((0, L)) ⊂
C
∞

([0, L]).
It is then clear that Proposition 10 can be strengthened by replacing the

assumption u0, v0 ∈ C∞0 ((0, L)) with the assumption u0, v0 ∈ C∞([0, L]) and
by substituting Eq. (4.5.10) with

w(·, t) and
∂w

∂t
(·, t) ∈ C∞([0, L]), ∀ t ∈ R. (4.5.32)

(where · denotes a dummy variable; in this case, x ∈ [0, L]).
In this way the existence and uniqueness theorem for the waves equations

(4.5.7)-(4.5.9) and (4.5.32) with initial datum u0, v0 ∈ C∞([0, L]) is more sat-
isfactory because the initial regularity condition is not modified as t evolves.
In fact, from the above proof it is not possible to conclude (and it is gen-
erally false) that when the initial configuration u0, v0 is built with elements
of C∞0 (0, L)), then also the evolved configuration at time t, w(x, t), ∂w∂t (x, t)
consists of elements in C∞0 ((0, L)) (i.e., the initial regularity is generally not
preserved).
(2) One may think that u0, v0 ∈ C

∞
([0, L]) is still not optimal and that, per-

haps, the optimal condition could be u0, v0 ∈ C∞([0, L]) plus u0(0) = u0(L) =
0, v0(0) = v0(L) = 0. By counterexamples, it can be shown that this is not
the case (see exercises). To further extend the set of the initial configurations,
one has to give up C∞ smoothness.

4.5.1 Exercises

1. Consider the wave equation for (x, t) ∈ R2

∂2w

∂t2
− c2 ∂

2w

∂x2
= 0

Given u, v ∈ C∞(R), show that

w(x, t) =
u(x+ ct) + u(x− ct)

2
+

Z x+ct

x−ct
v(ξ)

dξ

2c

is a C∞ solution verifying the initial datum (u, v).
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2. In the context of Problem 1, suppose that 1
2

R+∞
−∞ (v(x)2 + c2(∂u(x)

∂x
)2)dx < +∞. Show

that w is the only C∞(R2) solution “with finite energy E = 1
2

R
R

„“
∂w
∂t

”2
+
“
∂w
∂x

”2
«
dx”

and datum (u, v). (Hint: Repeat the energy conservation argument at the end of the proof
of Proposition 10.)

3. Find the relations between u and v, in the context of Problem 1, necessary to guarantee
that w is a “purely progressive” or “purely regressive” wave, i.e., w(x, t) = a(x − ct) or
w(x, t) = b(x+ ct).

4. Let u ∈ C∞
0 ((0,+∞)) and suppose that u(x) = 0, unless x ∈ (a, b), 0 < a < b < +∞ and

u(x) > 0 for x ∈ (a, b). Let v(x) = c du
dx

(x). Show that, up to a time t0 > 0, the solution w of

the equation ∂2w
∂t2
− c2 ∂2w

∂x2 = 0 with initial data (u, v) is such that w(x, t) ∈ C∞
0 ((0,+∞))

for t < +∞. (Hint: Use Problem 3 by noting that up to t0 = a/c the solution is w(x, t) =
u(x+ ct).)

5. Consider the wave equation on [0, 1], ∂2w
∂t2
− c2 ∂

2w
∂x2 = 0, with the initial data v0 =

−c du0
dx

, u0(x) = x2ne(
1
2
−x)−2

for 0 < x < 1
2
, u0(x) ≡ 0 for |x| ≥ 1

2
. Letting n ≥ 1, show

that up to t0 = 1
2c

, the function w(x, t) = u0(x − ct) if 0 ≤ x − ct ≤ 1
2

or w(x, t) = 0,

otherwise, is a C(2n)([0, 1]) solution following a C∞([0, 1]) datum. Infer that the conditions
u0, v0 ∈ C∞

([0, L]) in Proposition 10 cannot be replaced by the more general ones of the
Observation (2), p.269. (Hint: Show by the same energy conservation argument at the end
of the proof of Proposition 10 that there is uniqueness for the C(2) solutions of the wave
equation, etc.)

6. Is the condition τ > 0 in Proposition 10 essential? If yes, give a physical interpretation
of the reason.

7. A solution to the equation ∂2w
∂t2
− c2 ∂

2w
∂x2 + m2w = 0, (x, t) ∈ R2, having the form

ei(kx±ct) is called a “plane wave” solution. Its real and imaginary parts are called “real
plane waves” solutions. Find the plane wave solutions to the above equation.

8. Find the energy per unit length of a real plane wave solution to the equation in Problem

7. (Hint: E
def
= limL→∞

1
2L

R L
−L

“
(∂w
∂t

)2 + c2(∂w
∂x

)2 +m2w2
”
dx . . ..)

9. Formulate and prove Proposition 10 in the case when the segment [0, L] is replaced by a
closed circle, i.e., the oscillators in Fig. 4.1 are ideally bound to the set of equispaced lines
orthogonal to a circle with radius R, obviously without fixed extreme oscillators (“periodic
boundary conditions”). Show that Eqs. (4.5.7)-(4.5.9) remain the same while Eq. (4.5.10) is

replaced by u0, v0 ∈ C∞(T 1(2πR))
def
= C∞ periodic functions with period 2πR. (Hint: The

ordinary Fourier theorem replaces Lemma 11 in the proof (which actually becomes easier).)

10. In the context of Problem 1, call V0(x) =
R x
0
v0(ξ)dξ. Show that to compute w at the

point (x, t), it is enough to know the data u0, V0 at the points x± ct (“propagation along
characteristic lines”).

11. Consider the wave equations (4.5.7)-(4.5.10). Define u0, v0 as

u0(x) =u0(x), if 0 ≤ x ≤ L,

u0(L+ x) =− u0(L− x), if L ≤ L+ x ≤ 2L, and

u0(x) =u0(x− 2kL), if x− 2kL ∈ [0, 2L].

Likewise, define v0. Show that u0, v0 are C∞(R) functions if and only if u0, v0 ∈ C∞
([0, L]).

Let V0(x)
def
=
R x
0 v0(ξ)dξ. Show that the solution to Eqs. (4.5.7)-(4.5.10) can be written



4.6 The Dirichlet Problem 271

w(x, t) =
u0(x− ct) + u0(x+ ct)

2
+
V 0(x− ct) + V 0(x+ ct)

2

(see, also, §4.7). Find a statement analogous to the one in Problem 10 in terms of u0, V 0.

4.6 Vibrating String: General Case. Dirichlet Problem in
[0, L]

Having in mind the results of §4.4, it is convenient to study preliminarily what
happens to the stationary solution c(a) [see Eqs. (4.4.29) and (4.4.31)] in the
limit a→ 0, ξ → x.

The heuristic considerations at the beginning of §4.5 suggest the following
proposition.

12 Proposition. The stationary solution c(a) of the oscillator-chain equations
(4.4.1) and (4.4.2) given by Eq. (4.4.31) is such that the limit

c(x) = lim
a→0
ξ→x

c
(a)
ξ (4.6.1)

exists for x ∈ [0, L] and defines a function c ∈ C∞([0, L]) such that

σ c − d2c

dx2
= µg, x ∈ [0, L], (4.6.2)

c(0) = h0, c(L) = hL. (4.6.3)

Proof. Define

c
(a)1
ξ

def
=

N−1∑

k=1

(sin
πk

L
ξ)

1

ω2
k

(
2

N

∑

ξ′

g(ξ′) sin
πk

L
ξ′), (4.6.4)

c
(a)2
ξ

def
=

N−1∑

k=1

(sin
πk

L
ξ)

1

µω2
k

τ

a2
(4.6.5)

for ξ = ia, i = 0, 1, . . . , N,N = L/a, and by Eq. (4.4.31),

c(a) = c(a)1 + c(a)2 (4.6.6)

and c(a)1 solves Eq. (4.4.28) for h = 0 while c(a)2 solves it for g = 0.
We shall separately show the existence of the limits:

lim
a→0
ξ→x

c(a)1 = c(1)(x), (4.6.7)

lim
a→0
ξ→x

c(a)2 = c(2)(x), (4.6.8)
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and that, furthermore, they define two C∞([0, L]) functions verifying Eqs.
(4.6.2) and (4.6.3) with h = 0 or g = 0, respectively.

First study Eq. (4.6.7) using Eq. (4.6.4) as a starting point. Think of Eq.
(4.6.4) as a series in k with all the terms with k ≥ N vanishing, then such a
series converges term by term, when ξ → x, a→ 0 to the series

c(1)(x) =

∞∑

k=1

(sin
πk

L
x)

1

ω(k)2
( 2

L

∫ L

0

g(x′) sin
πk

L
x′ dx′

)
, (4.6.9)

where ω(k)2 = σ
µ + τ

µ (πkL )2 = lima→0 ω
2
k is given by Eq. (4.5.18).

If g ∈ C∞([0, L]), we could infer from the Lemma 11, p.266, Eq. (4.5.21),
that the above series is a uniformly convergent series, term by term indefinitely
differentiable. It would then be clear that c(1) verifies Eqs. (4.6.2) and (4.6.3)
with h = 0 since

σc(1) − τ d
2c(1)

dx2
=
∞∑

k=1

(sin
πk

L
x) · µ

( 2

L

∫ L

0

g(x′) sin
πk

L
x′ dx′

)
(4.6.10)

and by Lemma 11 the right-hand side is just µg.
It would also be easy to prove the validity of Eq. (4.6.7) with c(1) defined

by Eq. (4.6.9). One should repeat, word by word, the §4.5 proof where the

convergence of y
(a)
ξ (t) to its “term-by-term limit”, Eq. (4.5.19), is discussed.

In the present case, however, g ∈ C∞([0, L]) but not necessarily g ∈
C
∞

([0, L]), and the proof of Eq. (4.6.7), of the convergence of Eq. (4.6.9),
and of the C∞([0, L]) nature of c(1) is more delicate.

Technically, such a problem must be present and it takes place because
the series (4.6.10) cannot converge too well to g(x): if, in fact, it did converge
absolutely and if it had g as its sum, it would follow g(0) = g(L) = 0, for
instance, which might be false for a given g. This phenomenon always appears,
whenever one tries to approximate a function g with functions (in our case
sin πk

L x with properties too different from those of g (for instance, g(0) 6= 0 in
general, but all the approximating functions vanish in 0!).

The upcoming discussion is interesting because it illustrates how it is some-
times possible to bypass the obstacle just met: it is in fact a type of problem
that often occurs in mathematical analysis.

We shall first show that the series in Eq. (4.6.9) converges to some function
c(1) on [0, L], continuous and once differentiable term by term. Then we shall
show that Eq. (4.6.9) also verifies Eq. (4.6.7).

Finally, and this will be the most interesting part, we shall show that
Eq. (4.6.9) verifies the Dirichlet problem, Eq. (4.6.2); and this will imply, by
the regularity theorem, Proposition 1, p.14, that, actually, c(1) ∈ C∞([0, L]),
although, of course, it may be that c(1) 6∈ C∞([0, L]).
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To show that the series (4.6.9) is convergent and once differentiable term
by term, we can remark that, setting g′ = dg

dx :

gk =
2

L

∫ L

0

g(x′) sin
πk

L
x′ dx′ =

[ −1

πk/L

2

L
g′(x′) cos

πk

L
x′
]L
0

+
L

πk

2

L

∫ L

0

g′(x′) cos
πk

L
x′ dx′ =

2

πk
[g(0)− (−1)kg(L)]

+
2

πk

∫ L

0

g(x′) cos
πk

L
x′ dx′, k = 1, 2, . . .

(4.6.11)

This implies, if Mg′ = maxx∈[0.L] |g′(x)|:

|gk| ≤
2

πk
(|g(0)|+ |g(L)|+ LMg′) (4.6.12)

which means that the series (4.6.9) is uniformly convergent together with its
derivative series: since ω(k)2 diverges as k2 for k →∞, in fact, such series are
respectively bounded above by the convergent series [see Eq. (4.6.12)]

∞∑

k=1

|gk|
ω(k)2

, and

∞∑

k=1

|gk|
ω(k)2

πk

L
(4.6.13)

Hence, by the series differentiation theorems, Eq. (4.6.9) converges and its
derivative can be computed by series differentiation and is a continuous func-
tion (as a sum of a uniformly convergent series of continuous functions).

We now show that Eq. (4.6.9) verifies Eq. (4.6.7). Since, as already ob-
served, the term-by-term limit of Eq. (4.6.4), thought of as a series in k, is
Eq. (4.6.9), it will suffice to show that such a term-by-term limit is actually
correct. In other words, it will suffice to show that Eq. (4.6.4), thought of as
a series in k with all the terms with k ≥ N vanishing, is uniformly convergent
with respect to a and ξ.

We shall show this by dominating the series (4.6.4) by the series

∞∑

k=1

1

ω2
k

2Mg, if Mg = max
x∈[0,L]

|g(x)|, (4.6.14)

where the terms with k ≥ N are thought to be zero.
Recalling the form of ωk, see Eq. (4.4.17), and using the inequality

2
(1− cosϕ)

ϕ2
≥ 4

π2
if ϕ ∈ [0, π], (4.6.15)

we see that if 0 ≤ πk
L a ≤ π:

ω−2
k =

[σ
µ

+
τ

µ

2(1− cos πkL a)

a2

]−1 ≤ (
σ

µ
+
τ

µ

4

π2L2
k2)−1. (4.6.16)
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Hence, Eq. (4.6.14) is a series which is bounded above by the series in which
ω−2
k is replaced by the right-hand side of Eq. (4.6.16), and this last series is

dominated by

∞∑

k=1

2Mg (
σ

µ
+
τ

µ

4

π2L2
k2)−1 < +∞ (4.6.17)

having removed only in this last step the restriction k ≤ N − 1. This proves
that Eq. (4.6.4) is uniformly convergent with respect to the parameters a, ξ,N
and, hence, Eq. (4.6.7) follows.

We now must show that Eq. (4.6.9) is a C∞([0, L]) function verifying Eqs.
(4.6.2) and (4.6.3) with h0 = 0, hL = 0. Equation (4.6.3) is obvious since Eq.
(4.6.9) has been proved to converge (and all its terms vanish for x = 0 or
x = L). To prove Eq. (4.6.2), we use the fact that, as already remarked, it
would be obvious if g ∈ C∞([0, L]).

Given ε > 0, let gε ∈ C∞0 ((0, L)) ⊂ C∞([0, L]) be a function such that:

(i) gε(x) = g(x)ifε ≤ x ≤ L− ε. (4.6.18)

(ii)
1

L

∫ L

0

|gε(x) − g(x)|dx < ε. (4.6.19)

(iii) The derivative g′ε of gε, see Fig. 4.6, is such that

∫ L

0

|g′ε(x)|dx ≤
∫ L

0

|g′(x)|dx + 2Mg. (4.6.20)

We leave as an exercise based on Appendix C, p. 521, the proof that such a
function indeed exists (note that (iii) expresses that gε can be chosen to go
from zero to g(ε) or from g(L−ε) to 0 without oscillating too much, i.e., with
a derivative changing sign once at most without growing too large).

g

O ε L−ε L

x

Figure 4.6: Approximating a C∞([0, L]) by a C∞
0 ((0, L)) function.

Then define

gε,k =
2

L

∫ L

0

gε(x
′) sin

πk

L
x′ dx′, c

(1)
k =

∞∑

k=1

gε,k
ω(k)2

sin
πk

L
x, (4.6.21)
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and, since gε ∈ C
∞

([0, L]), we already mentioned that

σ c(1)ε − τ d
2c(1)ε

dx2
= µ gε, c(1)ε(0) = c(1)ε(L) = 0 (4.6.22)

which implies

c(1)ε(x) ≡
∫ x

0

dc(1)ε

dx
(x′)dx′ ≡

∫ x

0

dx′[
dc(1)ε

dx
(0) +

∫ x′

0

d2c(1)ε

dx2
(x′′)dx′′]

=x
dc(1)ε

dx
(0) +

∫ x

0

dx′
∫ x′

0

dx′′[
σc(1)ε(x′′)− µgε(x′′)

τ
].

(4.6.23)
If we show that uniformly in x ∈ [0, L]:

c(1)(x) = lim
ε→0

c(1)ε(x),
dc(1)

dx
(x) = lim

ε→0

dc(1)ε

dx
(x) (4.6.24)

we shall be able to take the limit in Eq. (4.6.23) and obtain

c(1)(x) =
dc(1)

dx
(0) +

∫ x

0

dx′
∫ x′

0

dx′′[
σc(1)(x′′)− µgε(x′′)

τ
], (4.6.25)

implying by assumed continuity of g and by the above proved continuity of c(1)

that c(1) is twice differentiable and by twofold differentiation of Eq. (4.6.25)
that it verifies Eq.(4.6.2).

The regularity theorem of §2.2, Proposition 1, p.14, will then permit us to
deduce from the fact that c(1) is twice differentiable with continuous deriva-
tives and verifies Eq. (4.6.2) that c(1) is in C∞([0, L]).4

Therefore, it remains to prove that the limits of Eq. (4.6.24) are correct
and uniform in x ∈ [0, L].

We already know that c(1) and its first derivative are given by the series
(4.6.9) and by the sum of its term-by-term derivative. Such series are also the
limits, term-by-term, of the series in Eq. (4.6.21) and of its derivative series
because by Eqs. (4.6.19) and (4.6.21):

|gε,k − gk| < 2ε, ∀ k > 0 (4.6.26)

Hence, the proof of Eq. (4.6.24) is again a problem of exchanging a limit with
a series summation.

The necessary uniformity of the limit and the convergence of the series
follow from the identity:

4 This also follows directly from Eq. (4.6.2) since it shows that the second derivative of
c(1) is continuously differentiable because such are g and c(1), etc.
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gε,k =
2

L

∫ L

0

gε(x) sin
πk

L
xdx =

2

πk

∫ L

0

g′ε(x) cos
πk

L
xdx

=
2

πk

(∫ L−ε

ε

g′(x) cos
πk

L
xdx+

∫

x 6∈[ε,L−ε]
g′ε(x) cos

πk

L
xdx

)
.

(4.6.27)

Hence, by Eq. (4.6.20),

|gε,k| ≤
2LMg′ + 2

∫ L
0 |g′ε(x)|dx|dx
πk

≤ 4LMg′ + 4Mg

πk

(4.6.28)

and, therefore, the series (4.6.21) and its derivative series are dominated by
the series (ε independent and convergent):

∞∑

k=1

4LMg′ +Mg

πkω(k)2
and

∞∑

k=1

π

L

4LMg′ +Mg

πkω(k)2
and (4.6.29)

proving their uniform convergence and, hence, Eq. (4.6.24).
To conclude the proof of Proposition 12, we still have to treat c(a)2 de-

fined by Eq. (4.6.5) or by being the unique solution to the equations [see Eq.
(4.4.28)]:

(σc(a)2 − τDc(a)2)ξ = 0, ξ = ja, j = 1, . . . , N − 1,

c
(a)2
0 = h0, c

(a)2
L = hL.

(4.6.30)

Suppose, first, that σ > 0. The expression (4.6.5) is not too helpful for
investigating the limit a→ 0, ξ → x. We therefore look for an alternative rep-
resentation for c(a)2 in analogy with the theory of linear differential equations.

We look for a solution of Eq. (4.6.30) having the form

c
(a)
ja = β0e

−λ ja + β1e
−λ (L−ja), j = 0, . . . , N (4.6.31)

where in the second term we use (instead of an arbitrary constant factor β)
the constant factor β1e

−λL, still arbitrary because such is β1 but yielding a
more symmetric expression (in which 0 and L “play the same role”).

The parameters β0, β1, are to be determined so that Eq. (4.6.30) is verified.
Equation (4.6.30) will hold for j = 2, . . . , N − 2 if

σ +
2τ

a2
(1− eλa + e−λa

2
) = 0 (4.6.32)

which, via a simple discussion, is shown to admit a unique positive solution λ
such that

lim
a→0

λ =

√
σ

τ
≡ λ0 (4.6.33)
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Furthermore, Eq. (4.6.30) for j = 1 or N − 1 says, by taking Eq. (4.6.32) into
account,

β0 + β1e
−λL = h0

β0e
−λL + β1 = hL

⇒
β0 =

h0 − hLe−λL
1− e−2λL

β1 =
hL − h0e

−λL

1− e−2λL

(4.6.34)

From Eqs. (4.6.31), (4.6.33), and (4.6.34), it is now immediate to take the
limit a→ 0, ja→ x. One finds

c(2)(x) = lim
a→0

ja→x

c
(a)2
ja =

h0 − hLe−λ0L

1− e−2λ0L
e−λ0x +

hL − h0e
−λL

1− e−2λL
eλ0(L−x) (4.6.35)

which is immediately checked to verify Eqs. (4.6.2) and (4.6.3) with g = 0.
The case σ = 0 is analogously treated by replacing Eq. (4.6.31) with

c
(a)2
ja = β0 + β1 ja, (4.6.36)

and one eventually finds

c(2)(x) = h0 +
x

L
(hL − h0) (4.6.37)

and Proposition 12 is completely proved. mbe

It is useful to collect all the results of this and the preceding section into
single statement.

13 Corollary. Let t → y(a)(t) be a motion verifying Eq. (4.4.3) with initial
data

y
(a)
ξ (0) = c

(a)
ξ (0) + u0(ξ), ẏ

(a)
ξ (0) = v0(ξ), (4.6.38)

where u0, v0 ∈ C∞([0, L]) and c(a) is a solution to the discrete Dirichlet prob-
lem, Eq. (4.4.28). Then the limit

c(2)(x) = lim
a→0
ξ→x

y
(a)
ξ (t) = c(c) + w(x, t) (4.6.39)

exists and c ∈ C∞([0, L]) is the solution to the “Dirichlet problem”

σ c− τ d
2c

dx2
= µg, c(0) = h0, c(L) = hL, (4.6.40)

while w ∈ C∞([0, L] × R) verifies the wave equations (4.5.7)-(4.5.10) and
w(·, t) ∈ C∞([O,L]), ∀ t ∈ R.
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4.7 Elastic Film. The Dirichlet Problem in Ω ⊂ R2 and
General Considerations on the Waves

The theory of the oscillations of an elastic film is considerably more complex
and interesting than that of the elastic string of §4.3-4.6. The results, however,
are very similar. We shall not enter into the details of a theory that would lead
us quite far from our program of analysis of the simplest mechanical systems.

We only give some terminology and formulate for illustrative purposes
some easy propositions.

We shall then conclude our introduction to wave theory by defining the
wave propagation velocity, studying it in the simple case of the elastic string
subject only to tension forces (σ = 0, h = 0, g = 0).

5 Definition. Let Ω ⊂ R2 be a bounded open connected region with a bound-
ary ∂Ω which is a regular surface (see Definition 10, p.170). Let Ωa = Ω∩Z2

a ,
and ∂Ωa = { set of points of ∂Ω lying on the intersections between ∂Ω and
the bonds of the lattice Za}.
The discrete Laplace operator on Ω relative to Z2

a is defined as the linear
transformation D associating with every vector δ = (δξ)ξ∈Ωa∪∂Ωa the vector
((Dδ)ξ)ξ∈Ωa given by

(Dδ)ξ = −
∑

e

a

εa(ξ, e)

δξ − δξ+εa(ξ,e)e

a2
, ξ ∈ Ωa, (4.7.1)

where e = ±e1,±e2 (e1, and e2 being the two unit vectors parallel to the axes
of Z2

a) and, for ξ ∈ Ωa:

εa(ξ, e) ={distance between ξ and its nearest neighbor in

Ωa ∪ ∂Ωa in the direction e} (4.7.2)

The “Z2
a-discretized” Dirichlet problem in Ω with interior data g = (gξ)ξ∈Ωa

and boundary data h = (hξ)ξ∈∂Ωa are the equations

σ δξ − τ (Dδ)ξ = gξ, ξ ∈ Ωa, (4.7.3)

δξ = hξ, ξ ∈ ∂Ωa. (4.7.4)

Using the invertibility of positive-definite matrices, Appendix F, p.525,
the following proposition is checked along the same pattern of the proof of
Proposition 8,§4.4, p.263.

14 Proposition. If σ ≥ 0, τ > 0, the Dirichlet problem [Eqs. (4.7.3) and
(4.7.4)] always admits one and only one solution for any given boundary and
interior data.
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Again, in the same way as in §4.4 and §4.5, one may check the following
proposition.

15 Proposition. Given g ∈ C∞(R2), h ∈ C∞(∂Ω),5 consider the mechanical
system with Lagrangian function [see Eqs. (4.3.13) and (4.3.5)]

L =
∑

ξ∈Ωa

(µ
2
a2ẏ2

ξ + µa2g(ξ)yξ −
σ

2
a2y2

ξ

)

− τ

2
a2
∑

ξ∈Ωa

∑

e

a

εa(ξ, e)

1

ν(e, ξ)

(yξ − yξ+εa(ξ,e)e)

a2
,

(4.7.5)

yξ = h(ξ), ∀ ξ ∈ ∂Ω (4.7.6)

This mechanical system has one and only one equilibrium configuration y =
c(a). It is described by the solution c(a) of the Z2

a-discretized Dirichlet problem
with interior data (µg(ξ))ξ∈Ωa and boundary data (h(ξ))ξ∈∂Ωa .

Observation. More generally, if one is not interested in the limit a → 0 the
conditions , g ∈ C∞(R2), h ∈ C∞(∂Ω) can be replaced by g = g(ξ)ξ∈Ωa , and
h = (hξ)ξ∈∂Ωa .
Difficulties arise when one wishes to study the a→ 0 limit. Basically, one can
say that the difficulties are due to the impossibility of providing the eigenvalues
ω2

1 , ω
2
2 , . . . and the respective eigenvectors η(1),η(2), . . ., describing the normal

modes of the system of Eqs. (4.7.5) and (4.7.6), in a very explicit way, as in
the case d = 1. Hence, the theory has to be developed in a somewhat more
abstract way.

An example of a result that should be possible to obtain is as follows.

16 Proposition. The stationary solution c(a) of the equations for the me-
chanical system of Eqs. (4.7.5) and (4.7.6) with g ∈ C∞(R2), h ∈ C∞(∂Ω)
is such that the limit

lim
ξ→x

a→0

c
(a)
ξ = c(x), x ∈ Ω, (4.7.7)

exists and defines a function c ∈ C∞(∂Ω) such that

σ c(x)− τ ∆ c(x) = µ g(x), x ∈ Ω, (4.7.8)

c(x) = h(x), x ∈ ∂Ω, (4.7.9)

where ∆f(x) =
∑2

i=1
∂2f
∂x2

i

(x), ∀ f ∈ C∞(Ω). Furthermore, Eqs. (4.7.8) and

(4.7.9) have a unique solution in C∞(Ω).
The motions t→ y(a)(t), t ∈ R, of the above mechanical system, fulfilling the
initial conditions

5 See footnote 1.
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y
(a)
ξ (0) = c

(a)
ξ + u0(ξ), ξ ∈ Ωa (4.7.10)

ẏ
(a)
ξ (0) = v0(ξ), ξ ∈ Ωa, (4.7.11)

with u0, v0 ∈ C∞0 (Ω), are such that the limit

lim
a→0
ξ→x

y
(a)
ξ (t) = w(x, t), x, t ∈ Ω ×R (4.7.12)

exists and defines a C∞(Ω ×R) function. Furthermore, setting

w(x, t) = c(x) + w(x, t), (4.7.13)

it is

µw(x, t)− τ ∆w(x, t) + µ
∂2w

∂t2
(x, t) = 0, (4.7.14)

w(x, 0) = u0(x),
∂2w

∂t2
(x, 0) = v0(x) (4.7.15)

w(x, 0) = 0,
∂w

∂t
(x, t) = 0, ∀x ∈ ∂Ω, ∀ t ∈ R (4.7.16)

Finally, there is a family of functions S(h) ∈ C∞(Ω), h = 1, 2, . . ., vanishing
on ∂Ω and a sequence ω(h), h = 1, 2, . . ., of positive numbers such that

w(x, t) =

∞∑

h=1

S(h)(x)
(
û(h) cosω(h)t +

v̂(h)

ω(h)
sinω(h)t

)
, (4.7.17)

where

û(h) =

∫

Ω

S(h)(x)u0(x)dx, v̂(h) =

∫

Ω

S(h)(x) v0(x)dx, (4.7.18)

and the series Eq. (4.7.17) converges, ∀x ∈ Ω, ∀ t ∈ R.

Observations.
(1) The analogy between the vibrating string and the vibrating film would
then be essentially complete. However, this author does not know if there is
a proof of Proposition 16 (admitting its truth) in the above generality.
(2) There is a case in which an obvious variation of the above proposition holds
and its proof is very simple. It is the case in which Ω is a torus (i.e., Ω is a
“bicycle tire”) and σ > 0. Mathematically, this is the system associated with
the Lagrangian that follows; let N = L/a = integer, QL = [0, L−a]×[0, L−a]:
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Lper =µa2
∑

ξ∈QL∩Z2
a

(1
2
ẏ2
ξ + g(ξ)yξ

)

− σ

2
a2

∑

ξ∈QL∩Z2
a

y2
ξ −

τ

2
a2

∑

ξ∈QL∩Z2
a

∑

e

(yξ − yξ+a e)
2

a2

(4.7.19)

and in the last sum the points which do not belong to QL ∩ Z2
a and which

correspond to the points adjacent to the boundary ∂QL have to be identified
with the points on ∂QL opposite to them.

In other words, QL ∩ Z2
a is thought of as a “discrete torus” and the film

looses its boundary, becoming a “tube”.
The theory of Eq. (4.7.19) is identical to that of the vibrating string.

Actually it is technically even easier (and analogous to Problem 9, §4.5, on

the vibrating string). The role played by the functions
√

2
N sin(πkL ja) in the

vibrating-string case is now played by

S(h1,h2)(ξ) =
1

N
e

2πi
L (j1ah1+j2ah2) if ξ = (j1a, j2a). (4.7.20)

with (j1, j2) ∈ Z2, integers. The ω2
h is now replaced by

ω2
h1h2

=
σ

µ
+
τ

µ
2[

1− cos 2πh1

L a

a2
+

1− cos 2πh2

L a

a2
], (4.7.21)

while the role of Lemma 11, §4.5, is simply played by the two-dimensional
Fourier theorem.

The detailed development of the theory of the motion of Eq. (4.7.19) (and
of the analogous one-dimensional system, Problem 11, §4.5) is a very useful
exercise. The reader will however realize that the assumption σ > 0 cannot,
in the case of such periodic boundary conditions, be replaced by σ ≥ 0 (which
is the physical meaning of this?)

To conclude our analysis of the ordered systems of oscillators, we define
and study concisely the notion of velocity of wave propagation.

6 Definition. Let Ω be an open region with regular boundary |dprΩ, Ω ⊂ Rd,
d = 1 or d = 2.
Consider the wave equation in Ω for w ∈ C∞(Ω ×R):

µ
∂2w

∂t2
− τ ∆w + σw = 0. (x, t) ∈ Ω ×R, (4.7.22)

w(x, t) = 0 =
∂w

∂t
(x, t), xx ∈ Ω (4.7.23)

with initial data
w(x, 0) = u0(x), (4.7.24)
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∂w

∂t
(x, 0) = v0(x) (4.7.25)

and suppose u0, v0 ∈ C∞0 (Ω) and vanishing outside a neighborhood with radius
ε around x0 ∈ Ω. Given x1 ∈ Ω,x1 6= x0, let

tε(x0,x1) = inf
u0,v0
{inf of the set of the values t for which there

is t′ < t, t′ > 0, when w(x1, t
′) 6= 0.

(4.7.26)

Obviously, tε(x0,x1) > tε′(x0,x1) if ε′ > ε, and

t(x0,x1) = sup
ε>0

tε(x0,x1) (4.7.27)

is the “minimum time” needed for a perturbation of the equilibrium, (i.e.,
flat), string, or film, initially located around x0 to “reach” x1.
The “wave velocity” of the waves described by Eqs. (4.7.22) and (4.7.23) is
naturally defined as

C = sup
x1 6=x0

|x1 − x0|
t(x0,x1)

. (4.7.28)

Observation. In the d = 2 case, we did not prove existence and uniqueness
theorems for Eqs. (4.7.22)-(4.7.25), while for d = 1 we did. However, if we
set tε(x0,x1) = +∞ if for every (u0, v0) there is no solution to Eqs. (4.7.22)-
(4.7.25) and if, in case of non unique solutions, we take into account all the
solutions in the infimum in Eq. (4.7.26), the above definition also makes sense
for d = 2.
In any case, this is not a real problem since existence and uniqueness for Eqs.
(4.7.22)-(4.7.25) for u0, v0 ∈ C∞(Ω) can be proved in a satisfactory sense.

Let us prove the following proposition for σ = 0:

17 Proposition. Let d = 1, Ω = (0, L). The wave propagation velocity of the
waves described by Eqs. (4.7.22) and (4.7.23) with σ ≥ 0, τ > 0, µ > 0 is

C =

√
τ

µ
(4.7.29)

independent on the value of σ.

Proof. (Case σ = 0 only). From Eq. (4.5.19), we derive by trigonometry:
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w(x, t) =
∞∑

h=1

sin
πh

L
x
[
û0(h) cos

πh

L
Ct +

v̂0(h)

C πh
L

sin
πh

L
Ct
]

=

∞∑

h=1

û0(h)

2

[
sin

πh

L
(x+ Ct) + sin

πh

L
(x− Ct)

]

+
∞∑

h=1

v̂0(h)

2C πh
L

[
cos

πh

L
(x+ Ct) + cos

πh

L
(x− Ct)

]
,

(4.7.30)

since ω2
h = C2(πhL )2. Then, let ∀x ∈ R,

u∗0(x) =

∞∑

h=1

û0(h) sin
πh

L
x, v∗0(x) =

∞∑

h=1

v̂0(h) sin
πh

L
x, (4.7.31)

and, by the Lemma 11, p.266, plus the periodicity and parity properties of
the sine:

(i) u∗0(x) = u0(x), v
∗
0(x) = v0(x), ∀x ∈ [0, L],

(ii) u∗0(L+ x) = −u0(L− x), v∗0(L+ x) = −v0(L− x), ∀x ∈ [0, L],
(4.7.32)

(iii) u∗0, v
∗
0 are periodic C∞ functions with period 2L, i.e., u∗0, v

∗
0 are obtained

from u0, v0, by first reflecting them about L and then by periodic continuation
of the function on [0, 2L] thus constructed.

If u0 has support in a neighborhood with radius εaround x0, one finds that
u0 is described in Fig. 4.7.

−L 0 L 2L 3L

−x0

x0

2L−x0

2L+x0

x1 x∗
1

Figure 4.7.Example of graph of u∗0.

Equation (4.7.30) can be written in terms of u∗0, v
∗
0 as

w(x, r) =
1

2
[u∗0(x+ Ct) + u∗0(x− Ct)]−

1

2C

∫ x+Ct

x−Ct
v∗0(ξ)dξ (4.7.33)

[see, also, Problem 11, §4.5, for an alternative proof of Eq. (4.7.33)].
Then, for instance, one sees from the picture that in order that u∗0(x−Ct) 6=

0 the point x1 − Ct has to fall inside some of the intervals where u∗0 is not
zero; hence, t must be such that
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|x1 − x0|+ ε

C
≥ t ≥ |x1 − x0| − ε

C
(4.7.34)

and a similar bound on t can be found likewise, discussing the the third terms
in Eq. (4.7.33). This clearly implies Eq. (4.7.29). mbe

4.8 Anharmonic Oscillators. Small Oscillations and
Integrable Systems

Consider an ℓ-degrees-of-freedom system with Lagrangian function

L(β̇,β) =
ℓ∑

i,j=1

1

2
gi,j(β)β̇iβ̇j − V (β) (4.8.1)

where g is a given C∞(Rℓ) positive-definite ℓ×ℓ matrix and V ∈ C∞(Rℓ) is a
given potential energy function. Assume that V has a second-order mininum
in β0 ∈ Rℓ; i.e., ∂βV (β) = 0 in β0 and that the matrix

Iij =
∂2V

∂βi∂βj
(β0), i, j = 1, . . . , ℓ, (4.8.2)

is positive definite. Then β0 is an equilibrium point.

7 Definition. The “small oscillations” near β0 of the system described by
Eq. (4.8.1), with V verifying Eq. (4.8.2), are the motions of the mechanical
system with Lagrangian function

Lsmall(β̇,β) =
1

2

ℓ∑

i,j=1

gij(β0)β̇iβ̇j −
1

2

ℓ∑

i,j=1

Iij(βi − β0i)(βj − β0j) (4.8.3)

where β = (β1, . . . , βℓ), β0 = (β01, . . . , β0ℓ). The normal modes pulsations of
Eq. (4.8.3) are called the “proper pulsations” of Eq. (4.8.1) near β0; their
reciprocals multiplied by 2π are the “proper periods”. The reciprocals of the
periods are the “proper frequencies” of the small oscillations.

Observations.
(1) Therefore, the small oscillations are the motions of the Lagrangian system
obtained by replacing the matrix g with its value at the equilibrium point β0

and by replacing the potential energy V by its Taylor expansion about β0

truncated to second order:

V (β) = V (β0) +
1

2

ℓ∑

i,j=1

Iij (βi − β0i)(βj − β0j) (4.8.4)

and in Eq. (4.8.3), V (β0) does not appear since it does not affect the associated
motions.
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(2) On the basis of the above definitions, the “small oscillations” are not
necessarily motions with small amplitude. However, one can expect or hope
that if the energy of a motion described by Eq. (4.8.1) is just slightly above
V (β0) (hence, the motion takes place in the vicinity of β0 when it is initially
there), then the motion of Eq. (4.8.3) with the same initial data approximates
well the exact motion.

Since the small oscillations are, by definition, harmonic motions, hence
“simple motions”, one understands the interest in the following question: in
what sense do the small oscillations approximate the real motions of Eq.
(4.8.1) near β0 ?

In Chapter 2 we met and essentially solved this problem for systems with
one degree of freedom. The generalization to systems with ℓ > 1 degrees of
freedom is, however, surprisingly difficult and interesting. In Chapter 5 we
shall discuss some of its aspects. For the moment we shall only provide a
definition of a class of systems behaving “as if they were linear oscillators”
and we shall continue by discussing a few remarkable examples of such systems
warning the reader, however, that it should not be hoped that Definition 10
to follow is a definition covering many cases.

8 Definition. Consider a system of N point masses in Rd subject to ideal
bilateral constraints with ℓ degrees of freedom and to a conservative force.
We assume that the equations of motion are normal in the future as well as in
the past; i.e., they admit a global solution t→ St(ẋ,x) for every initial datum
(ẋ,x) compatible with the constraints. We shall call “space of the initial data”
the set S ⊂ R2Nd of all the pairs (ẋ,x), where x is a constraint compatible
configuration and ẋ is a constraint-compatible velocity.
We define on S the “time evolution flow”, (St)t∈R, as the group of transfor-
mations mapping (ẋ,x) into St(ẋ,x) = (datum into which (ẋ,x) evolves in
the time t according to the equations of motion).

Observations
(1) This generalizes the initial data space, introduced in §2.22, to constrained
systems.
(2) S will be considered to be a surface in R2Nd. The geometric structure of
S is very simple as expressed by the following proposition.

18 Proposition. The surface S of the preceding definition is a regular surface
in R2Nd.

Proof. By Definition 10, §3.6, p.170, given (ẋ0,x0) ∈ S, we have to find a
neighborhood W of (ẋ0,x0) on which it is possible to establish a local system
of regular coordinates adapted to the surface S.

Let U be a neighborhood of x0 on which it is possible to establish a local
system of regular coordinates ξ = Ξ(β), with basis Ω, adapted to the surface
Σ in RNd defined by the constraint. The set U exists by the very definition
of an ℓ-degrees-of-freedom holonomous constraint.
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In this coordinate system, the possible velocity vectors β̇ for the system
which are compatible with the constraints are those such that

β̇1 = β̇2 = . . . = β̇Nd−ℓ = 0, (4.8.5)

while the possible position vectors β are those for which

β1 = β2 = . . . = βNd−ℓ = 0, (0, . . . , 0, βNd−ℓ+1, . . . , βNd) ∈ Ω. (4.8.6)

Hence, the correspondence between RNd ×Ω and R2Nd described by

ẋ(i) =

Nd∑

k=1

β̇k
∂Ξ(i)

∂βk
(β), x(i) = Ξ(β) (4.8.7)

establishes on the image W ⊂ R2Nd of RNd × Ω a coordinate system near
(ẋ0,x0) ∈W adapted to S with basisRNd×Ω, and it is easily checked that the
Jacobian determinant of this coordinate change at the point with coordinates
(β̇,β) is the square of the Jacobian determinant in β of the transformation
Ξ. By the regularity assumption, on the coordinate system (U,Ξ), such a
determinant does not vanish. mbe

Observations.
(1) The above proof shows that setting

κ̇ =(β̇Nd−ℓ+1, . . . , β̇Nd)
def
= (κ̇1, . . . , κ̇ℓ),

κ =(βNd−ℓ+1, . . . , βNd)
def
= (κ1, . . . , κℓ),

(4.8.8)

Eqs. (4.8.7) establish a coordinate system, (κ̇,κ), for the points of W ∩ S,
where W is the image via Eqs. (4.8.7) of RNd × Ω. Furthermore, as (ẋ,x)
varies in W ∩S, the point (κ̇,κ) varies in Rℓ× V where V is an open convex
set in Rd (as V = Ω ∩ {plane β1, . . . , βNd−ℓ = 0}, and Ω is convex).
One refers to this remark by saying that the data space S of a system with ℓ
degrees of freedom locally has the structure Rℓ × V with V ⊂ Rℓ ”.
For this reason, and with an abuse of notation very useful and widely used,
one often denotes the points of S as (κ̇,κ), where (κ̇,κ) are local regular
coordinates (which have to be deduced from the context and which often are
really local (i.e., non global) coordinates), in a neighborhood W of a point in
S such that W ∩ S has the structure Rℓ × V .
Coherently, the Lagrangian of the constrained system is described as a func-
tion L(κ̇,κ) of (κ̇,κ).
(2) Since S is a regular surface, it makes sense to define the open sets on S
and the space C∞(S). A set E ∈ S is open on S if it is the intersection of
an open set in RNd with S. A function f is in C∞(S) if its restriction to a
neighborhood U , on which it is possible to set up a local system of regular
coordinates transforming U into Rℓ × V , has the property that, if thought of
as a function of the local coordinates (κ̇,κ), it is a C∞(Rℓ × V ) function.
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9 Definition. Let S be the initial data space for a system of N point masses
with ℓ degrees of freedom subject to ideal holonomous constraints and to con-
servative forces.Let A ∈ C∞(S) be a real-valued function on S. We shall say
that A is a “prime integral” (or “first integral” or “constant of motion”) for
the motions t→ St(ẋ,x) ≡ (ẋ(t),x(t)), t ∈ R, if

A(ẋ(t),x(t)) = constant (4.8.9)

for all (ẋ,x) ∈ S.
Examples
(1) The energy

E(ẋ,x) =
1

2

NX

i=1

mi(ẋ
(i))2 + V (a)(x(1), . . . ,x(N)) (4.8.10)

is a typical example of a prime integral. Often it is the only prime integral admitted by the
system’s motions.
(2) If the system is isolated, i.e., subject to zero external forces, the d components of the
linear momentum

Q(ẋ,x) =
NX

i=1

mi ẋ
(i) (4.8.11)

are also prime integrals when the third law of dynamics holds. In the same situation, the

angular momentum components also give rise to prime integrals.

19 Proposition. A system of ℓ harmonic oscillators with Lagrangian func-
tion (4.1.2) admits ℓ prime integrals A1, . . . , Aℓ given by Eq. (4.1.5). Further-
more, it is possible to parameterize the initial data space S through the values
A1, . . . , Aℓ and a point ϕ ∈ T ℓ, ϕ = (ϕ1, . . . , ϕℓ), so that S can be thought of
as the product [0,+∞)× T ℓ, and the motion t→ (ẋ(t),x(t)), t ∈ R+, of the
system is described, in these coordinates, as

(A1, . . . , Aℓ;ϕ1, . . . , ϕℓ)→ (A1, . . . , Aℓ;ϕ1 + ω1t, . . . , ϕℓωℓt), (4.8.12)

where ω1, . . . , ωℓ are positive constants.
Finally, the correspondence (A,ϕ) → (ẋ,x) is a C∞ invertible nonsingular6

correspondence between (0,+∞)ℓ×T ℓ and the subset of R2ℓ which is its image.

Proposition 19 suggests the following definition.

10 Definition. Let S be the initial data space for a system with ℓ degrees of
freedom subject to ideal constraints and to conservative active forces.
We shall say that the system is “integrable” on the open region W ⊂ S if on
W it is possible to define ℓ prime integrals A = (A1, . . . , Aℓ) and ℓ T ℓ-valued
C∞(W ) functions ϕ = (ϕ1, . . . , ϕℓ) such that:
(1) The image of W under the map

6 See definition 13 and related observations, p.101, for the meaning of the derivatives.
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(ẋ,x)→ I(ẋ,x) = (A,ϕ) (4.8.13)

has the form V ×T ℓ, where V is an open set in Rℓ and the correspondence I
between W and V × T ℓ is an invertible nonsingular (i.e., with non vanishing
Jacobian determinant) correspondence.
(2) There are ℓ real C∞ functions on V , A→ ω(A) = (ω1(A), . . . , ωℓ(A)) ∈
Rℓ such that if t→ x(t) is a motion with initial data (ẋ(0),x(0)) ∈ W , then,
∀ t ∈ R+, (ẋ(t),x(t)) ∈W and

I(ẋ(t),x(t)) = (A0,ϕ0 + ω(A0)t) (4.8.14)

where A0 = A(ẋ(0),x(0)), ϕ0 = ϕ(ẋ(0),x(0)), and ϕ→ ϕ+ω(A0)t denotes
the quasi-periodic flow on T ℓ with speed ω(A0), see Definition 1, p.248.. The
numbers ωi(A), Ti(A) = 2π

ωi(A) , νi(A) = 1
Ti(A) , i = 1, . . . , ℓ, are, respectively,

called the pulsations, the periods, and the frequencies of the motions in W
with amplitudes A.

Observations. (1) In the case of a system of harmonic oscillators, there are
various choices of W for which the system is integrable on W : the most natu-
ral one takes W to be the set in S whose image under the map of Eq. (4.1.15)
is (0,+∞)ℓ × T ℓ (i.e., the set of data having all the normal modes excited:
Ai > 0 for i = 1, . . . , ℓ).
(2) One can interpret Eqs. (4.8.13) and (4.8.14) as saying that the data
space W of an integrable system is “foliated by an ℓ-parameter family of
ℓ-dimensional invariant tori”. The parameters are the values of the ℓ prime
integrals. The torus with parameters A ∈ V is the set I({A} × T ℓ) image of
{A} × T ℓ under the “integration map” I.
(3) In the case of harmonic oscillators, ω(A) is A independent: “isochrony of
the harmonic oscillations”. As seen in the case ℓ = 1, §2.10, it is obvious that
this should be a very special property of the harmonic oscillators. Therefore,
it is better not to introduce it into the definition of integrable system, to avoid
giving a too restrictive definition.
(4) In the context of the theory of small oscillations, the above definition
seems especially designed to formulate the conjecture that in a small enough
neighborhood W of an equilibrium position (0,β0) for a mechanical system
described by a Lagrangian (4.8.1) verifying Eq. (4.8.2), the system is inte-
grable.
Such a conjecture, true if ℓ = 1, is generally false if ℓ > 1; i.e., there may be
motions which stay indefinitely close to an equilibrium point and, neverthe-
less, move in a fashion substantially different from a quasi-periodic motion.
However, a conjecture similar to this one is true. We shall discuss this matter
in Chapter 5, §5.9-§5.12.
(5) To establish the integrability of a system with ℓ degrees of freedom, one
usually proceeds to show that it is possible to describe the motions which
develop in W in terms of 2ℓ parameters (A,ϕ) ∈ V × T ℓ and of N C∞-
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functions on V × T ℓ, Φ(1), . . . ,Φ(N), such that if t → x(t) is a motion, one
has, ∀ i = 1, 2, . . . , N ,

x(i)(t) = Φ(i)(A1, . . . , Aℓ, ϕ1 + ω1 t, . . . , ϕℓ + ωℓ t), (4.8.15)

where ω1(A), . . . , ωℓ(A) are ℓ C∞-functions of A ∈ V .
Successively, one proceeds to check the invertibility, regularity, and non singu-
larity of the map ẋ(0),x(0))←→(A,ϕ). This check is usually an easy matter
and without direct interest once Eq. (4.8.15) has been established for all the
motions in W . Actually, the true analytic difficulty that is met in the intregra-
bility proofs lies in the proof of the validity of a consequence of Eq. (4.8.15):
precisely, in checking that all the motions in W are “quasi periodic” in the
sense that their coordinates depend quasi-periodically on time (see §2.21 for
the notion of quasi-periodicity). See, however, Problem 20 to §4.15.

Therefore, in the upcoming sections, we shall often stop our analysis of
integrability when we find that the motions taking place in a given W are
quasi-periodic, without entering into the sometimes long analysis necessary
to prove the invertibility and smoothness properties required by integrability.

The following extension of Definition 10 is natural in the context of the
concepts of analytical mechanics of §3.11 and §3.12.

11 Definition. Let L ∈ C∞(W ),W ⊂ R2ℓ or W ⊂ (Rℓ × T ℓ) or W ⊂
Rℓ × (Rℓ1 × T ℓ2), ℓ1 + ℓ2 = ℓ be a time-independent regular Lagrangian on
W (see Definition 14, §3.11, p.211).
We say that L is integrable on the data space W if there is an integrating
map I transforming W into V × T ℓ enjoying the properties (1) and (2) of
Definition 10, where the motion t→ x(t) is now a solution to the Lagrangian
equations relative to L.
Similarly, if H ∈ C∞(W̃ ), W̃ ⊂ R2ℓ or W̃ ⊂ Rℓ × T ℓ or W̃ ⊂ Rℓ × (Rℓ1 ×
T ℓ2), ℓ1 + ℓ2 = ℓ, is a regular time-independent Hamiltonian function on

the phase space W̃ , we say that H is integrable on W̃ if the corresponding
Lagrangian function L is integrable on the data space subset W = Ξ−1(W̃ ),
Ξ being the map inducing the Legendre transformation between H and L (see
§3.11).

In this case, if I is the integrating map for L, the map

Ĩ(p,q) = I(Ξ−1(p,q)) (4.8.16)

maps W onto V × T ℓ and it is called an “integrating map” for H.
If Ĩ is a completely canonical map of W̃ onto V ×T ℓ we say that H is “canon-
ically integrable” on the phase space W̃ .
If H is analytic7 on W̃ and Ĩ is also analytic, we say that H is “analytically

7 Analytic means “having convergent Taylor series” near every point of the domain of
definition, see Definitions 13,14 and 15, §4.13, p.336.
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integrable on W̃”.If H is analytic and if Ĩ is an analytic completely canoni-
cal map of W onto V × T ℓ, we shall say that H is “canonically analytically
integrable” on W̃ .

Observations.
(1) If H ∈ C∞(W ) is canonically integrable and ifĨ is a completely canonical
map integrating H , then

H(I−1(A,ϕ)) ≡ h(A) = (ϕ-independent function) (4.8.17)

and ω(A) = ( ∂h
∂A1

(A), . . . , ∂h∂Aℓ
(A)):

ω(A) =
∂h

∂A
(A) (4.8.18)

In this case the variables (A,ϕ) are called “action-angle” variables and are
canonical variables.
(2) It turns out that all the systems that we shall consider in the upcoming
sections are analytically canonically integrable on vast regions of phase space.
However, this will not always be explicitly checked and it will be left to the
reader, in the problems, to draw this conclusion from the properties discussed
in the text.
(3) In an obvious way, one could also define the notion of a Lagrangian an-
alytically integrable on some set W in the data space. The corresponding
Hamiltonian system would then be analytically integrable on the correspond-
ing phase-space subset W̃ and vice versa.

4.8.1 Problems

1. Given ω ∈ Rℓ and g ∈ C∞(T ℓ), suppose that ∀ν ∈ Zℓ, ν 6= 0, it is |ω·ν|−1 < C|ν|α, for
some C > 0, α > 0. Show that the system onRℓ×T ℓ with Hamiltonian (A,ϕ) = A·ω+g(ϕ)
is integrable and find an expression for ℓ prime integrals. Show that this is an isochronous
system. Note that the equations of motion can be solved explicitly for general ω. (Hint:

Write the equations of motion and solve the one for the A’s by developing g into a Fourier
series g(ϕ) =

P
ν∈Zℓ bgνeiν·ϕ before integration. The prime integrals can be chosen

B = A +
X

ν 6=0

ν∈Zℓ

ν bgν
eiν·ϕ

ν ·ω

and the condition on ω is required to insure the convergence of the series.)

2. In the context of Problem 1, show that if g is a trigonometric polynomial (i.e., it has
finitely many non vanishing Fourier coefficients), then the results of Problem 1 hold under
the sole assumption that the components of ω are rationally independent.

3. In the context of Problem l, suppose that there is ν0 ∈ Zℓ,ν0 6= 0, such that ω · ν0 = 0.
Show that the Hamiltonian system with Hamiltonian H(A,ϕ) = A ·ω+ εcos(ν0 ·ϕ) is not
integrable. (Hint: Show that its motions are not quasi-periodic.)

4. In the context of Problem 1, suppose that |ω ·ν|−1 < C|ν|α, ∀ν 6= 0 and ν0 6∈ N0, where
N0 is a subset of Zℓ. Suppose also that g ∈ C∞(T ℓ) is such that bgν = 0, ∀ν ∈ N0. Show
that the Hamiltonian H(A,ϕ) = A · ω+ g(ϕ) is integrable on R× T ℓ.
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5. Show that the integrability in Problems 1, 2, and 4 is analytical and canonical (Hint:

A′ ·ϕ+
P
ν 6=0 bgν eiν·ϕ

−iω·ν
def
= Φ(A′,ϕ) is a generating function for the integrating map.)

4.9 Integrable Systems. Central Motions with Non
vanishing Areal Velocity. The Two-Body Problem

The best-known integrable mechanical system consists, perhaps, of two point
masses with masses m1,m2 > 0 interacting through a conservative force with
potential energy V depending only on the distance between the two points:

V (ξ1, ξ2) = V (|ξ1 − ξ2|); (4.9.1)

and we shall assume that the function ̺→ V (̺) is defined for ̺ > 0 and that
it is a C∞-function such that

lim
̺→0

̺2V (̺) = 0, inf
̺>ε

V (̺) = −Vε, ∀ ε > 0 (4.9.2)

Note that V (0) is undefined, and this means that we shall only consider mo-
tions t → (x1(t),x2(t)), t ∈ R+, such that |x1(t) − x2(t)| > 0, t ∈ R+. This
restriction will be imposed via the condition of non vanishing areal velocity.

If t→ (x1(t),x2(t)), t ∈ R+, is a motion of the system, the two points will
move so that the total linear and angular momentum will be conserved. In
fact, the force generated by Eq. (4.9.1) is easily seen to verify the third law of
dynamics, so that the cardinal equations hold and imply the above mentioned
conservation laws.

Hence, the center of mass G moves in a uniform rectilinear fashion and,
possibly by changing reference system, it may be supposed that G coincides
with the originO of the reference system (O; i, j,k) in which motion is studied.
In this situation, the motion t→ (x1(t),x2(t)), t ∈ R+ will be such that

m1x1(t) = −m2x2(t), ∀ t ∈ R+ (4.9.3)

and to determine the positions of the two points it will suffice to give the

vector ̺
def
= x2(t)− x1(t):

x1(t) = − m2

m1 +m2
̺(t), x2(t) =

m1

m1 +m2
̺(t), (4.9.4)

Since the angular momentum with respect to O is a constant vector K, it can
be assumed, without loss of generality, that K is parallel to k:

K = Ãk. (4.9.5)

Only motions for which Ã > 0 will be considered and it will be seen that Ã is
proportional to the areal velocity. From Eqs. (4.9.3)-(4.9.5), it follows that
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K = Ãk = m1x1 ∧ ẋ1 +m2x2 ∧ ẋ2 = m1x1 ∧ (ẋ1 − ẋ2) = − m1m2

m1 +m2
̺ ∧ ˙̺ .

(4.9.6)
i.e., ̺ and ˙̺ must both lie in the plane (i, j). Therefore, the motion t →
̺(t), t ∈ R+, takes place on the plane (i, j). Recalling the considerations in
§3.4 about the constraints, we can find the equations of motion by parame-
terizing the motion by the polar coordinates (̺, θ) of ̺ in the plane (i, j)and
then writing the Lagrangian equations for the Lagrangian

L =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 − V (|x1 − x2|) (4.9.7)

computed on the motions, parameterized as above.
For such motions, Eq. (4.9.7) becomes

L( ˙̺, θ̇, ̺, θ) =
m1

2

( m2

m1 +m2

)2
˙̺ 2 +

m2

2

( m1

m1 +m2

)2
˙̺ 2 − V (̺)

=
1

2

m1m2

m1 +m2
˙̺ 2 − V (̺) =

1

2

m1m2

m1 +m2
( ˙̺2 + ˙̺2θ̇2)− V (̺),

(4.9.8)

where the well-known formula expressing the square velocity ˙̺ 2 as ˙̺2 + ̺2θ̇2

in polar coordinates has been used together with Eq. (4.9.4). Equation (4.9.8)
yields the following proposition:

20 Proposition. The theory of the motion of two point masses, with masses
m1,m2 > 0, under the action of a mutual central conservative force with
potential energy given by Eq. (4.9.1) is equivalent to the theory of the motion
of a single point mass with mass m:

m =
m1m2

m1 +m2
(4.9.9)

moving on a plane under the action of a conservative force, centrally acting
on the mass from a point O in the plane, with the same potential energy V .

The motions described by the Lagrangian function (4.9.8) and such that

Ã 6= 0 are called “central motions”.

21 Proposition. The motions of the mechanical system described by Eq.
(4.9.8) admit two prime integrals:

E =
1

2
m ˙̺2 + ̺2θ̇2 + V (̺), (4.9.10)

A = ̺2θ̇, (4.9.11)

and, if A 6= 0, they indefinitely stay away from the origin at a distance greater
than some time-independent positive quantity (A and E independent).
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Proof. Equation (4.9.10) is the total energy and, by Eq. (4.9.6), Ã = m̺2θ̇
the angular momentum along the z axis. Hence, E and A are both prime inte-
grals. Note that ̺2θ̇ is twice the “areal velocity”, i.e., twice the area spanned
by ̺ per unit time.

By substituting Eq. (4.9.11) into Eq. (4.9.10) it follows

E =
1

2
m( ˙̺2 + ̺2θ̇2) + V (̺) (4.9.12)

and Eq. (4.9.2) implies the existence of ̺0 > 0 such that E−m A2

2̺2 −V (p) < 0

for ̺ < ̺0. So ̺(t) > ̺0, ∀ t ∈ R+. mbe

Let t → (̺(t), θ(t)), t ∈ R+ be a motion associated with Eq. (4.9.8) with
A > 0. Write the equation of motion for ̺ by considering the Lagrangian
equation relative to Eq. (4.9.8) and corresponding to the coordinate ̺:

m ¨̺ = m̺θ̇2 − ∂V

∂̺
. (4.9.13)

By Eq. (4.9.11) the latter relation becomes

m ¨̺ = m
A2

̺3
− ∂V

∂̺
(̺) ≡ −∂VA

∂̺
(̺) (4.9.14)

where

VA(̺) =
mA2

2̺2
+ V (̺) (4.9.15)

showing that the ̺ coordinate evolves in time as the abscissa of a mass m on
a line, subject to a conservative force with potential energy VA.

Since the motion, by Proposition 21, is such that ̺(t) ≥ ̺0 > 0, we can
ignore the singularities of V and VA in ̺ = 0 and we can also ignore the
constraint ̺ > 0 due to ̺ being the polar radial coordinate, so that the theory
of Chapter 2 for conservative C∞ forces acting upon one-dimensional systems.

22 Proposition. Let ̺→ V (̺), ̺ > 0, be a C∞((0,+∞)) function verifying
Eq. (4.9.2). Let W be the open set, in the data space of the system described by
Eq. (4.9.8), consisting of the data with E and A in Eqs. (4.9.10) and (4.9.11)
such that

(i) A > 0. (4.9.16)

(ii) The equation VA(̺) =
mA2

2̺2
+ V (̺) = E (4.9.17)

admits just two solutions ̺−(E,A), ̺+(E,A) such that ̺+(E,A) > ̺−(E,A)
and ∂VA

∂̺ (̺±(E,A)) 6= 0.
Then the system is integrable in a neighborhood of every point in W and has
two periods, see Definition 10, §4.8, p.287, given by
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T1(E,A) = 2

∫ ̺+

̺−

d̺√
2
m (E − VA(̺))

, (4.9.18)

T2(E,A) =
2π

A

∫ ̺+
̺−

d̺√
2
m (E−VA(̺))∫ ̺+

̺−

d̺

̺2
√

2
m (E−VA(̺))

, (4.9.19)

where ̺+ = ̺+(E,A) and ̺− = ̺−(E,A).

Proof. In the course of the proof we shall state that some functions are C∞,
leaving the proof to the reader. Let ( ˙̺0, θ̇0, ̺0, θ0) ∈ W be an initial datum
with energy E and areal velocity A

2 and consider the solution of Eq. (4.9.14),

t→ R(t, E,A), t ∈ R+ (4.9.20)

with initial datum

R(0, E,A) = ̺−(E,A), Ṙ(0, E,A) = 0. (4.9.21)

By the theory of one-dimensional motions, §2.7, the function R is a C∞ func-
tion periodic in t with period

T1(E,A) = 2

∫ ̺+

̺−

d̺√
2
m (E − VA(̺))

, (4.9.22)

where ̺± = ̺±(E,A)
If t0(̺0, ˙̺0) is the shortest time such that

R(t0, E,A) = ̺0, Ṙ(t0, E,A) = ˙̺0, (4.9.23)

necessarily existing by our assumptions on W , it follows that

̺(t) = R(t+ t0(̺0, ˙̺0), E,A), t ∈ R+. (4.9.24)

To complete the analysis of the motion, it is necessary to determine θ(t). Using
Eq. (4.9.11):

θ(t) = θ0 +

∫ t

0

A

R(t′ + t0(̺0, ˙̺0), E,A)2
dt′; (4.9.25)

and remark that the integrand function in Eq. (4.9.25) is a C∞ periodic
function of t′ with the period of Eq. (4.9.22), since such is R and also R ≥
̺−(E,A) > 0. Then by the Fourier theorem, if T1 ≡ T1(E,A),

A

R(t, E,A)2
=
∑

k∈Z
χk(A,E)e

2π
T1
kt, (4.9.26)
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where (χk)k∈Z are the Fourier coefficients of A
R2 . They vanish as k →∞ faster

than any power in k. Inserting Eq. (4.9.26) into Eq. (4.9.25), it appears that

θ(t) = θ0 + χ0(A,E)t+
∑

k∈Z
k 6=0

χk(A,E)
e

2πi
T1
kt − 1

2πik
T1

e
2πi
T1
kt0(̺0, ˙̺0) (4.9.27)

which we shall write as

θ(t) = θ0 + χ0(A,E)t+ S(t+ t0(̺0, ˙̺0), E,A)− S(t0(̺0, ˙̺0), E,A) (4.9.28)

where

S(t, E,A)
def
=
∑

k∈Z
k 6=0

χk(A,E)
e

2πi
T1
kt

2πik
T1

(4.9.29)

is a C∞-function, periodic with period T1 ≡ T1(E,A).
It is then clear that the coordinates of ̺(t) have the form of Eq. (4.8.15).

For instance, if ̺(t) = (̺1(t), ̺2(t) ∈ R2:

̺1(t) =̺(t) cos θ(t) = R(t+ t0) cos(θ0 + χ0t+ S(t+ t0)− S(t0))

=R(t+ t0)
(

cos(θ0 + χ0t) cos(S(t+ t0)− S(t0))

− sin(θ0 + χ0t) sin(S(t+ t0)− S(t0))
)
,

(4.9.30)

where the dependence on the E,A, ̺0, ˙̺0 variables has not been explicitly writ-
ten. By Observation 4 to Definition 10, p.288, this shows the integrability of
the system and that the two periods are T1(E,A) and T2(E,A) = 2π

P χ0(A,E).
It is also easy to find explicitly the integrating transformation I: the prime

integrals are E and A, the angles (ϕ1, ϕ2) ∈ T 2 are, for instance, by Eqs.
(4.9.24) and (4.9.28),

ϕ1( ˙̺0, θ̇0, ̺0, θ0) =
2π

T1(E,A)
t0(̺0, ˙̺0), (“average anomaly”), (4.9.31)

ϕ2( ˙̺0, θ̇0, ̺0, θ0) = θ0 − S(t0(̺0, ˙̺0), E,A) (“average longitude”), (4.9.32)

and the respective periods are, as already mentioned, T1(E,A) and T2(E,A)
[see Eq. (4.9.28)].

Regularity and invertibility of the transformation I on suitable neighbor-
hoods of the trajectory starting in ( ˙̺0, θ̇0, ̺0, θ0) will not be explicitly checked.

It remains to check Eq. (4.9.19). Again we do not write explicitly the E
and A dependence in the functions ̺−(E,A), ̺+(E,A), χ0(A,E), T1(E,A),
R(t, E,A), S(t, E,A). By the Fourier theorem,
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χ0 =
1

T1

∫ T1

0

A

R(t)2
dt =

2

T1

∫ T1
2

0

A

R(t)2
dt (4.9.33)

because R(t) behaves specularly when t varies from 0 to T1

2 or from T1

2 to
T1, (i.e. when R varies between ̺− and ̺+ or between ̺+ and ̺−). But for
t ∈ [0, T1

2 ],

t =

∫ R(t)

̺−

d̺√
2
m (E − VA(̺))

(4.9.34)

by Eqs. (4.9.15), (4.9.20). Hence, changing variables “t→ R”, via Eq. (4.9.34),
it follows that

dt =
dR√

2
m (E − VA(R))

, (4.9.35)

and this implies, from Eq. (4.9.33), that

χ0 =
2A

T1

∫ ̺+

̺−

dR

R2
√

2
m (E − VA(R))

, (4.9.36)

mbe

Observation. If we regard Eq. (4.9.8) as defining a three-dimensional problem
with Lagrangian

L( ˙̺ ,̺) =
1

2
m ˙̺ 2 − V (̺) (4.9.37)

it follows, of course, that under the same assumptions as in Proposition 22,
the system is integrable. Now the prime integrals will be E,A and the angle
of inclination i of the orbital plane with the reference (i, j) plane. The third
angle will be the longitude in the (i, j) plane, counted from the i axis (say),
of the intersection of the orbital plane with the (i, j) plane (“nodes line”).
However, the third angle thus defined remains constant over time. This means
that the pulsations in these coordinates will be ω1 = 2π

T1
, ω2 = 2π

T2
, ω3 = 0.

4.9.1 Problems

1. Let m = 1 and consider the motions associated with the Lagrangian (4.9.8) under the
assumptions of Proposition 22. Following the idea of Problem 4, p.227, and substituting L
for A in that problem, define

L
def
= λ(E,A) =

Z ̺+(E,)

̺−(E,)

p
2(E − VA(̺))

d̺

π
.

Suppose that this relation between L,E,A can be inverted with respect to E, for E,A in
some open set V , in the form E = ε(L,A) so that
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L ≡ λ(ε(L,A), A)

with ε of class C∞. Show that if E = ε(L,A),

2π

T1(E,A)
=
∂ε

∂L
(L,A),

2π

T2(E,A)
=

∂ε

∂A
(L,A).

(Hint: Note that 1 = ∂λ
∂E
· ∂ε
∂L

and then use Eqs. (4.9.18) and (4.9.19) remarking that the
derivatives with respect to the integration extremes vanish as, by the definition of ̺−, ̺+,
the integrand vanishes at the extremes.)

2. In the context of Problem 1 the Hamiltonian corresponding to Eq. (4.9.8) is, (m = 1):

H(p̺, pθ, ̺, θ) =
1

2
(p2̺ +

p2θ
̺2

) + V (̺)

and note that the function

eS(L,A, ̺, θ) = Aθ +

Z

̺−(ε(L,A),A)

p
2(ε(L,A)− VA(̺′)) d̺′

solves the Hamilton-Jacobi equation

H(
∂eS
∂̺

,
∂eS
∂θ
, ̺, θ) = ε(L,A)

From this fact, infer that S generates a change of coordinates (completely canonical)

(p̺, pθ, ̺, θ)←→(L,A, ℓ, g)

where ℓ, g are angular variables defined in Eqs. (4.9.31) and (4.9.32) in terms of the data:

ℓ =
2π

T1(ε(L,A), A)
t0, g = θ − S(t0, ε(L,A), A),

and the Hamiltonian in the new variables is simply H = ε(L,A).

3. In the context of Problem 2, define

bS(E,A, ̺, θ) = Aθ +

Z ̺

̺−(E,A)

p
(2(E − VA(̺′))) d̺′.

Check that this is a two-parameters local solution to the Hamiltonian-Jacobi equation

H(
∂bS
∂̺

,
∂bS
∂θ
, ̺, θ) = E

(the parameters being E and A) and bS generates a completely canonical transformation
(p̺, pθ, ̺, θ)←→(E,A, τ, α) in which α is a constant angle and τ varies linearly over time.
Show that these new coordinates cannot be extended to a well-defined system of coordinates
in the vicinity of a full trajectory of the motion if this trajectory corresponds to a quasi-
periodic motion with two periods having irrational ratio. Note that this is not the case for
the other coordinate transformation of Problem 2.

4. In the context of Problem 3, the change of coordinates introduced there can be ex-
tended to a well-defined system of coordinates in the vicinity of a full trajectory for which
̺+(E,A) = +∞ (i.e., in the vicinity of an unbounded trajectory) if lim sup̺→+∞ VA(̺) <
E. In this case, the pair of variables (E, τ) are called “energy-time” coordinates. Why?

5. Solve Problems 1 and 2 for arbitrary m > 0.
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4.10 Kepler’s Marvelous Laws

Leva dunque, lettore, a l’alte ruote
Meco la vista, dritto a quella parte
Dove l’un moto e l’altro si percuote;
E ĺı comincia a vagheggiar ne l’arte
Di quel maestro che dentro a sé l’ama
Tanto che mai da lei l’occhio non parte,
Vedi come da indi si dirama
L’ oblico cerchio che i pianeti porta
Per sodisfare al mondo che li chiama.8

The main result of §4.9, expressed by Proposition 22, is that the motion
of a point mass in a central force field under some hypotheses on the initial
data is a quasi-periodic motion with two periods given by Eqs. (4.9.18) and
(4.9.19) depending upon the energy E and the areal velocity 1

2A.
By contemplating Eqs. (4.9.18) and (4.9.19), it is easy to convince oneself

that in general T1(E,A) and T2(E,A) are “independent”. Hence, unless

T1(E,A)

T2(E,A)
= rational number (4.10.1)

which is “exceptional” when E and A vary, the motion is actually quasi peri-
odic and not periodic.

Note, however, that the set of the space points where Eq. (4.10.1) holds
will generally be dense in the region W where the motion is integrable. As an
exercise, the reader may show the truth of this statement near a point of W
where the E and A values are such that the Jacobian determinant of the map
(E,A)←→(T1(E,A), T2(E,A)) does not vanish.

However, there are two exceptional and marvelous cases.
The first, already implicitly studied in §4.1, is the harmonic oscillator

bound to O by a force with potential

V (̺) =
k

2
̺2 (4.10.2)

leading to

8 In basic English:
Look up now, reader, to the high wheels
together with me, straight there
where several motions hit each other.
And there begin to wonder about the art
Of that master who inside himself moves them with his love
so much that he never drops his eyes away.
Look up how the oblique circle bearing the planets develops there
to satisfy the world that calls them.
(Dante, Paradiso, Canto X)
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2T1 ≡ T2 = 2π

√
k

m
≡ T (4.10.3)

and the orbits are ellipses centered in O. Equation (4.10.3) could be proved
by computing the integrals of Eqs. (4.9.18) and (4.9.19) (which is a long but
straightforward calculation). However, the reader should try to find a simple
argument leading to Eq. (4.10.3) without any explicit calculations beyond the
ones already done in §4.9.

The other case corresponds to

V (̺) = −mg

̺
(4.10.4)

This is the case of the so-called “Newtonian two-body problem” or “Kepler’s
problem”. If E < 0, the motion is periodic and T1 = T2, although T1 and T2

now actually depend on A and E, and the orbits are ellipses with focus in O.

We treat this problem in some detail by proving the following proposition.

23 Proposition. The motions with energy E < 0 and areal velocity 1
2 |A| 6= 0

are periodic and the integrals of Eqs. (4.9.18) and (4.9.19) coincide, ∀E <
0, ∀A 6= 0. Furthermore:
(i) the trajectories t→ ̺(t), t ∈ R+, are ellipses with focus in O;
(ii) such ellipses are run with constant areal velocity A

2 ;
(iii) the ratio between the square of the revolution period T and the cube of
the length of the ellipse major axis is a constant solely depending on g.

Finally, if ̺+ and ̺− are the focal distances of the ellipse on which a given
motion takes place:

̺+ + ̺− =
mg

−E , (4.10.5)

̺+̺− =
mA2

−2E
, (4.10.6)

T =
π√
2g

(̺+ + ̺−)
3
2 . (4.10.7)

Observations.
(1) (i), (ii), and (iii) are Kepler’s laws. Starting from them, Newton realized
that if one wanted to describe the motion of a planet by a second-order dif-
ferential equation m¨̺ = F(̺), the only possibility was that F(̺) = −mg̺2

̺
̺ .

This led him to assume, by symmetry, g = kM , M = mass of the Sun, i.e.,
V (̺) = −kmM̺ which is the universal law of gravitation.

Of course, he also assumed that (i), (ii), and (iii) would describe the motion
laws of an arbitrary body revolving around the Sun, whatever its initial posi-
tion and speed.
Newton’s argument is interesting and different in spirit from the one based on



300 4 Special Mechanical Systems

the analytic theory of differential equations. It is based on some beautiful ge-
ometric considerations relying on the theory of conic sections: it can be found
in the first book of the Principia, [37].
(2) One could also easily study the E > 0 or E = 0 motions: they are not
periodic motions and the trajectories become a hyperbola wing or a parabola,
respectively. This is a simple exercise along the lines of the upcoming proof
and it will be left to the reader.
(3) The heavenly bodies have finite extension. Hence, if a satellite revolves
circularly around a primary body (planet or Sun), turning always the same
face to it, a situation in apparent contradiction to Kepler’s laws is produced.
In fact, if the satellite is thought of as decomposed into small point masses, the
points on one face rotate on an orbit with radius smaller than the orbit of the
points of the opposite face. Hence, if one could neglect the mutual interactions
between the points of the body, they would have to have a different rotation
period around the main body (by the Kepler’s third law) and the satellite
would disintegrate over time. This means that if the above catastrophic event
does not occur, the body must be subject to some internal stresses (“tidal
stresses”) which cannot be stronger “than the body’s material resistance”
(otherwise, the satellite could not exist). So Kepler’s laws and the gravitation
law provide a mechanism for explaining Saturn rings and why, in general,
satellites stay quite far away from a planet (see problems at the end of this
Section).

Proof. With the notation of §4.9, let VA(̺) = m( A
2

2̺2 −
g
̺ ) and the angular

momentum and energy conservation laws lead to

̺2θ̇ = A,
1

2
( ˙̺2 +

A2

2̺2
)− g

̺
=
E

m
(4.10.8)

or

˙̺2 =
2

m
(E − VA(̺)), (4.10.9)

The graph of VAis illustrated in Fig. 4.8.

−mg2

2A2

E

VA

̺− ̺+ ̺

Figure 4.8: Gravitational potential in presence of the “centrifugal barrier” mA2

2̺2
.
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Hence, if E < 0, E > −mg22A2 the roots of the equation VA(̺) = E are
̺−(E,A), ̺+(E,A) and they can be explicitly found by solving a second-
degree equation in the unknown 1

̺ . Factorizing the polynomial in 1
̺ given by

E
m −

VA(̺)
m in terms of its roots 1

̺±
:

E

m
− A2

2̺2
+
g

̺
=
A2

2

( 1

̺−
− 1

̺

)(1
̺
− 1

̺+

)
(4.10.10)

The radii ̺− < ̺+ are, as we shall shortly see, the focal distances of the
ellipse on which the motion develops. They obviously verify Eqs. (4.10.5) and
(4.10.6) because ̺−1

+ + ̺−1
− = 2g

A2 , ̺+̺− = − 2E
mA2 .

By Eq. (4.10.10) to rewrite Eqs. (4.10.8) and (4.10.9) as

˙̺ = ±A
√

(
1

̺−
− 1

̺
)(

1

̺
− 1

̺+
), (4.10.11)

θ̇ =
A

̺2
. (4.10.12)

and suppose that for t = 0, it is ̺(0) = ̺−, θ(0) = π. Since the motion of p is
periodic, being a solution to Eq. (4.9.14), and oscillates between ̺− and ̺+,
this hypothesis does not affect the generality.

Then in Eq. (4.10.11) the + sign holds for t ∈ [0, T2 ] if T is the period of
the ̺-motion [Eq. (4.9.18)]:

T (E,A) = 2

∫ ̺+(E,A)

̺−(E,A)

d̺√
2
m (E − VA(̺))

. (4.10.13)

Hence, for t ∈ [0, T2 ], Eq. (4.10.12) implies that θ is a strictly increasing
function (as A > 0 by assumption) of t: thus ̺ can be regarded as a function
of θ instead of t so that Eq. (4.10.11) divided by Eq. (4.10.12) yields

d̺

dθ
= ̺2

√
(

1

̺−
− 1

̺
)(

1

̺
− 1

̺+
). (4.10.14)

For ̺− < ̺ < ̺+ this implies

θ − π =

∫ ̺

̺−

d̺′

̺′ 2
√

( 1
̺−
− 1

̺′ )(
1
̺′ − 1

̺+
)
, (4.10.15)

which is an elementary integral. Changing the variable as y = ̺−1, after some
algebra, one finds

1

̺
=

1

2
(

1

̺+
+

1

̺−
) +

1

2
(

1

̺−
− 1

̺+
) cos(θ − π), (4.10.16)

showing that when θ reaches 2π, ̺ reaches ̺+.
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The study of the trajectory for t ∈ [T/2, T ] proceeds likewise, changing the
choice of sign in Eq. (4.10.11), and one finds that the trajectory still verifies
Eq. (4.10.16), and at time T when ̺ takes the value ̺−, the angle θ takes
the value 3π. This means that after time T has elapsed, not only ̺ but also θ
take on the initial value (of course θ has to be measured mod 2π). Hence, the
trajectory is closed because θ̇ and ˙̺ also take on again the initial values, by
Eqs. (4.10.11) and (4.10.12) (i.e., ˙̺ = 0, θ̇ = A

̺2−
) and because of the autonomy

of the equations of motion.
Equation (4.10.16), well known from elementary geometry, is the polar

coordinates equation of an ellipse with focus at the origin, focal distances ̺−
and ̺+, and major axis along the x-axis (and “perihelion” on the negative
x-axis).

To compute the period of the motion, it suffices to calculate the integral
of Eq. (4.10.13), elementary after the substitution y = ̺−1. However, this
calculation can be avoided by recalling that the ellipse is run with constant
areal velocity A

2 and, hence, T can be obtained by dividing the area of the

ellipse of Eq. (4.10.16) by A
2 . This area is

π
̺+ + ̺−

2

√
̺+̺− (4.10.17)

because the semi-axes of an ellipse with focal distances ̺+ and ̺− are ̺++̺−
2

and
√
̺+̺−. Hence,

T = π
̺+ + ̺−

2

√
̺+̺−

2

A
=

π√
2g

(̺+ + ̺−)
3
2 (4.10.18)

by Eqs. (4.10.5) and (4.10.6). mbe

4.10.1 Exercises and Problems

Use the tables in Appendix P for the numerical values, when necessary. Prob-
lems 1 through 9 are inspired from [6].

1. Let T ′ be a heavenly body identical to the Earth. Could a satellite T ′′ identical to the
Earth (i.e., a twin) be eternally eclipsed by T ′ while they revolve around the Sun S on a
circular orbit in a one-year period? Compute the T ′T ′′ distance as well as the ST ′ distance,
comparing the percentage difference between ST ′ and the actual average distance between
the Sun and the Earth.

2. Could a point mass M have two homogeneous rigid gravitational satellites with radius
δ
2

and mass µ whose surfaces touch at a point at distance ̺ from M? Find the necessary

relations among ̺, δ, µ,M assuming δ ≪ ̺ and to first order in δ
̺
. Compute the force

τ (“disruptive force”) due to the spheres contact. (Answer: δ < ̺ 3
q

2
3
µ
M

, τ = kµ2

δ2
(1 −

3
2
µ
M

( δ
̺
)3), k being the gravitational constant. Suppose that the force τ cannot be negative,

i.e., that the two bodies can only “push” each other.)

3. Same as Problem 2, but assuming that the body with mass M is a homogeneous sphere
with radius R and that both the planet and the satellites have the same density σ: M =



4.10 Kepler’s Marvelous Laws 303

4π
3
σR3, µ = 4π

3
σ( δ

2
)3. Show that to first order in δ

̺
there is no condition on δ but only a

condition on the ratio between R and ̺. (Answer: τ > 0←→1− 3
2
8 · (R

̺
)3 > 0←→̺ > 2.29R.)

4. Use Problem 3 to show that a heuristic estimate for the minimum distance of a planet
to the Sun center is ∼ 2.29R if R is the Sun radius. Compute ̺ in km and compare it to
the orbital radius of Mercury, schematizing the Sun as a sphere with radius equal to its
optically apparent radius.

5. Same as Problem 4 to estimate at what distance from the Earth can one find the closest
satellite with the same density (∼ 2.29 × 6.3 × 103 km). Why can the artificial satellites
gravitate much closer? (See Exercise 6.)

6. Assume that a satellite to a planet is made of rock with density σ, cohesion force per
unit surface γ, and with diameter δ. Using Problem 3, find a heuristic estimate of how
large must δ be in order that the satellite cannot gravitate at distance ̺ from the planet
(supposed to have the same density) if ̺ is in the forbidden band (̺ < 2.29R). (Hint:

Compute the tidal force τ of Exercise 3 and compare it with the cohesion force π( δ
2
)2γ: if

[k 4π
3

( δ
2
)3]( 3

2
8(R
̺

)3 − 1) > ̺( δ
2
)2γ the tidal force prevails over the cohesion force and the

body breaks up.)

7. Let σ = 5.5 g/cm3, γ = 100 kgw/cm2, k = 6.67 × 10−8 cm3/g · sec3, ̺ = 7.0 × 103 km,
R = 6.33 × 103 km. How big should a rocky satellite be in order to apply the instability
argument of Problem 4? Same for ̺ = 2R. (1 kgw = weight of a mass of 1 kg at the Earth
surface.)

8. At what distance from Saturn can one find its closest satellite? Compare it with the
distance of Mimas.

9. Assuming that Saturn rings consist of rocky satellites with a cohesion modulus γ like
that of Exercise 7 and a density equal to that of Saturn (3.g/cm3), heuristically estimate
how big can the rings stones be as a function of the radius r of the ring. Compare their
maximum diameter with the observed width of the rings (∼ 20 km).

10. Solve explicitly Problems 1, 2, and 4 in §4.9 in the case of Kepler’s problem, explicitly

computing L and ε(L,A). (Answer: ε(L,A) = − k2m3

2(L+mA)2
if V (̺) = − km

̺
.)

11. Given a Kepler motion in R3 with energy E, set a =
̺++̺−

2
, e =

̺+−̺−
̺++̺−

= (eccen-

tricity of the ellipse with focal distances ̺+ and ̺−), and set

L = m
√
k
√
a ≡ m

3
2 k√
−2E

, G = L
p

1− e2 ≡ mA.

Applying Problems 1, 2, and 5 of §4.9, consider the canonical transformation (p̺, pθ, ̺, θ)
←→(L,G, ℓ, g) associated with the generating function

eS(L,G, ̺, θ) = θG+

Z ̺

̺−

q
2m(ε(L) − VG/m(̺)) d̺,

where ε(L) = − k2m3

2L2 = E and ̺+ and ̺− depend on L,G (being equal to ̺+(E,A), and
̺−(E.,A)) i.e., consider the map I generated by

p̺ =
∂eS
∂̺

, ℓ =
∂eS
∂L

, pθ =
∂eS
∂θ
, g =

∂eS
∂G

.

Applying Problems 1, 2, and 5 of §4.9 and Problem 10 above, show that I can be extended

to the entire set of initial data such that G > 0, EG ≡ −m
3k2

2G2 < E < 0 and that the image
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of this set of data via I has the form V × T 2, where V = {(L,G) |G > 0, EG < −m3k2

2G2 <

0} ≡ {(L,G) |G > 0, L > 0}, and check that ℓ, g are “angles”, (ℓ, g) ∈ T 2.

12. Show that the physical interpretation of the angle g canonically conjugated to G in
Problem 11 is that of the longitude of the major semiaxis of the ellipse, while the angle
ℓ conjugated to L, “average anomaly”, is ℓ = 2π

T
t, where t is the time necessary to reach

the initial point of the orbit starting, say, at time zero from the “perihelion”, i.e. from the
extreme point on the major axis closest to the center of force.

13. Consider a point attracted to the origin by a gravitational force. Suppose that its energy
is negative so that it moves on an ellipse and let (L,G, ℓ, g) be its Keplerian coordinates (see
Problems 11 and 12). Let (p̺, pθ, ̺, θ) be the corresponding “natural canonical coordinates”
(see Problem 2, §4.9) and let β be the polar angle formed by the position vector with
the major semiaxis of the ellipse on which the motion develops following the initial data
(p̺, pθ, ̺, θ). Call a, b and e the major semiaxis, the minor semiaxis, and the eccentricity of
the ellipse, respectively, and write its equation as

̺ =
p

1− e cos θ
, p

def
=

b2

a
=

2̺+̺−
̺+ + ̺−

[see Eq. (4.10.16)] and define ξ, the “eccentric anomaly”, as

̺ = a (1 + e cos ξ).

Find relations expressing ̺, θ, β in terms of the Keplerian variables (L,G, ℓ, g). Show that

ℓ =
p

1− e23
Z β

0

dβ′

(1− e cos β′)2
= β + 2e sinβ +

3

4
sin 2β + . . . ,

β =ℓ− 2e sin ℓ+
5

4
e2 sin 2ℓ+ . . . ,

ℓ =ξ + e sin ξ,

ξ =ℓ− e sin ℓ+
e2

2
sin 2ℓ+ . . . ,

θ =g + β,

̺ =p (1 − e cos θ)−1 = a (1 + e cos ξ).

For a more detailed theory of the equation ℓ = ξ + e sin ξ see problem 6, p.486 where the
radius of convergence of the inverse function, the “Laplace limit” is discussed. (Hint: Use

Eq. (4.10.12) and ℓ = 2π
T
t to find that dβ

dℓ
= (1−e cos β)2√

1−e2 3 (noting that β is the analogue

of the angle θ of §4.10) and having used all the relations between ̺+, ̺−, A, T in Eqs.
(4.10.5)-(4.10.7). Use Eq. (4.10.11) to see analogously that

d̺

dℓ
=
a

̺

q
a2e2 − (̺ − a)2.

Then integrate the first equation to express ℓ in terms of β and the second equation to
express ℓ in terms of ξ after changing variables as ̺ = a (1 + e cos ξ).
To prove the expansion for ℓ as an eccentricity series, consider the integral expression of

ℓ in terms of β found above and expand the function

√
1−e23

(1−e cos β′)2
in powers of e before

integrating and, then, integrate term by term.)

14. Using Problem 13, express the Cartesian coordinates of the position in terms of
(L,G, ℓ, g), proving that
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x = a (1 + e cos ξ) cos(g + β), y = a (1 + e cos ξ) sin(g + β),

or
x =

p

1− e cos β
cos(g + β), y =

p

1− e cos β
sin(g + β),

where ξ, β have to be expressed in terms of (L,G, ℓ, g) via the formulae of Problem 13.

15. Using Problems 13 and 14, show that the Cartesian coordinates can be expressed
correctly in terms of (L,G, ℓ, g) up to second order in the eccentricity e as

x =a[cos(g + ℓ) + eAx(g, ℓ) + e2Bx(g, ℓ)] +O(e3),

y =a[sin(g + ℓ) + eAy(g, ℓ) + e2By(g, ℓ)] +O(e3),

where

Ax = cos g + sin ℓ sin(g + ℓ), Ay = sin g − sin ℓ cos(g + ℓ),

Bx = sin g sin ℓ− 3

4
sin(g + ℓ) sin 2ℓ,By = − cos g sin ℓ+

3

4
cos(g + ℓ) sin 2ℓ,

which, calling ε the eccentricity to avoid confusion with e = 2.71 . . ., can also be written in
complex form

x+ iy = a ei(g+ℓ)[1 + (ε(e−iℓ − i sin ℓ) + ε2(−i(sin ℓ)e−iℓ +
3

4
i sin 2ℓ)].

16. Consider the problem analogous to Problems 10 and 11 in the case of the Kepler
motion in R3 and look for a completely canonical transformation between the natural
polar coordinates (p̺, pϕ, pθ, ̺, ϕ, θ) in terms of which the Hamiltonian is

1

2m
(p2̺ +

p2ϕ

(̺ sin θ)2
+
p2θ
̺2

)− km

̺
,

(here ̺ =radial distance, ϕ =longitude and θ =latitude) corresponding to the Lagrangian

m

2
( ˙̺2 + ̺2(sin θ)2ϕ̇2 + ̺2θ̇2) + k

m

̺

and the coordinates (L,G,Θ, ℓ, g, τ), where L,G,Θ are defined in terms of the energy E,
the areal velocity A and of the orbit inclination i with respect to the z-axis by

L
m

3
2 k√
−2E

, G = mA, Θ = G cos i

and ℓ, g, τ are their canonically conjugated variables which will turn out to be ℓ = (average
anomaly in the ellipse plane), g = (longitude of the major semiaxis of the ellipse in its plane
measured, say, from the nodal line, i.e., from the line of intersection of the ellipse plane and
the (i, j)-plane of the inertial reference system (0; i, j,k) to which the motion is referred),
τ = (longitude of the nodal line of the ellipse plane in the plane (i, j) measured, say, from
i, “angle or ascension”).

Show that, if ε(L) = m3k2

−2L2 , the above transformation is completely canonical and is gener-
ated by the solution of the Hamilton-Jacobi equation

1

2m

„
(
∂S

∂̺
)2 +

1

̺2 sin2 θ
(
∂S

∂ϕ
)2 +

1

̺2
(
∂S

∂θ
)2
«
− km

̺
= ε(L),

parameterized by L,G,Θ and having the form (solution with “separation of variables”)
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S(̺, θ, ϕ;L,G,Θ) = −(
π

2
− ϕ)Θ + eσG,Θ(θ) + eσG,L(̺) − π

2
G

with

“dσG,Θ
dθ

”2
=G2 − Θ2

sin2 θ
,

“dσG,Θ
d̺

”2
=2m

“
ε(L)− VG/m(̺)

”
= 2m

“
− m3k2

2L
− G2

2m2̺2
+ k

m

̺

”
.

(Hint: The latitude θ varies between θ− = π
2
− i and θ+ = π

2
+ i, assuming to have chosen

the axis normal to the ellipse plane oriented so that i < π
2
. The ̺ variable varies between

̺− and ̺−. Then θ−, θ+, ̺−, ̺+ can be computed from L,G,Θ. Write

eσG,Θ(θ) =

Z θ

θ−

s

G2 − Θ2

sin2 θ′
dθ′, eσG,L(̺) =

Z ̺

̺−

q
2m(ε(L) − VG/m(̺′))d̺′

and note that the variables τ, g, ℓ are defined by

τ = −π
2

+ ϕ+
∂eσG,Θ
∂Θ

(θ), g =
∂eσG,Θ
∂G

(θ) +
∂eσG,L
∂G

(̺)− π

2
, ℓ =

∂eσG,L
∂L

(̺).

In the new variables, the Hamiltonian becomes ε(L) so that the Keplerian evolution is,
in these variables, τ = constant, g = constant. So we can compute τ and g by choosing
special phase-space points on the orbit. To find the meaning of τ , consider the time when
the point occupies the “highest position”, θ = θ−. Show that ∂eσ

∂Θ
(θ−) = 0, noting that the

argument of the integral for eσG,Θ vanishes for θ = θ±. Hence, τ = −π
2

+ ϕ when θ = θ−.
Geometrically, this means that τ is the angle formed with the x-axis by the line in the xy
plane orthogonal to the projection on the xy plane of the normal to the orbital plane, i.e.,
the nodal line.
Similarly, to find the meaning of g, consider the time when ̺ = ̺− (i.e., the point is at the

perihelion). Now,
∂eσG,L

∂G
(̺−) = 0 and

g =
Θ2

G2

1

sin2 θ
= 1− cos2 i

sin2 θ

where θ0 is the polar angle corresponding to the perihelion position. This relation can be
interpreted as saying that g − π

2
is the time necessary for a point moving according to the

equation

θ̇2 = 1− Θ2

G2

1

sin2 θ

to go from θ− to θ0. On the other hand, it is easy to see that the above equation also
describes the θ variation over time in a circular uniform motion on the unit circle in the
plane of the ellipse (inclined by i) with unit speed. So g − π

2
is the angle between the

major semiaxis of the ellipse and the intersection between the ellipse plane and the plane
containing the normal to the ellipse and the z-axis (“azimuthal plane” of the normal), since
the angle between the latter line and the nodal line is π

2
, it follows that g has the desired

interpretation. The angle ℓ has the same expression found for the planar case (see problem
11). Hence it has the same interpretation of average anomaly).

17. Express the Cartesian coordinates of the position corresponding to (L,G,Θ, ℓ, g, τ) of

Problem 16. (Hint: Use the results of Problem 15 directly.)
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4.11 Integrable Systems. Solid with a Fixed Point

Consider N point masses, with masses m1, . . . ,mN > 0, subject to an ideal
constraint imposing that the system be rigid and have a fixed pointO. Suppose
N ≥ 3 and that the points are not aligned.

We shall describe the motions in a reference frame (O; i, j,k), convention-
ally called “fixed”, and we shall fix a “comoving” frame (O; i1, i2, i3) with axes
suitably chosen.

To determine the position of the body, it will suffice to give the position
of the reference frame (O; i1, i2, i3) since, in this system of coordinates, the
i-th point has constant coordinates by the rigidity constraint. We shall use
the Euler angles (θ, ϕ, ψ) to define (O; i1, i2, i3); they are defined in §3.9, Fig.
3.3 (see Fig. 4.9):

i

ϕ

n

ψ

i1

j

i2θ

i3

k

O

Figure 4.9. Euler angles of “comoving” frame (O; i1, i2, i3) in fixed frame (O; i, j,k).

The kinetic energy can be expressed in terms of the angular velocity ω of
(O; i1, i2, i3) with respect to (O; i, j,k), [see Eqs. (3.9.11) and (3.9.12)]:

ω = θ̇ n + ϕ̇k + ψ̇ i3 (4.11.1)

In fact, the velocity of the i-th point can simply be written as

ẋ(i) = ω ∧ (Pi −O) (4.11.2)

(see footnote 10, p.202, last formula). Therefore

T =
1

2

N∑

i=1

mi(ẋ
(i))2 =

1

2

N∑

i=1

mi(ω ∧ (Pi −O)) · (ω ∧ (Pi −O))

=
1

2
ω ·

N∑

i=1

(Pi −O) ∧ (ω ∧ (Pi −O)) =
1

2
ω · Iω,

(4.11.3)
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by vector calculus, see Eq. (3.9.15), where

Iω =

N∑

i=1

(Pi −O) ∧ (ω ∧ (Pi −O)) = KO. (4.11.4)

The components of Iω in the co-moving frame (O; i1, i2, i3) have, by Eq.
(4.11.4), the form

(Iω)α =

3∑

β=1

Iαβωβ, α = 1, 2, 3 (4.11.5)

and from Eq. (4.11.4) it is easy to check that

Iαβ =
N∑

i=1

mi [(Pi −O)2δαβ − (Pi −O)α(Pi −O)β ], (4.11.6)

for instance by using the identity a ∧ (b ∧ c) = (a · c)b − (a · b) c. Since
the components of (Pi − O) in (O; i1, i2, i3) are constants, by the rigidity
constraint, the nine numbers of Eq. (4.11.5), actually six since Iαβ ≡ Iβα are
characteristic constants of the body associated with the frame (O; i1, i2, i3).

At this point, it is convenient to choose the co-moving frame so that the
matrix I (“inertia matrix”) is as simple as possible.

Note that by rotating the i1, i2, i3 axes to i′1, i
′
2, i
′
3 the coordinates of the

vectors (Pi − 0) become (Pi − O)′α, α = 1, 2, 3, in the new frame, related to
the old coordinates by

(Pi −O)α =
3∑

β=1

Rαβ(Pi −O)′β (4.11.7)

and R is an orthogonal matrix RRT = RTR = 1 (Rαβ = iα · i′β). And, vice
versa, any orthogonal matrix corresponds to some frame (O; i′1, i

′
2, i
′
3) so that

Eq. (4.11.7) gives expresses the change of coordinates.
Therefore, the inertia matrix depends on the co-moving frame and in

(O; i′1, i
′
2, i
′
3) it becomes I ′ related to I by

I = RI ′RT (4.11.8)

by Eqs. (4.11.7) and (4.11.6), in matrix notations. Then we can choose R so
that I ′ becomes

I ′ =



I1 0 0
0 I2 0
0 0 I3


 (4.11.9)
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where 0 < I1 ≤ I2 ≤ I3. Such an R exists because I is a symmetric positive
definite matrix9 and every such matrix can be “diagonalized” by an orthogonal
transformation (see Appendix F).

Hence it is not restrictive to suppose, since the beginning, that the choice of
the comoving frame (O; i1, i2, i3) is such that I takes the form of Eq. (4.11.9).

With this choice of the co-moving axes, the kinetic energy and the angular
momentum become [see Eqs. (4.11.3), (4.11.4), and (4.11.5)]

T =
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3), (4.11.10)

KO = I1 ω1 i1 + I2 ω2 i2 + I3 ω3 i3. (4.11.11)

To write the Lagrangian function describing the motion of the body, with
O fixed and subject to no force other than that of the ideal constraints of fixed
O and of rigidity, it will be enough to express the kinetic energy in terms of
the Euler angles (Fig. 4.9) and of their time derivatives, through Eqs. (4.11.1)
and (4.11.10). The components of ω become explicitly

ω1 = θ̇ cosψ + ϕ̇ sin θ sinψ (4.11.12)

ω2 = θ̇ sinψ + ϕ̇ sin θ cosψ (4.11.13)

ω3 = ϕ̇ cos θ + ψ̇ (4.11.14)

by Eqs. (3.9.3) and (4.11.1). The result is not particularly illuminating in
the general case and we write it only in the “gyroscope case” when, say,

I1 = I2
def
= I. One finds

L =
1

2
I (θ̇

2

+ sin2 θ ϕ̇
2
) +

1

2
I3 (ϕ̇ cos θ + ψ̇)2 (4.11.15)

Before treating the general case, let us study the system described by Eq.
(4.11.15), i.e., the gyroscope. In this case, the results are easier and particu-
larly suggestive.

As is often the case, it is not convenient to write down only the Lagrange
equations for Eq. (4.11.15) and discuss them. It is better to combine them with
other information which can be obtained by general conservation principles
(of energy and angular momentum, in the present case). Such information,
although implicitly present in the Lagrange equations, is not very obvious
there.

Since KO is a constant of the motion, given a motion t→ (θ(t), ϕ(t), ψ(t))

with initial datum (θ̇0, ϕ̇0, ψ̇0, θ0, ϕ0, ψ0), we can suppose without affecting
generality that KO is parallel to some fixed axis k:

KO = Ak, A > 0. (4.11.16)

9 Since 1
2
ω · Iω = (kinetic energy of the body) ≥ 0, ∀ω ∈ R3, and it can vanish only if

ω = 0 because the points are assumed to be not aligned, see Eq. (4.11.2).
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(the A = 0 case corresponds to a motionless solid which remains such forever,
of course.)

Let (O; i, j,k) be a reference frame with z-axis oriented as k and choose
i on the intersection between the (i, j) plane and the (i, j). We suppose that
such planes do not coincide (otherwise, we change (i, j)).

The motion in this new fixed frame (O; i, j,k), whose definition however
depends on the initial data, will be discussed calling (θ, ϕ, ψ) the Euler angles
of (O; i1, i2, i3) with respect to the frame (O; i, j,k).

The components of KO = Ak in the co-moving frame are expressed. see
Eq. (3.9.3), in terms of the new Euler angles as

(KO)3 = A cos θ, (KO)2 = A sin θ sinψ, (KO)3 = A sin θ cosψ.
(4.11.17)

By relations like Eqs. (4.11.12)-(4.11.14), written with the new angles, the
angular momentum conservation gives the following relations:

A cos θ = I3ω3 = I3(ϕ̇ cos θ + ψ̇), ) (4.11.18)

A sin θ cosψ = Iω2, (4.11.19)

A sin θ sinψ = Iω1, (4.11.20)

which are three differential equations for the three unknowns θ, ϕ, ψ and A is
a constant [ω1, ω2 are also expressed in terms of the angles θ, ϕ, ψ and of their
derivatives by relations like Eqs. (4.11.12) and (4.11.13)].

Instead of discussing the above equations, which, in principle, should be
sufficient to determine the motion, we shall combine them with some of the
Lagrangian equations associated with Eq. (4.11.15), written in the new θ, ϕ, ψ
variables (i.e., without the overbars). The analysis is based on [28].

Since Eq. (4.11.15) does not explicitly depend upon ϕ, ψ, one deduces
two conservation laws from Eq. (4.11.15) by writing the Lagrange equations
corresponding to the variables ϕ, ψ:

d

dt
I3(ϕ̇ cos θ + ψ̇) = 0, (4.11.21)

corresponding to ψ and

d

dt

(
I sin2 θ ϕ̇+ I3(ϕ̇ cos θ + ψ̇) cos θ = 0 (4.11.22)

corresponding to ϕ.
Equations (4.11.18)-(4.11.22) form a redundant system: but they easily

determine the functions (θ(t), ϕ(t), ψ(t)) in terms of the initial data.
In fact, Eq. (4.11.21) implies that ϕ̇ cos θ+ ψ̇ is constant as t varies; hence,

Eq. (4.11.18) implies that cos θ is constant, i.e.,

θ(t) = θ0 (4.11.23)
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(remark that this holds only in the reference frame (O; i, j,k) chosen after the
particular motion had been selected, which is very special, for instance θ̇ = 0
and thus θ̇0 = 0.)

Using Eqs. (4.11.23) and (4.11.21) in Eq. (4.11.22), we see that ϕ̈ = 0, i.e.,

ϕ(t) = ϕ0 + ϕ̇0t (4.11.24)

Then the constancy of ϕ̇ and of θ and Eq. (4.11.21) imply that ψ̇ is also a
constant:

ψ(t) = ψ0 + ψ̇0t (4.11.25)

Hence, Eqs. (4.11.23)-(4.11.25) provide a full description of the motion in the
chosen coordinates (which, we stress once more, is a reference frame depending
on the motion itself, having z axis parallel to the constant angular momen-
tum). It appears that the motion expressed in the Cartesian coordinates is
quasi-periodic with periods

T1 =
2π

ϕ̇0
, T2 =

2π

ψ̇0

. (4.11.26)

It follows that the motion is quasi-periodic but generally not periodic, al-
though the set of the initial data for which ϕ̇0

ψ̇0
is rational is a dense set of data

lying on periodic orbits.
By Observation (5) to Definition 10, p.288, the above system should be

integrable in the sense of Definition 10, p.287, on vast regions of the data
space.

Let us study the general case, assuming 0 < I1 < I2 < I3 and using a
method, inspired from [28], quite different from the preceding one.

As before, given a motion, the angular momentum is a constant together
with the kinetic energy. This implies

I1ω
2
1 + I2ω

2
2 + I3ω

3
3 = 2E = const, (4.11.27)

I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
3
3 = A2 = const, (4.11.28)

giving two of the three component of ω in terms of the third:

ω1 = ±
√

(2EI3 −A2)− (I3 − I2)I2ω2
2

I1(I3 − I1)
, (4.11.29)

ω3 = ±
√

(A2 − 2EI1)− (I2 − I1)I2ω2
2

I3(I3 − I1)
, (4.11.30)

To find an equation allowing the determination of ω2 one can remark that
Eq. (4.11.28) contains less information than the constancy of the angular
momentum as a vector.

In fact, the angular momentum conservation means [recalling Eq. (3.9.12)]
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0 =
dKO

dt
=

d

dt
(I1 ω1 i1 + I2 ω2 i2 + I3 ω3 i3) (4.11.31)

=I1 ω̇1 i1 + I2 ω̇2 i2 + I3 ω̇3 i3 + I1 ω1
di1
dt

+ I2 ω2
di2
dt

+ I3 ω3
di3
dt

=I1 ω̇1 i1 + I2 ω̇2 i2 + I3 ω̇3 i3 + I1 ω1 ω ∧ i1 + I2 ω2ω ∧ i2 + I3 ω3 ω ∧ i3

which, written in components on (O; i1, i2, i3), is

I1ω̇1 = (I2 − I3)ω2ω3, (4.11.32)

I2ω̇2 = (I3 − I1)ω3ω1, (4.11.33)

I3ω̇3 = (I1 − I2)ω1ω2. (4.11.34)

These very beautiful equations are the “Euler equations” for the motion of
the solid. Equation (4.11.33) together with Eqs. (4.11.29) and (4.11.30) give
the equation for ω2:

ω̇2 = ±
√
{(2EI3−A2)−(I3−I2)I2ω2

2}{(A2−2EI1)−(I2−I1)I2ω2
2}

I1I22I3
(4.11.35)

and the discussion of the choice of sign in Eq. (4.11.35) leads to the usual
result: initially, ω̇2 has some sign which is kept until it vanishes, then the sign
changes until the next time ω̇2 vanishes, etc., alternating10 (see §2.7).

Hence, recalling §2.7, Eq. (4.11.35) tells us that ω2 varies over time as the
abscissa of a point mass with mass 2, total energy 0, moving under the action
of a conservative force with potential energy:

VE,A(x) = {(2EI3−A2)−(I3−I2)I2x2}{(A2−2EI1)−(I2−I1)I2x2}
I1I22I3

(4.11.36)

Therefore, t → ω2(t) is a C∞-periodic function of t oscillating between two
extreme values α+(E,A), α−(E,A) which are the extremes of the smaller
of the two intervals (−a1, a1), (−a3, a3) with aj = roots of VE,A(x) = 0,
aj > 0, j = 1, 3:

a1(E,A) =

√
2EI3 −A2

I2(I3 − I2)
, a3(E,A) =

√
A2 − 2EI1
I2(I2 − I1)

, (4.11.37)

provided

10 As in the one-dimensional conservative problems, if ω̇2 vanishes initially the choice of
sign for t > 0 and small can be inferred from the initial value of ω2, (see §2.7).
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a1(E,A) 6= a3(E,A); (4.11.38)

otherwise, the equationVE,A = 0 has only two solutions, ±a and V ′E,A vanishes
there so that the motion, by the analysis of §2.7, will be aperiodic.

The period of t→ ω2(t) is

T1(E,A) = 2

∫ α+(E,A)

α−(E,A)

dx√
−VE,A(x)

, (4.11.39)

and a better expression for ω2(t) can be obtained by defining

t→ Ωt(t, E,A), t ∈ R, (4.11.40)

to be the solution of 2Ω̈ = −∂VE,A

∂ω2
(Ω), hence, of Eq. (4.11.35), with initial

datum

Ω(0, E,A) = α−(E,A), Ω̇(0, E,A) = 0. (4.11.41)

Then

ω2(t) = Ω(t+ t0(ω2(0), ω̇2(0)), E,A), (4.11.42)

where t0(ω2(0), ω̇2(0)) is the minimum time necessary in order that the so-
lution (4.11.40) “reaches” the datum ω̇2(0), ω2(0). Furthermore, for 0 ≤ t ≤
1
2T1(E,A), it is

t =

∫ Ω(t,E,A)

α−(E,A)

dx√
−VE,A(x)

, (4.11.43)

To find the motion t → (θ(t), ϕ(t), ψ(t)), we have to go back to the equa-
tions expressing the conservation of angular momentum and its identity with
Ak, assuming, again, to have chosen a reference frame (O; i, j,k) with k and
KO, parallel and i along the node line of the planes (i, j) and (i, j), see Eqs.
(4.11.18)-(4.11.20). Now

I3ω3 = A cos θ, I2ω2 = A sin θ sinψ, I1ω1 = A sin θ cosψ (4.11.44)

tell us that

θ(t) = arccos
Iω3(t)

A
, (4.11.45)

ψ(t) = arctg
I2ω2(t)

I3ω3(t)
(4.11.46)

where the determination of the arc-tangent has to be chosen so that t→ ψ(t)
is continuous.

From Eqs. (4.11.12) and (4.11.13) written without overbars (i.e., for the
Euler angles of (O; i1, i2, i3) with respect to (O; i, j,k), we deduce ϕ̇:
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ϕ̇ =
ω1 sinψ + ω2 cosψ

sin θ
=

I1ω
2
1 + I2ω

2
2

I2
1ω

2
1 + I2

2ω
2
2

(4.11.47)

where the second equality follows from Eqs. (4.11.19), (4.11.20), and (4.11.18)
(recalling that we are supposing KO parallel to k). Let

Φ(t, E,A) = A
I1Ω1(t, E,A)2 + I2Ω2(t, E,A)2

I2
1Ω1(t, E,A)2 + I2

2Ω2(t, E,A)2
, (4.11.48)

where Ω1, is connected with Ω as ω1 with ω2 in Eq. (4.11.29) (note that the
sign ambiguity has no relevance here). Then Eq. (4.11.47) becomes

ϕ̇ = Φ(t+ t0(ω2(0), ω̇2(0)), E,A). (4.11.49)

Using the periodicity with period Eq. (4.11.39) of t → Φ(t, E,A) and calling
(χn(E,A))n∈Z the Fourier coefficients of this function, it is

Φ(t, E,A) =
+∞∑

n=−∞
χn(E,A)e

2π i
T1(E,A)

t
, (4.11.50)

and, by integrating Eq. (4.11.49),

ϕ(t) =ϕ0 + χ0(E,A)t

+ S(t+ t0(ω2(0), ω̇2(0)), E,A) − S(t0(ω2(0), ω̇2(0)), E,A),
(4.11.51)

where

S(t, E,A) =

+∞∑

n=−∞
n 6=0

χn(E,A)
e

2π i
T1(E,A)

nt

2πin
T1(E,A)

(4.11.52)

which is a C∞-function periodic in t with period T1(E,A).
Equations (4.11.45), (4.11.40), (4.11.42), (4.11.51), (4.11.46), (4.11.29),

and (4.11.30) give a complete description of the motion under investigation.
The analogy of the above results with those of the two-body problem lead

to the formulation of the following proposition.

24 Proposition. The motion of a solid with a fixed point and inertia moments
0 < I1 < I2 < I3 is integrable in the sense of Definition 10, §4.8, p.287, in
a family of regions covering the region W of the data space where A 6= 0,
a3(E,A) 6= a1(E,A) [see Eq. (4.11.38)], and in such cases the motion is
quasi-periodic with two periods:

T1(E,A) = 2

∫ α+(E,A)

α−(E,A)

dx√
−VE,A(x)

, (4.11.53)
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T2(E,A) =
2π

χ0(E,A)
=
π

A

T1(E,A)
∫ α+(E,A)

α−(E,A)
dx√

−VE,A(x)

[ (2E−A2)−(I2−I1)I2x2

I1(2E−A2)−I2I3(I2−I1)x2

]

(4.11.54)
and α±(E,A) are the two positive roots of the smallest modulus of VE,A(x) =
0, with VE,A being defined in Eq. (4.11.36).
Similar (and simpler) results hold if I1 = I2 6= I3, I1 6= I2 = I3, I1 = I2 = I3.

Observations.
(1) The proof of Proposition 24 is essentially a different way of stating what
has already been discussed above. The analysis of this section (as well as that
on the central forces) is a classical proof. Somehow, it seems unsatisfactory
because it looks like “magic”, with its use of redundant equations chosen,
without apparent a priori logic, to reach the goal of finding explicit expres-
sions for the motions. However, with further thought, it appears quite simple
and, in particular, no need of the theory of elliptic functions emerges (a claim
referring to deeper analysis of the properties of the quadratures discussed
above).
(2) However, there is a deeper critique of the above deductions. It is not at
all clear that the systems are canonically integrable in the sense of Defini-
tion 11, §4.8, p.289. This becomes very serious when one tries to study by
the Hamilton-Jacobi theory the perturbations provoked by small conserva-
tive forces on the above simple motions. The reader will realize this problem
more clearly in §5.10-§5.12, where the theory of the Hamiltonian perturba-
tions based on the Hamilton-Jacobi equations is developed.
In the problems to §4.9 and §4.10 we have shown, however, how to deduce
for the central motions complete canonical integrability from the integrabil-
ity proof. Likewise, in the problems of this section, we show how to deduce
canonical integrability of the solid motion from parts of the proof of the above
proposition. The derivation is simple and nice, not so much because it leads
very quickly to the quadrature formulae (4.11.42), (4.11.47), (4.11.46), and
(4.11.52), but mainly because it achieves the proof of canonical integrability
at the same time. This integrability property had always been discussed ei-
ther abstractly or quite obscurely until recently when the “Deprit canonical
transformation” was introduced.

Proof. We discuss the proof in some further details because it is useful to
illustrate Observation (5) to Definition 10, p.288.

Let (O; i, j,k) be the fixed frame and let (O; i, j,k) be the “adapted” fixed
frame chosen, once a particular motion is given, with the k axis parallel to
the angular momentum. Suppose that i is parallel to the node of the planes
(i, j) and (i, j) (i.e., to their intersection).

To determine the initial datum in the I1 = I2 case, we use the following
coordinates:

(1) the angle γ between i and i;
(2) the angle δ between KO and k;
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(3) the Euler angles ϕ, ψ of (O; i1, i2, i3) in (O; i, j,k);
(4) the angular velocity variables ϕ̇ and ψ̇.

From the preceding analysis, it follows that the motion of the system has
three prime integrals (δ, ϕ̇, ψ̇) and, given them, it is described by the points
(γ.ϕ, ψ) ∈ T 3, and the time evolution on T 3 is described by quasi-periodic
flow with pulsations

σ1(δ, ϕ̇, ψ̇) = 0, σ2(δ, ϕ̇, ψ̇) = ϕ̇, σ3(δ, ϕ̇, ψ̇) = ψ̇, (4.11.55)

having denoted them with σ instead of ω to avoid confusion with the above
angular velocity components.

The integrating map is thus I(θ̇, ϕ̇, ψ̇, θ, ϕ, π)←→(δ, ϕ̇, ψ̇, γ, ϕ, ψ). It should
still be checked that this map is C∞ nonsingular and invertible on a suitable
family of neighborhoods W ′ which, as one uses the arbitrariness of the choice
of (O; i, j,k), cover W . We do not enter into this analysis.

In the general case (I1 < I2 < I3), we replace the variables (δ, ϕ̇, ψ̇) which,
with the exception of δ, are no longer conserved with the variables (δ, E,A),
and we also replace the angles which no longer rotate uniformly with the
exception of γ which is constant, with where (γ, ϕ̃, ψ̃) where

ψ̃ =
2π

T1(E,A)
t0(ω2(0), ω̇2(0)), ϕ̃ = ϕ− S(t0(ω2(0), ω̇2(0)), E,A)

(4.11.56)
[see Eqs. (4.11.51), (4.11.52), and (4.11.42)].

By the discussion preceding Proposition 24, it appears that γ, ϕ̃, ψ̃ are
angles rotating with pulsations

σ1(A,E, δ) = 0, σ2(A,E, δ) = 2π
T1(E,A) , σ3(A,E, δ) = 2π

T2(E,A) . (4.11.57)

This follows after some contemplation of Eqs. (4.11.42) and (4.11.51).
Again we do not enter into the analysis of the regularity and invertibility

of the integration map I(θ̇, ϕ̇ψ̇, θ, ϕ, π)←→(δ, E,A, γ, ϕ̃, ψ̃).
Note that the coordinates chosen in the general case do not reduce to those

of the symmetric case (I1 = I2) when I2 → I1.
However, there is great arbitrariness in defining the prime integrals because

any function of δ, E,A is still a prime integral, and it is possible to find two
other prime integrals Φ, Ψ becoming ϕ̇ and ψ̇ in the I1 = I2 case. In fact, let

Φ =
1

T1(E,A)

∫ T1(E,A)

0

A
I1Ω1(t)

2 + I2Ω(t)2

I2
1Ω1(t)2 + I2

2Ω(t)2
dt, (4.11.58)

where Ω(t) is defined in Eq. (4.11.30) and Ω1(t) is related to Ω by Eq.
(4.11.29) with Ω(t) replacing Ω3(t) [and, likewise, we could define Ω3(t) by
Eq. (4.11.30)].
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Note that Φ is the average value of ϕ̇ along a period [since ϕ̇ is periodic
with period T1(E,A), see Eq. (4.11.47)].

Analogously, from Eq. (4.11.12), (4.11.13) written without overbars, one
can find an expression of ψ̇ in terms of ω1, ω2, ω3:

ψ̇ =
(A2 − 2EI3)ω3

I2
1ω

2
1 + I2ω2

2

(4.11.59)

So ψ̇ is a periodic function with period T1(E,A) and we can define the prime
integral

Ψ =
1

T1(E,A)

∫ T1(E,A)

0

(A2 − 2EI3)Ω3(t)

I2
1Ω1(t)2 + I2Ω(t)2

(4.11.60)

where the ambiguity of the sign in the definition of Ω3 has, now, to be resolved
by remarking that ω3 from Eq. (4.11.30) never vanishes ifA 6= 0 and, therefore,
it has a constant sign which we attribute also to Ω3.

It could also be possible to change ψ̃ to a variable reducing to ψ, when
I2 → I1. However, we shall not do this.

It remains to check Eq. (4.11.54); T2 = 2π
χ0

:

χ0(E,A) =
2

T1(E,A)

∫ 1
2T1(E,A)

0

Φ(t, E,A)dt (4.11.61)

and changing variable t→ Ω(t, E,A), one has [see Eq. (4.11.43)]

dt =
dΩ√

−VE,A(Ω)
(4.11.62)

Hence, recalling that Ω1, can be expressed in terms of Ω, we can express the
integral on the right-hand side of Eq. (4.11.61) as an integral over the variable
Ω, via Eqs. (4.11.48) and (4.11.29) and, after some algebra, Eq. (4.11.54)
follows. mbe

4.11.1 Problems and Complements

1. Let eL be the Lagrangian function describing the motion of a rigid body in a fixed frame
(O; i, j,k) in Euler angle coordinates

eL =
1

2
I1(θ̇ cosψ + ϕ̇ sin θ sinψ)2 +

1

2
I2(−θ̇ sinψ + ϕ̇ sin θ cosψ)2 +

1

2
I3(ϕ̇ cos θ + ψ̇)2

Compute the canonical variables pθ, pϕ, pψ associated with θ, ϕ, ψ via eL. Show that if KO

is the angular momentum of the solid with respect to the fixed point O, and if n is the node
line unit vector, then

pθ = KO · n, pϕ = KO · k, pψ = KO · i3.

(Hint: Just apply the definition of p [Eq. (3.11.1)] and use Eqs. (4.11.11) and (3.9.3).)
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2. Call A = |KO|, Kz = pϕ, L = KO · i3 = p
ψ

and let (γ, ϕ, π) be the angles considered on

p.318 (see Fig. 4.10). (Kz , A, L, γ, ϕ, ψ) are the “Deprit variables” ([13]).

n
def
= (i, j) ∩ (i1, i2), n

def
= (i1, i2) ∩ (i, j), m

def
= (i, j) ∩ (i, j) ≡ i

i

ϕ

γ

i ≡m
n

ϕ

ψ

n

i1
ψ

i2

k
KO

i3

δ

θ
θ

O

j

Figure 4.10: The Deprit angles. Here n is the node line (i, j) ∩ (i1, i2), n is the node line
(i1, i2) ∩ (i, j) and m ≡ i is the node (i, j) ∩ (i, j). The j axis is not drawn.

Show that given (p
θ
, pϕ, pψ, θ, ϕ, ψ), the Deprit variables are determined and vice versa.

(Hint: Note that pϕ = A cos δ = Kz , pψ = A cos θ = L, pθ = −A sin θ sin(ψ−ψ), and note

that the angles ϕ, θ, ψ − ψ, ϕ− γ, δ, θ can be arranged in a spherical triangle (Fig. 4.11).

δ

ϕ− γ

θ

ψ − ψ

θ

ϕ

Figure 4.11.The spherical triangle associated with the Deprit’s angles.

Therefore, given the Deprit variables, one computes pϕ = Kz, then cos δ = Kz
A

, then

p
ψ

= L, then cos θ = L
A

. Hence, at this point, one knows the elements ϕ, θ, δ of the spherical
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triangle in Fig. 4.11 and by solving it one computes, by spherical trigonometry, the three
other elements, i.e., ψ − ψ,ϕ − γ, θ, and since γ, ψ are known, one gets ψ. Consider the
spherical triangle of Fig. 4.12.

3. Consider the spherical triangle of Fig. 4.12. Check the basic spherical trigonometry
relations:

(1) cosC = cosA cosB + sinA sinB cos γ

(2) cos γ = − cosα cos β + sinα sinβ cosC

(3)
sinα

sinA
=

sinβ

sinB
=

sin γ

sinC
(4) sinC cos β = cosB sinA− sinB cosA cos γ

(5) cosA cos γ = sinA cotB − sinγ cot β

(6) dA = cos βdC + cos γdB + sinB sin γdα

(Hint: Draw the spherical triangle in Fig. 4-12 by locating the vertex 2 with the angle γ
on the z axis, the vertex 1 with the β angle on the xz plane: so that the three vertices

are expressed in Cartesian coordinates as r1 = (sinA, 0, cosA), r2 = (0, 0, 1) and r3 =
(sinB cos γ, sinB sinγ, cosB). Then
to check (1) note that r1 · r3 = cosC;
to check (2) apply (1) to the spherical triangle formed on the sphere by the perpendicular
to the planes containing the arcs A,B, C;
to check (3) note that r1 · r2 ∧ r3 = sinA sinB sinγ has to be symmetric in the interchange
of the role of (A,α), (B, β), (C, γ);
to check (4) remark that r1 ∧ r3 · j = − sinC cos β;
the identity (5) is a consequence of (1) and (4);)

αγ

β

A

B

C

Figure 4-12: Spherical triangle with the sides formed by the arcs A,B, C opposite to the
angles α, β, γ.

4. Show that the map (p
θ
, pϕ, pψ, θ, ϕ, ψ)←→(Kz , A, L, γ, ϕ, ψ) has the property (“Deprit’s

theorem”):

Kzdγ +Adϕ+ Ldψ = pθdθ + pϕdϕ+ pπdψ.

(Hint: Using Problems 2 and 3, show that dϕ = cos θd(ψ−ψ)+cos δd(ϕ−γ)− sin θ sin(ψ−
ψ)dθ; then substitute into the left-hand side using Kz = pϕ, L = p

ψ
and −A sin θ sin(ψ −

ψ) = pθ.)

5. The map (p
θ
, pϕ, pψ, θ, ϕ, ψ)←→(Kz , A, L, γ, ϕ, ψ), defined in Problems 2 and 4 maps six

variables into six others without any reference to a rigid body. Interpret Problem 4 as saying
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that this map is a completely canonical map homogeneous in the variables in the sense of
Proposition 22, §3.11, p.224. (Hint: Apply Proposition 22, §3.11.)
6. Compute the rigid body’s Hamiltonian eH in Deprit variables, remarking that, by Prob-
lem 5, it must simply be the kinetic energy expressed in these variables (see the general
properties of the completely canonical transformations, §3.12), and show that

eH(Kz, A, L, γ, ϕ, ψ) =
1

2

L2

I3
+

1

2

“ sin2 ψ

I1
+

cos2 ψ

I2

”
(A2 − L2).

Deduce the Hamilton equations of the motion and check that they are identical to Eqs.
(4.11.47) and (4.11.59). Use this Hamiltonian formulation to rederive directly the integra-
bility of the motions of a solid with a fixed point. (Hint: Note that the kinetic energy can
be derived from KO = (

√
A2 − L2 sinψ,

√
A2 − L2 cosψ, L). Write the equations of motion

and integrate by quadratures.)

7. Using the Hamiltonian in Problem 6, show that the solid with a fixed point gives rise
to canonically integrable motions (see Definition 11, §4.8, p.289). (Hint: Since the map
(pθ, pϕ, pψ, θ, ϕ, ψ)←→(Kz , A, L, γ, ϕ, ψ) is completely canonical, it is enough to show that
the Hamiltonian motions generated by the Hamiltonian in Problem 6 are canonically inte-
grable. The eH has a ψ dependence and, at the same time, it also involves A: but one just
finds the canonical transformation (L,ψ)←→(M,µ) that integrates the 1-degree of freedom
system in which A′ is considered a parameter and keeps track of the obvious implications
on the other variables. The procedure is standard and it is discussed as an example. Define
the canonical transformation with generating function

Φ(K ′
z , A

′,M, γ, ϕ, ψ) = K ′
zγ +A′ϕ+ S(A′,M, ψ)

with S chosen so that Φ solves the Hamilton-Jacobi equation for eH:

1

2

“ 1

I3
− cos2 ψ

I2

sin2 ψ

I1

”“∂S
∂ψ

”2
+
A′2

2

“ sin2 ψ

I1
+

cos2 ψ

I2

”
= e(A′,M)

where the function e(A′,M) is naturally chosen so that the function S does generate a
canonical transformation on the Hamiltonian eH , regarded as a function of L, ψ only (pa-
rameterized by A′ ≡ A), bringing it to action angle variables (M,µ). By Problem 5, §3.11,
this means that the function e(A′,M) has to be chosen so that

∂e(A′,M)

∂M
= ω(A′, E)

where ω(A′, E) is the pulsation of the motion (of this one-dimensional system parameterized
by A′) with energy E = e(A′,M). Since the equation of motion for ψ in this auxiliary one-
dimensional system is

ψ̇ = −∂
eH
∂L

(A′, L, ψ),

the pulsation will be such that

2π

ω(A′, E)
=

Z 2π

0

dψ

ψ̇(t)
=

Z 2π

0

dψ

− ∂ eH
∂L

(A′, L)
,

where L has to be fixed so that eH(A′, L, ψ) = E; i.e., L has to be taken as a function
L(E,A′, ψ):
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L = L(E,A′, ψ) =

vuuut2
E −A′2

h
cos2 ψ
I2

+ sin2 ψ
I3

i

1
I3
− cos2 ψ

I2
− sin2 ψ

I3

which permits us to compute ω(A′, E).
The function e(A′,M) can be computed in terms of its inverse m(A′, E) (such that

m(A′, e(A′,M)) ≡M), since ∂m
∂E

)(A′, E) must be

“ ∂e

∂M
(A′,M)

”−1
=

1

ω(A′, E)
.

So, for instance, e can be defined by inverting the relation:

m(A′, E) =

Z E

E0(A′)

dE′

ω(A′, E)
,

where E0(A′) = minL,ψ eH(A′, L, ψ).
Coming back to S, we see that

S(A′,M,ψ) =

Z ψ

0
L(e(A′,M), A′, ψ′) dψ′

is the explicit solution of the Hamilton-Jacobi equation (recall the expression of L).
The above Φ-generated canonical transformation leaves A,Kz, γ unchanged and changes

L to M , ϕ to some new ϕ′ and ψ to some new µ with

ϕ′ = ϕ+
∂S

∂A
(A,M, ψ), µ =

∂S

∂M
(A,M, ψ)

and transforms the eH into e(A,M).
The above transformation is “globally” defined because one can show that

S(A′,M, 2π) ≡ 2M.

In fact, ∂S
∂M

(A,M, 2π) ≡ 2π (since this can be checked directly by differentiating the integral

giving S and by comparing it to the integral for computing ω(A,E) explicitly and then using
∂e
∂M

= 1
ω(A,E)

; ; so S(A′,M, 2π) = 2πM+g(A′) for some function g(A′). But M = 0 means

E = E0(A′); hence, L = 0; hence, S ≡ 0; hence, g(A′) ≡ 0. This means that when (th, ϕ)

vary on T 2, ϕ′, µ) also vary on T 2.)

The following problems provide a simple example of how to use the canon-
ical formalism for a concrete application. A more complete treatment of the
problem will be presented in Ch. 5, as an application of perturbation theory.

8. (Solar precession Hamiltonian) Imagine that the Earth E is an ideally rigid homogeneous
solid of rotation with equatorial radius R. Assume that the center T revolves on a purely
Keplerian orbit t→ rT (t) and, see Fig.4.10, fix the frame i, j,k to be with center T and with
k axis orthogonal to the plane of the Earth orbit, while the i axis is at the equinox line at
a prefixed time (epoch). Show that the motion of the Earth is described in the coordinates
(θ, ϕ, ψ) of problem (1) above, by the Lagrangian:

L =
1

2
J(ϕ̇ cos θ + ψ̇)2 +

1

2
I(θ̇

2
+ ϕ̇

2
sin2 θ) +

Z

E

kMS

|rT + x|
dx

|E|

with J = I3, I = I1 = I2 being the Earth inertia moments, MT ,MS being the masses of the
Earth and of the Sun, k being the gravitational constant and |E| being the Earth volume: in
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the case of an ellipsoid with polar radius (1−η)R it is J = (2/5)R2MT , I = J(1−η+η2/2).
(Hint: show that I, I3 are the appropriate inertia moments and remark that in the given
geocentric frame of reference the axes have a fixed orientation; hence the inertia forces
(constant per unit mass and due only to the drag, as the Coriolis force vanishes) have
vanishing moment with respect to T , by symmetry. Hence in the chosen comoving frame
we have an ideal solid body subject to the gravitational attraction whose potential, in a
configuration respecting the constraint of rigidity, is precisely the above integral).

9. Show that the integral in the Lagrangian of problem (8) can be written:

−V = C1(t) +
3kMSMT

2

Z

E

(rT · x)2

|rT |2
1

|rT |3
dx

|E| +O((
R

|rT |
)4)

where C1(t) is a suitable function of t. (Hint: By Taylor expansion: |rT + x|−1 = |rT |−1 −
|rT |−2(rT · x)/|rT | + (3(rT · x)2/|rT |2 − x2)/2|rT |3 + O((R/|rT )3); developing to fourth
order one sees that the third order also vanishes.)

10. Show that V in problem (9) can be written:

−V = C2(t) +
3kMS

2|rT |3
I − J
J

J cos2 α = C2(t) − 3

2

kMS

|rT |3
η1J cos2 α

where C2(t) is a suitable function, αS= angle between the symmetry axis i3 and the vector
rT , and η1 ≡ (J − I)/I. (Hint: just compute explicitly the integrals over x in problem (9).)

11. Let i be as in proble (8). Then the angle ϕ is called the precession angle since the
equinox fixing epoch. If the Earth longitude (i.e. the angle between the position rT and i)
is λT , then the apparent longitude is λT − ϕ. Show that:

cosα = − sin θ sin(λT − ϕ)

(Hint: write i3 = (sin θ sinϕ,− sin θ cosϕ, cos θ) and rT /|rT | = (cosλT , sinλT , 0), in the
geocentric frame, and compute the scalar product). (Hint: Compute explicitly the integrals
over x in (9).)

12. Using fig.4.11, 4.12, 4.10 and the trigonometric relations for general spherical triangles
in problem (3), plus the second of the following other identities of spherical trigonometry:

sinC cos β = cosB sinA− sinB cosA cos γ

cosA cos γ = sinA cotB − sin γ cot β

show that the inversion in (2) can be actually performed via the relations:

cos δ =
Kz

A
, cos θ =

L

A

cot(ϕ− γ) =(cosϕ cos δ + sin δ cot θ)/ sinϕ

cot(ψ − ψ) =(cosϕ cos θ + sin θ cot δ)/ sinϕ

sin θ = sin θ
sinϕ

sin(ϕ− γ)

(Remark: to check the two spherical identities in problem (3) and the two above simply
draw the spherical triangle putting the vertex 2 with the angle γ on the z axis, the vertex
1 with the β angle on the xz plane so that the three vertices are expressed in cartesian
coordinates as r1 = (cosA, 0, sinA), r2 = (0, 0, 1) and r3 = (sinB cos γ, sinB sinγ, cosB).
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Then observe that r1 ·r3 = cosC, that r1 ·r2∧r3 has to be symmetric in the interchange of
the role of (A, α), (B, β), (C, γ) and that r1∧r3 · j = − sinC cos β; the three latter relations,
after computing the left hand sides in cartesian coordinates for ri yield, respectively, the
two identities in problem (3) and the first of the above two; the last identity is a consequence
of the first and third.)

13. Using the coordinates (Kz , A, L, γ, ϕ, ψ) show that the Hamiltonian describing the
above system for the theory of the solar precession is:

1

2
(
L2

J
+
A2 − L2

I
) +

3kMS

2|rT |3
η1J cos2 αS +O((

R

|rT |
)4)

and, setting η1 ≡ (J − I)/J , η2 = (J − I)/I and neglecting O((R/|rT |)4), it becomes:

Hp =
1

2

A2

J
+ η2

“A2 − L2

J

«
+ η1

3kMS

2|rT |3
J cos2 αS

so that in the case of an ellipsoidal Earth: η1 = η− η2/2, η2 = η+ η2/2 +O(η4). (Hint: By
problems (10),(11) the term V added to the Lagrangian depends only on the coordinates
(θ, ϕ, ψ): hence the conjugate momenta p

θ
, pϕ, pψ are given by the same expression as when

V = 0, see problem (1). Therefore in the (pθ, pϕ, pψ, θ, ϕ, ψ) variables the hamiltonian is
simply the same hamiltonian with V = 0 plus V expressed in terms of the new variables and
of time. Finally the map (pθ , pϕ, pψ , θ, ϕ, ψ)→ (Kz , A, L, γ, ϕ, ψ) is a completely canonical
time independent map; hence the hamiltonian in the last variables is just the old one
evaluated in the new variables.)

14. Using proble (12) show that the Hamiltonian Hp can be written:

Hp =
1

2

A2

J
+ η2

A2 − L2

2J
+ η1

„
3kMS

2|rT |3
J ·

· [sin(λT − γ)
“
cosϕ sin θ cos δ + sin δ cos θ

”
− cos(λT − γ) sin θ sinϕ]2

«
=

=
1

2

A2

J
+ η2

A2 − L2

2J
+ η1

„
3kMS

2|rT |3
J ·

· [sin(λT − γ)
“Kz
A

(1− L2

A2
)1/2 cosϕ+

L

A
(1 − K2

z

A2
)1/2

”

− (1− L2

A2
)1/2 cos(λT − γ) sinϕ]2

«

15. Suppose that the excentricity of the Earth orbit is neglected (i.e. that the orbit of the
Earth is taken circular with radius a equal to the major semiaxis of the ellipse), show that
the average over the angles ϕ, γ and over time t of Hp is:

Hp =
A2

2J
+ η2

A2 − L2

2J
+ η1

„
3kMS

2a3
J [
K2
z

A2
(1 − L2

A2
)
1

4
+

1

2
(1− K2

z

A2
)
L2

A2
+

1

4
(1− L2

A2
)]

«

if a is the major semiaxis of the Earth orbit, with an error of order O(ηe). The latter
hamiltonian describes the motion ove time scales large compared to those if the slowest
period in the non averaged Hamiltonian.

16. Suppose that A = L (i.e. neglect the non alignment between the Earth axis and the
angular momentum), so that γ = ϕ. And, furthermore, assume that the hamiltonian Hp can
be replaced by Hp for the purpose of evaluating the average motion over many periods of
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revolutions (see Ch. 5, §10/12 for a more rigorous treatment). Then show that the precession
angular velocity would be:

γ̇ = λSp = −η1
3kMS

2a3
JKz

2A2
+ O(ηe2)

In this approximation the angles δ, θ are constant and, having negleted θ, δ has the inter-
pretation of inclination angle i0 of the Earth axis. Using the Kepler’s law: kMS/a

2 = ωT a,
if ωT = 2π/T is the angular velocity of the mean anomaly and T is the period of the
Earth revolutionand if ωD is the angular velocity of the daily rotation, show that the solar
precession rate is:

λSp = −3

2
η1ω

2
T

JKz

A2
= −3

2
η1
ωT

ωD
ωT cos i0

the fact that is negative is often referred as a retrograde precession. Show also that the
period of precession, is TSp = −2π/λSp = T (ωDT cos i0)/3πη, or since T = 1. year and

η = 0.00335281, TSp ∼ 7.94 104years. (Hint: A = I3ωD, in the suggested approximation,
and Kz = A cos i0. Use then the connection (4.10.18), i.e. the third Kepler’s law, between
the Earth axis a, the period T and the gravitational constant kMS : the relation A = I3/ωD
is correct only to a first approximation, evaluate the exact value, still neglection the θ, and
check that this is really neglegible. Also the relation between the period and the gravitational
constant is correct if we neglect the ratio of the masses MT /MS : check that if we do not
want to neglect it the correction would be an extra factor (1 +MT /MS)).

17. A rough analysis of the lunar precession can be made assuming that the Moon is on
the ecliptic and that its orbit is circular. Show that the solar precession analysis can the
be applied to the Moon influence and that the lunar precession would be, if ML, aL denote
respectively the Moon mass and the radius of its orbit:

γ̇ = λLp = −η1
3kMT

2a3L

JKz

A2
+O(η1e

2) = λSp (
a

aL
)3
ML

MS

so that the total luni-solar precession would be:

λp = λSp + λLp = λSp

“
1 + (

a

aL
)3
ML

MS

”
∼ 3λSp

Evaluate the total rate of lunisolar precession in the above approximation and show that
it gives Tp ∼ 2.51 104 years (get the data from appendix P), or a yearly precession of the
equinoxes of ∼ 51.6′′ per year. So that only 1/3 of the luni-solar precession is due to the
Sun. Show that even assuming that Jupiter gravitated around the Earth on a circular orbit
its contribution to the precession would be much smaller (Hint: with obvious notations it
would be a fraction of the order of (a/aJ )3MJ/MS , i.e. O(10−5) of the solar precession).

The observed value of the lunisolar precession is however 50.38′′ per year: the dis-
crepancy is due to the crudeness of the approximations in the model. A more accurate
calculation (Laplace) leads to a formula which was in fact used to determine η from the
known precession rate, in terms of the masses of the Sun and of the Moon. Check that
corrections come from several sources:
(1) the eccentricity of the Moon orbit, the inclination of the Moon orbit and the eccentricity
of the Earth orbit have been neglected.
(2) the center of mass of the Earth-Moon rather than that of the Earth revolve about the
Sun on a keplerian orbit.

18. Correct the above theory for the eccentricity of the Earth. This means that, looking
for the motion on scales of time large with respect to T , i.e. the period of revolution, we
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do not write (a/|rT |)3 cos2 αS using the approximations λT = ωT t+ const and a/|rT | = 1,
but we use the Kepler laws (see problem (13), p.304), i.e.:

|rT | =a(1 + e cos ξ)

ξ =λ− e sinλ+ (e2/2) sin 2λ

λT =λ− 2e sinλ+ (5/4) sin 2λ

λ =ωT t+ const

and then evaluate the average of (a/|rT |)3 cos2 αS over ϕ and λ, still neglecting θ, i.e.

(1− L2/A2). Show that the result is:

˙
(1 + e cos ξ)−3 sin2(λT − γ)

¸
= (1− 4e2)

H =
A2

2I3
+ η2

A2 − L2

2I3
+ η1

3

2
I3ω

2
T

“
1− K2

A2

”
(1 − 3

2
e2)

19. Correct the Moon contribution to take into account the eccentritcity eL and the incli-
nation iL of the Moon orbit. Calling θL, ϕL, ψL he Euler angles of the frame with jL axis

orthogonal to the Moon orbit, nL the node of the Moon orbit with the ecliptic, x axis,
imathL pointing to the actual position of the Moon, and if αL is the angle between the
Moon Earth axis rL and the Earth axis, it is:

− cosαL = cosψL sin θ sin(ϕL − ϕ) + cosψL sin θ cos(ϕL − ϕ) + cosψL − sin θL cos θ sinψL

and then chech that the average
˙
(aL/|rL|)3 cos2 αL

¸
is, still neglecting θ is:

(1 +
3

2
e2L)(1 − 3

2
sin2 θL)

(Hint: Write the coordinates of rL and ı3 in the fixed frame as:

ı3 =(− sin θ cosϕ,− sin θ cosϕ, cos θ)

rL/|rL| =(− sinψL cos θL sinϕL + cosψL cosϕL,

sinψL cos θL cosϕL + cosψL sinϕL, sin θL sinψ)

and then use that the motion of the Moon is Keplerian for ψL and a uniform precession for
ϕL).

20. Put togheter the last problems to check that the lunisolar precession is given by:

−ωp = λs
„

(1 +
3

2
e2T ) +

MS

ML

“ a

aL

”3
(1 +

3

2
e2L)(1 − 3

2
sin2 iL)

«

and check that the data in appendix Q give −ωp = 51.51” per year. Further corrections

can be found by avoiding to take averages over time scales of the order of the year (theory

of nutation).

4.12 Integrable Systems. Geodesic Motion on the
Surface of an Ellipsoid and Other Systems

In general, given a closed regular surface Σ ⊂ Rd, the “geodesic motions” are
the motions which a unit mass point can undergo on Σ, when it is ideally
bound to Σ and subject to no other active forces.
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The Lagrangian of such motions is

L =
1

2
ẋ2 (4.12.1)

and energy conservation, §3.5, implies that

T =
1

2
ẋ2 = constant (4.12.2)

on the considered motions. For instance, the set of the motions with initial
speed of modulus 1 consists entirely of motions in which the speed has modulus
1 at all times.

The “geodesic flow” on Σ is the flow on S = {data space for the motions
on Σ} = {set of pairs (η,x) with x ∈ Σ and η compatible with the constraint,
i.e., tangent to Σ}11 which to every point (η,x) ∈ S associates St(η,x) ∈ S,
the configuration into which the datum (η,x) evolves in time t under the only
influence of an ideal constraint to Σ.

Since |ẋ| = constant, there is an a priori bound on the distance that
a point can travel in a given time and, therefore, the geodesic flow is well
defined, ∀ t ∈ R.

Speed conservation has an interesting consequence: the action of a geodesic
motion t → x(t) computed between t1 and t2 can be expressed in terms of
the curvilinear abscissas on the trajectory on which x moves. If V = |ẋ|,

At1,t2 = {action of x between t1 and t2} =
V 2 (t2 − t1)

2
=
V

2
(s2 − s1)

(4.12.3)
By the least-action principle, Proposition 8, §3.5, p.163, we know that the
motion t → x(t) makes the action locally minimal in sufficiently small time
intervals.

From this, it follows that the trajectory I, as a curve in Rd, makes the
distance between x(t1) and x(t2) measured along Σ locally minimal if t2 is
close enough to t1 (“Maupertuis’ principle”, see problems to §3.11). In fact,
given x1 = x(t1) ∈ I, suppose that for |t2 − t1| < ε, the action At1t2(y) is
minimal on Σ as y varies inMt1,t2(x(t1),x(t2);Σ) = {motions on Σ defined
for t ∈ [t1, t2] and leading from x(t1) to x(t2)}. If there existed a curve C1,2
connecting x(t1) with x(t2), lying on Σ and shorter than (s2 − s1) = {length
of the part of I between x(t1) and x(t2)}, then one could run it with uniform
speed starting from x(t1) at time t1 so as to reach x(t2) at time t2.

Such a motion xC1,2 ∈Mt1,t2(x(t1),x(t2);Σ) would have an action

At1,t2(xC1,2 ) =
1

2

( |C1,2|
t2 − t1

)2
(t2 − t1) =

1

2

|C1,2|2
t2 − t1

<
1

2
(s2 − s1)2t2 − t1 =

1

2
V 2(t2 − t1) =

V

2
(s2 − s1)

(4.12.4)

11 In fancy language, call this the “tangent fiber bundle” to Σ.
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as |C1,2| < s2 − s1 = {length of I}. This contradicts the minimality of At1,t2
on x.

The curves on a surface Σ which make minimal the distance between the
points that they connect provided such points are close enough, are called
“geodesics” on Σ, and this explains the name given to the motions with La-
grangian (4.12.1) on Σ.

The simplest nontrivial example of a geodesic motion is the motion on the
surface of the sphere in R3. The possible trajectories of this motion are great
circles. It is possible to interpret this statement in terms of the integrability
of the geodesic motion on the surface of the sphere in the sense of Definition
10, §4.8, p.287. In this case, the motions are all periodic (see Observation (5),
p.288).

A less simple example is the motion on the surface of the ellipsoid. We
shall only treat the case of the ellipsoid of revolution. However, the motion
on an arbitrary ellipsoid is also integrable (see problems at the end of this
section for a glimpse of the theory).

In the case of an ellipsoid of revolution, we choose as z-axis the symmetry
axis of the ellipsoid E and determine the position on E of a point through the
two coordinates (θ, ϕ) as

x = a sin θ cosϕ, y = a sin θ sinϕ, z = b cos θ, (4.12.5)

where a and b are the principal semi-axes of the ellipsoid. The Lagrangian
(4.12.1) of the geodesic motion on E can be written by Eq. (4.1.5) as

L(θ̇, ϕ̇, θ, ϕ) =
1

2
[(b2 sin2 θ + a2 cos2 θ) θ̇2 + a2ϕ̇2 sin2 θ]. (4.12.6)

So that the equations of motion are

d

dt
a2 ϕ̇ sin2 θ = 0, (4.12.7)

d

dt
(b2 sin2 θ + a2 cos2 θ)θ̇ =

∂L
∂θ

(θ̇, ϕ̇, θ, ϕ) (4.12.8)

However, it is convenient to discuss only Eq. (4.12.7), combining it with the
energy conservation principle:

1

2
[(b2 sin2 θ + a2 cos2 θ) θ̇2 + a2ϕ̇2 sin2 θ] = E (4.12.9)

Equations (4.12.9) and (4.12.7), which we use to define the prime integral
A = ϕ̇ sin2 θ, yield

θ̇ = ±
√

2E sin2 θ − a2A2

sin2 θ
(
b2 sin2 θ + a2 cos2 θ

) def= ±
√
−VE,A(θ) (4.12.10)
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which, by the usual argument, implies that t→ θ(t) is periodic with period:

T1(E,A) = 2

∫ θ+(E,A)

θ−(E,A)

dθ√
−VE,A(θ)

, (4.12.11)

where θ−(E,A) and θ+(E,A) are the two solutions of VE,A = 0 of the form
θ±(E,A) = π

2 ± θ0(E,A) or θ(E,A) = −π2 ± θ0(E,A) and θ0 = arcsin(aA2E ).
Furthermore, θ verifies the equation

θ̈ = −∂VE,A
∂θ

(θ) (4.12.12)

and, therefore, it is a C∞ function of t (see §2.7) and can be expressed in terms
of the solution t → R(t, E,A) of Eq. (4.12.12) with initial data R(0, E,A) =
θ−(E,A), Ṙ(0, E,A) = 0. Such a function is defined, recalling §2.7, by

t =

∫ R(t,E,A)

θ−(E,A)

dθ√
−VE,A(θ)

, (4.12.13)

for 0 ≤ t < T1(E,A)
2 ; it is continued naturally for T1(E,A)

2 < t < T1(E,A).
Furthermore, θ(t) is given by

θ(t) = R(t+ t0(θ0, θ̇0), E,A), (4.12.14)

where t0(θ0, θ̇0) = {first time when the motion t→ R(t, E,A) reaches (θ̇0, θ0),
with θ0 = θ(0), θ̇(0).

As one sees, the analysis of this problem by “quadratures” is entirely
analogous to the ones seen in §4.9-§4.11. As on those occasions, the motion
t→ ϕ(t) can be deduced from Eq. (4.12.7) by a quadrature,

ϕ(t) = ϕ0 +

∫ t

0

A

sin2 θ(t)
dt (4.12.15)

It can be treated, as already seen in §4.9-4.11, by noting that

A

sin2R(t, E,A)
=

∞∑

k=−∞
χk(A,E)e

2π i k
T1(E,A)

t
(4.12.16)

by the periodicity of R and by Fourier’s theorem, as t → A
sin2 R(t,E,A)

is a

T1(E,A)-periodic C∞-function with Fourier coefficients (χk(A,E))k∈Z . Set-
ting

S(t, E,A) =

+∞∑

k=−∞
k 6=0

χk(A,E)
e

2π i k
T1(E,A)

t

2πik
T1(E,A)

(4.12.17)

the quadrature (4.12.15) yields
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ϕ(t) = ϕ0 +χ0(E,A)t+ S(t+ t0(θ0, θ̇0, E,A)− S(t0(θ0, θ̇0), E,A), (4.12.18)

Hence, from Eqs. (4.12.14) and (4.12.18), we can conclude that all motions
are quasi-periodic with periods T1(E,A) given by Eq. (4.12.11) and

T2(E,A) =
2π

χ0(A,E)
=

T1(E,A)
∫ θ+(E,A)

θ−(E,A)
A

sin2 θ
dθ√

−VE,A(θ)

(4.12.19)

after changing variables θ = R(t, E,A) along the lines already seen in Propo-
sition 24, §4.11, p.314, and Proposition 22, §4.9, p.293.

It could be checked that as E,A vary the two periods T1(E,A), T2(E,A)
will generally have an irrational ratio.

The above analysis basically achieves the proof of the following propo-
sition, (if one disregards the checks of regularity and invertibility in suit-
ably large regions W ′ in the data space of the map I(θ̇(0), ϕ̇(0), θ(0), ϕ(0)) =
(E,A, α, β) with α = 2π

T1(E,A) t0(θ(0), θ̇(0)), β = ϕ(0)− S(t0(θ(0), θ̇(0)), E,A):

25 Proposition. The set W of the data for the geodesic motions on an ellip-
soid of revolution E and such that E 6= 0, A 6= 0 can be covered by sets W ′ ⊂W
on which the motions are are integrable in the sense of Definition 10, §4.8,
p.287. Such motions are quasi-periodic with periods T1(E,A), T2(E,A), given
by Eqs. (4.12.11) and (4.12.19). If the ellipsoid semi-axes are different the
motion is generally quasi periodic and non periodic.

Observations.
(1) The discussion preceding Proposition 25 is very general and could be
repeated with essentially no change to cover very general classes of surfaces
of revolution like those parametrically described by equations like

z = f(θ), x = g(θ) cosϕ, y = g(θ) sinϕ (4.12.20)

for (θ, ϕ) ∈ [0, 2π] × [0, 2π], with f, g,∈ C∞(T 1) such that the curve in R2

with parametric equations ξ = g(θ), η = f(θ), θ ∈ [0, 2π] is a simple closed
curve symmetric under reflection around the η axis.

Other surfaces covered by the above method are those with parametric
equations

z = a(ϕ), x = b(ϕ) cosψ, y = b(ϕ) sinψ (4.12.21)

for (ϕ, ψ) ∈ [0, 2π]×[0, 2π], with a, b ∈ C∞(T 1) such that the curve inR2 with
parametric equations η = a(ϕ), ξ = b(ϕ), ϕ ∈ [0, 2π] is a simple closed curve
contained in the half-plane ξ > 0. The reader can check the above statements,
as an exercise on the quadrature method.
(2) Surfaces like Eq. (4.12.20) generalize the ellipsoid of revolution while those
like Eq. (4.12.21) generalize the “torus of revolution”: given a, b > 0, a > b,
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x = (a+ b cosϕ) cosψ, y = (a+ b cosϕ) sinψ, z = b sinϕ. (4.12.22)

We conclude this list of remarkable integrable systems by citing a few other
systems integrable on suitable regions W .
(1) A point mass on an ellipsoid of revolution, with symmetry axis along the
major axis of the revolving ellipse, subject to a force with potential energy

V (x) =
g

|x− f1| · |x− f2|
, (4.12.23)

where f1, f2 are the foci of the ellipse generating the ellipsoid.
This system can be integrated by the quadrature method of §4.9-§4.11, and

one obtains similar results in elliptic coordinates defined in terms of Cartesian
coordinates (x, y, z) of x as

√
x2 + y2 = σ

√
(ξ2 − 1)(1− η2), z = σ ξ η, azimuth of = ϕ (4.12.24)

where ξ ∈ [1,+∞], η ∈ [−1, 1], ϕ ∈ [0, 2π] and the parameter σ has to be
chosen so that the considered ellipsoid is a ξ = constant surface. Such surfaces
are the ellipsoids

z2

σ2ξ2
+

x2 + y2

σ2(ξ2 − 1)
= 1. (4.12.25)

(2) A unit mass on a sphere with potential energy in polar coordinates:

U(θ, ϕ) = b(θ) +
c(ϕ)

sin2 θ
(4.12.26)

with b, c C∞-periodic functions with period 2π. This system is integrated by
quadratures by writing its Lagrangian function in polar coordinates and dis-
cussing the Lagrange equations.
(3) A solid body with a symmetry axis fixed at a point 0 of this axis, which
we call i3, different from the center of mass G and subject to ideal constraints
plus the weight, i.e., a force mig on the i-th point (equivalent by Observations
(5) in §3.2, p.148, to a force Mg, M =

∑
imi applied to G as far as the force

momentum calculation is concerned).
This system (“heavy gyroscope”) is also integrable by quadratures: proceed-
ing as in §3.11, choose the fixed reference frame (O; i, j,k) with k axis anti
parallel to g, and write the Lagrangian function in terms of the Euler angles.
The Lagrange equations can then be combined with the conservation laws,
for energy and for the k component of the angular momentum, to reduce
the problem to that of the analysis of one-dimensional systems, i.e., to the
quadratures. See, also, problems at the end of this section and problems to
§3.5 in [28]).
(4) Two more difficult classical integrable systems are the geodesic motions
on the surface of a non symmetric ellipsoid (see problems at the end of this
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section for an introduction to this theory) and the motions of a heavy rigid
body with a fixed point O, with the baricenter in the i1i2 plane, say on the

i1 axis at distance a from O, and with inertia moments I1 = I2 = 2I3
def
= 2I.

Such systems can be shown to be integrable by quadratures (as discovered by
Jacobi and Kovalevskaya, respectively, see problems).
(5) Other systems areN point masses on the lineR with Lagrangian functions

L =
m

2

N∑

i=1

ẋ2
i − g

N−1∑

i=1

eα(xi−xi+1) (4.12.27)

called the “Toda lattice”, or

L =
m

2

N∑

i=1

ẋ2
i − g2

∑

i<j

1

(xi − xj)2
− ω2

2

N∑

i=1

x2
i , (4.12.28)

called “Calogero lattice”, respectively. These were discovered very recently and
are also integrable. Some variants of such systems with the same properties
are also known.
(6) Obviously, there are other integrable systems: it suffices to perform an
arbitrary change of coordinates in the Lagrangian functions which we have
just examined to obtain Lagrangian functions of integrable.
However, only very “few” other systems are known that have the integrability
property and that are “interesting”, i.e., not obtained by trivial changes of
coordinates from those so far listed. Some can be found among the problems
for §4.12.
Finally, we remark that all the integrable systems of §4.9-§4.12 could be shown
to be not only integrable in the sense of Definition 10, §4.8, p.287, but also
analytically and canonically integrable in the sense of Definition 11, §4.8,
p.289, in large regions of the phase space. In the problems of §4.10-4.12, the
main steps towards such a proof are given.

4.12.1 Exercises and Problems

1. Integrate explicitly by quadratures the systems mentioned in the points (1), (2), and
(3) of the list of integrable systems in §4.12. By the Hamilton-Jacobi method, show their
canonical integrability.

2. Integrate the heavy gyroscope system (3) p.331, by using the Deprit variables (see prob-
lems to §4.11). First show that the Hamiltonian (i.e., the energy) can be written in the
Deprit variables as H(Kz , A, L, γ, ϕ, ψ) given by

A2 − L2

2I
+
L2

2I3
+ µ

»
KzL

A2
−
s

1− K2
z

A2

s

1− L2

A2
cosψ

–
,

where µ = Mgd, M = total mass, g = gravity constant, I ≡ I1 = I2 and I3 are the moments
of inertia. Show also the canonical integrability of this system.

3. Consider the “Kovalevskaya gyroscope”, see p.331, and show that its Lagrangian is
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L = Iθ̇2 + I sin2 θ ϕ̇2 +
I

2
(ψ̇ + ϕ̇ cos θ)2 +Mga sin θ cosψ

and explicitly write the Lagrange equations relative to the θ, ϕ, ψ variables.

4. In the context of Exercise 3, eliminate the ψ̇ between the Lagrange equations relative to
ϕ and ψ and add the resulting equation to the equation relative to the θ variable multiplied

by +i or −i, (i =
√
−1), successively. Show that the two resulting equations imply 1

U
dU
dt

=

− 1
V
dV
dt

=′′ same function′′, where:

U = (ϕ̇ sin θ + i θ̇)2 +Mgae−iψ sin θ = V ,

so UV ≡ |U |2 = constant and UV is a prime integral.12

5. In the context of Problems 3 and 4, show that the Kovalevskaya gyroscope is integrable
by quadratures on vast regions of phase space.

6. Consider the geodesic motion on the surface of the ellipsoid E : x
2

a2 + y2

b2 + z2

c2 = 1,

a < b < c. Introduce the local coordinate system (“Jacobi’s system”) described by

x =
√
a (u−a)(v−a)

(b−a)(c−a) , y =
√
b (u−b)(v−b)

(c−b)(a−b) , z =
√
c (u−c)(v−c)

(a−c)(b−c) ,

for (u, v) ∈ [b, c]× [a, b] or (u, v) ∈ [a, b]× [b, c]. Defining for λ ∈ R

A(λ) =
1

4

λ

(a− λ)(b − λ)(c − λ) ,

show that the kinetic energy is given by

T (u̇, v̇, u, v) =
1

2
(u− v)

(
A(u)u̇2 −A(v)v̇2

)
.

Applying the Hamilton-Jacobi method to the Lagrangian system with Lagrangian L =
T (u̇, v̇, u, v), show that the geodesic motion on the ellipsoid admits a second prime integral:

M(u̇, v̇, u, v) = (u− v)(vA(u)u̇2 − uA(v)v̇2).

(Hint: Write the Hamilton-Jacobi equation in (u, v) variables after finding the Hamiltonian
function in (u, v) and in their canonically conjugate momenta pu, pv:

∂f

∂t
+

1

2
β
[(∂f
∂u

)2 1

H(u, v)
+
(∂f
∂v

)2 1

G(u, v)

]
= 0,

where H(u, v) = (u − v)A(u), G(u, v) = (v − u)A(v), and look for solutions of the
form

f(u, v, t) = −E
2
t+ ψ(u, v), ψ(u, v) = α(u) + β(v)

The equation becomes

A(v)
(∂ψ
∂u

)2 −A(u)
(∂ψ
∂v

)2
= (u− v)A(u)A(v)E,

admitting a family of solutions parameterized by E and a new arbitrary parameter a:

12 See [49], Chap. VI.
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ψ(u, v|a,E) =

∫ u

u0

√
EA(u′)(u′ + a)du′ +

∫ v

v0

√
EA(v′)(v′ + a)dv′.

Now, applying the canonical transformationG generated by −E2 t+ψ(u, v, a, E), deduce

that the trajectories of the motion (geodesics on E) are given by the equation
dψ
da = c =

cnstant, i.e., Fa(u) + Fa(v) = 2c if Fa(u) is a primitive function to
√
A(u)(u + a).

This also implies that a is a prime integral. Writing the canonical transformation G, it is
possible to express a in terms of u, v, pu, pv or u, v, u̇, v̇. The computation gives a =
−M(u̇, v̇, u, v)/T (u̇, v̇, u, v) = −M/E; so M is a prime integral. ([10]).)

7. Consider the system (“atom in electric field”)

H(p, q) =
p

2

2m
− g

|q| + Fx

p = (px, py, pz), q = (x, y, z) and study it in “squared parabolic coordinates”

x =
1

2
(u2 − v2), y = uv cosϕ, z = uv sinϕ

and show by the method of problem 6 (i.e., by the Hamilton-Jacobi method) that this
system has three prime integrals and that it can be integrated by quadratures (from [46]).

8. Consider the Hamiltonian (“ionized hydrogen molecule”)

H(p, q) =
p

2

2m
− g

|q− f1|
− g

|q− f2|
with p = (px, py, pz) ∈ R3, q = (x, y, z) ∈ R3, f1, f2 ∈ R3 and study it in elliptical

coordinates (see Eq. (4.12.24) and (4.12.25)) and show by the methods of problems 6 and

7 that it has three prime integrals and that it can be integrated by quadratures. Find

canonical action-angle variables (from [46]).

4.13 Some Integrability Criteria. Introduction:
Geometric Considerations and Preliminary Definitions

Considering the “rarity” of the mechanical systems known as integrable one
wonders whether it is possible to easily recognize, a priori, the non integrability
of a mechanical system.

For instance, the integrability on a region W of the data space S implies
the existence of ℓ-“independent” prime integrals. Therefore, a way of showing
non integrability might be that of showing the nonexistence of as many prime
integrals as the number of degrees of freedom.

In any concrete case, however, it is very difficult to decide whether or not
a system possesses prime integrals (other than the total energy and its func-
tions). Poincaré’s proof of non integrability, in a sense stricter than the above,
of the motion of three heavenly bodies is based on showing the nonexistence
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of enough prime integrals (also defined in a more stringent way). It is still a
famous proof (see [38], vol. 1, ch. VI).

Hence, it is useful to try to identify other special properties of the in-
tegrable systems to use them as necessary conditions for integrability or to
formulate sufficient non integrability conditions.

In the following sections we go through an analysis that will allow us to
classify the motions of the integrable systems as “simple and ordered” motions
and those of the non integrable ones as “complex and disordered”.

Coming back into the frame of mind of §2.21 and §4.8, the notions of
observable, average values, etc. introduced there have a natural extension to
the systems with several degrees of freedom.

We consider an ℓ-degrees-of-freedom system described by a Lagrangian
function

L(ẋ,x) + ideal constraints (4.13.1)

regular in the sense of §3.11, Definition 14, and generating Hamiltonian equa-
tions admitting global solutions, in the future and in the past for all the
constraint-compatible initial data.

As usual, we denote S the data space for the system of Eq. (4.13.1). By
Proposition 18, p.285, it is a regular surface in Rd×Rd where d is the dimen-
sion of the unconstrained system, usually d = 3N , N = {number of points in
the system}, see Definition 9, §4.8, p.287.

12 Definition. The elements of C∞(S)13 will be called the “observables” of
the mechanical system of Eq. (4.13.1).
Given an increasing sequence t = t0, t1, . . . such that ti−−−−→i→+∞ +∞ and given
f ∈ C∞(S), we shall call the “ t-history of f” on the motion of (ẋ,x) ∈ S the
sequence

(f(Sti(ẋ,x)))∞i=0 (4.13.2)

It is the sequence of the results of the successive observations of the values of
f on the motion starting at (ẋ,x) at times t0, t1 . . .. We shorten the notation
by simply referring to the “(f, t)-history of (ẋ,x)”.

If f ∈ C∞(S) and t is a sequence like

ti = i t1, i = 0, 1, . . . ; t1 > 0 (4.13.3)

and if (ẋ,x) ∈ W ⊂ S, where W is a region on which the mechanical system
of Eq. (4.13.1) is integrable, then the (f, t)-history of (ẋ,x) is far from being
an “arbitrary” sequence of numbers. Proposition 6,§4.2, p.251, allows us to
state, for instance, the following obvious reformulation of its contents.

26 Proposition. If in W ⊂ S the system of Eq. (4.13.1) is integrable and
f ∈ C∞(S) is an observable and if t is as in Eq. (4.13.3), the (f, t) histories

13 See Observation (2) to Definition 7, p.285.
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of the points (ẋ,x) ∈ W have a well-defined average value, i.e., the following
limit exists:

f(ẋ,x) = lim
N→∞

1

N

N−1∑

j=0

f(Sjt1(ẋ,x)). (4.13.4)

Furthermore, if (A,ϕ) = I(ẋ,x) is the integrating transformation mapping
W onto V × T ℓ, see Definition 10, §4.8, p.287, and if the (ℓ + 1) numbers
(ω1(A), . . . , ωℓ(A), σ), with σ = 2π

t1
are rationally independent then

f(ẋ,x) =
1

(2π)ℓ

∫

T ℓ

Ff (A,ϕ
′) dϕ′, (4.13.5)

having set

Ff (A,ϕ) = f(I−1(A,ϕ)). (4.13.6)

Observations.
(1) Ff is the observable f in the new (A,ϕ) coordinates.
(2) Hence, the non integrability of the system of Eq. (4.13.1) in W can be
proved by “just” exhibiting a single point (ẋ,x) ∈W and a single observable
f whose (f, t) history on (ẋ,x) does not have a well-defined average value.
(3) However, this criterion is very difficult to apply in practice: the (f, t)
histories are very hard to analyze in concrete interesting cases and “usually”
they admit an average value even in non integrable systems.

The following proposition provides a more geometric integrability criterion
different in spirit from the one above.

27 Proposition. If in W ⊂ S the system of Eq. (4.13.1) is integrable, the
closure of every trajectory of points (ẋ,x) ∈W is a set I which can be mapped
continuously and in a one-to-one way onto a torus T s with 1 ≤ s ≤ ℓ, if ℓ is
the number of degrees of freedom of the system.

Observations.
(1) Proposition 27 is also essentially a way of rephrasing some properties of the
integrability of Definition 10, §4.8, p.287. In fact the motions of an integrable
system take place on invariant tori of dimension ℓ run quasi-periodically. If
(ω1, . . . , ωℓ) are the pulsations of a given motion and are rationally indepen-
dent then the trajectory fills densely a set homeomorphic to T ℓ, 14 see Propo-
sition 4, p.250, §4.2. In general, if s is the number of elements of a maximal
subset of (ω1, . . . , ωℓ) consisting of rationally independent numbers, then I
will be homeomorphic to T s. The proof of this fact is left to the reader and
is essentially described in the hints to the problems for §4.14.
(2) So to prove non integrability in W , it suffices to find “just” one (ẋ,x) ∈ W
14 i.e., a set which is a one-to-one bicontinuous image of T ℓ.
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whose trajectory has a closure which is not homeomorphic to a smooth surface
or, more particularly, to an s-dimensional torus, s ≤ ℓ.
(3) The geometric structure of a trajectory of a point mass bound to a surface
Σ can be found via Maupertuis’ principle since the trajectory of an energy-E
motion is a geodesic for the metric dh =

√
2(E − V (ξ))ds on Σ, where ds is

the line element on Σ and V is the potential energy of the active forces.
In geometry, some criteria for the existence of dense geodesics on a bounded
surface with some metric are known (e.g., if the curvature of the metric is ev-
erywhere negative, there are dense geodesics). So with the help of Proposition
27 and of the Maupertuis’ principle, some examples of non integrable systems
can be easily built.

To obtain deeper insight into integrable systems, it is convenient to restrict
attention to the “analytically integrable” systems.

They are connected with some interesting geometrical notions which we
have to illustrate before continuing the analysis.

To help the reader avoid getting lost in the labyrinth of the geometric
concepts that follow, it is better to state our aim at the beginning. Basically
we wish to define sets G ⊂ Rd × T d with “piecewise analytic boundary” (see
the following definition of analyticity). Such sets have the remarkable property
that not only are they measurable in the Riemann sense, but also that their
intersection with planar surfaces are measurable with respect to the Riemann
measure on the surface. This is a property which might not hold for sets with
C∞ boundary (see Problems).

We shall need, in an essential way, the above simple property and its
invariance with respect to some changes of coordinates. There are several
ways of constructing families of sets and classes of coordinate changes with
this property. However, none of them seems describable in few words, although
this fact might seem surprising. It will be an amusing puzzle for the reader to
try to find (possibly giving up analyticity) some alternative definitions which
would allow us to retain the substance of §4.14 and §4.15.

13 Definition. If Ω ⊂ Rd is open and f ∈ C∞(Ω), then f is “analytic” on
Ω if ∀ ξ0 ∈ Ω, ∃ ε(ξ0) > 0 such that f can be developed ∀ |ξ − ξ0| < ε(ξ0), as

f(ξ) =

0,∞∑

k1,...,kd

∂k1+...+kdf

∂ξk11 . . . ∂ξkd

d

(ξ0)

d∏

=1

(ξj − (ξ0)j)
kj

kj !
and (4.13.7)

0,∞∑

k1,...,kd

∣∣∣ ∂
k1+...+kdf

∂ξk11 . . . ∂ξkd

d

(ξ0)
∣∣∣ε(ξ0)

k1+...+kd

k1! . . . kd!
< +∞. (4.13.8)

If k = (k1, . . . , kd) ∈ Zd, define k! =
∏d
j=1 kj !, (ξ−ξ0)k =

∏d
j=1 (ξj − (ξ0)j)

kj

and ∂kf(ξ) for ∂k1+...+kdf

∂ξ
k1
1 ...∂ξ

kd
d

(ξ), so that Eq. (4.13.7) will be rewritten as
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f(ξ) =
∑

k∈Zd
+

∂kf(ξ0)

k!
(ξ − ξ0)k, (4.13.9)

An Rd-valued function on Ω is called analytic if its components are analytic.

In the following, we will also need the obvious extension of the notion of
analytic function f to the case when Ω is an open subset in Rd ×T d′ and its
values are in Rℓ × T ℓ′ , d+ d′ > 0, ℓ+ ℓ′ > 0, d, d′, ℓ, ℓ′ > 0.

First remark that a real function on Ω ⊂ Rd × T d′ can be “canonically
extended” to a function f on a set Ω̃ ⊂ Rd ×Rd′ by setting

Ω̃ = {pairs (ξ,η) ∈ Rd ×Rd′ with (ξ,η mod 2π) ≡ (ξ,ϕ) ∈ Ω}

f̃(ξ,η)
def
= f(ξ,η mod 2π) ≡ f(ξ,ϕ).

(4.13.10)

With the above convention (4.13.10) and with the above restrictions on
d, d′, ℓ, ℓ′, we state the following definition (for some examples see Exercises).

14 Definition. A function on Ω ⊂ Rd×T d′ taking values in Rℓ and associat-
ing to ξ ∈ Ω the value (x,ϕ) will be called “analytic” on Ω if, ∀ ξ0 ∈ Ω, there
is a function F , “representative of f”, defined in the vicinity of ξ0, taking
values in Rℓ ×Rℓ′ and analytic, such that

if F (ξ) = (x,η) then f(ξ) = (x,ϕ) with ϕ = η mod 2π (4.13.11)

for all ξ near ξ0.
A function f on an open set Ω ⊂ Rd × T d′ taking values in Rℓ × T ℓ′ will be
called analytic on Ω if its canonical extension f̃ to Ω̃ is analytic.
The derivatives of f will obviously be defined as the “derivatives of the canoni-
cal extension of a representative” and they will be denoted by the usual symbols.

Observation. If some of the integers ℓ, ℓ′, d, d′ vanish, we interpret Rℓ×T ℓ′ or
Rd × T s′ in the obvious way: R0 × T p ≡ T p, Rp × T 0 ≡ Rp, ∀ p > 0.

Together with the notion of analytic function, we need the notion of ana-
lytic coordinates.

15 Definition. Let U ⊂ Rd × T d′ be open and let Ξ be an Rd × T d′-valued
analytic function defined on an open set Ω ⊂ Rd ×Rd′ such that:
(i) Ξ is invertible as a map between U and Ω;
(ii) the Jacobian determinant of Ξ never vanishes on Ω (“Ξ is nonsingu-
lar”);15

(iii) Ξ and Ξ−1 are analytic in Ω and U , respectively. Then we say that
(U,Ξ) is an analytic system of local coordinates on U .

15 Naturally, the Jacobian determinant of Ξ in ξ0 is the Jacobian determinant of a repre-
sentative of Ξ near ξ0 (see Definition 14, above).
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If U ⊂ Rd × T d′ , V ⊂ Rd × T d
′

are open sets and d + d′ = d + d
′
, and if

Ξ is an analytic function on U taking values in V and establishing between
U and V a one-to-one nonsingular correspondence with analytic inverse, then
we shall say that Ξ is an analytic correspondence between U and V .

Observation. Some among d, d′, d, d
′
, may vanish: see the Observation to Def-

inition 14.

It is now possible to establish the definition of an analytic surface. The
reader should try to make drawings to see the various geometrical objects
discussed in the following definitions and observations.

16 Definition. A regular surface Σ ⊂ Rd×T d′ is said to be “locally analytic”
in an open set U ⊂ Rd × T d′ if there is a family of local analytic systems of
coordinates (Uα,Ξα)α∈A with bases (Ωα)α∈A such that:
(i) the points of Σ ∩ Uα are those which in (Uα,Ξα) have coordinates β1 =
. . . = βd+d′−ℓ = 0 where ℓ is the “dimension” of Σ, i.e., (Uα,Ξα) are adapted
to Σ;
(ii) as α varies in A, the sets Uα cover Σ ∩U and A is a finite set of indices.
If Σ is a locally analytic surface in U and f is an Rd × T d′-valued function
on Σ, we shall say that “ f is analytic on Σ” if it is the restriction to Σ of
an analytic function on an open set Ũ ⊃ Σ ∩ U .
If Σ ⊂ U is a closed set and if Σ is a locally analytic surface in U , we shall
say that Σ is an “analytic surface” (this notion is U independent).

Observations.
(1) If some of the d, d′, d, d

′
vanish see the Observation to Definition 14.

(2) Examples are discussed in the problems and exercises at the end of this
section.

Finally, we define the “analytically regular sets”.

17 Definition. A closed set G ⊂ Rd ×T d′ will be called “locally analytic” in
the open set U ⊂ Rd × T d′ if ∂G is a surface locally analytic in U .
If G is locally analytic in U and G ⊂ U , then G will be called “an analytic
set” (this notion is U independent).
A closed set G ⊂ Rd × T d′ will be called “analytically regular” if there is an
open set U ⊃ G and a family of sets locally analytic in U through which, via
a finite number of union and intersection operations, one can build G.

Observations.
(1) If d or d′ vanish, see comment (1) to Definition 14.
(2) Any analytic surface is an analytic set (since either ∂Σ = Σ or Σ ≡
Rd × T d′ .
(3) If Ξ is an analytic transformation of U ⊂ Rd × T d′ onto V ⊂ RdXT d′
and if G ⊂ U is an analytically regular set then Ξ(G) ⊂ V is also analytically
regular, i.e., the above notion is invariant under analytic maps. This follows
from the fact that composing analytic functions, one obtains analytic func-
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tions.16

(4) If Σ is a surface locally analytic in U and if G ⊂ U is an analytically
regular set also, G ∩ Σ is an analytically regular set: this is the “invariance
under the intersection operations” of the analytic regularity.

(5) Let d ≥ d, d′ ≥ d′ and regard Rd × T d′ as a subset of Rd × T d′ by iden-

tifying it as the subset of Rd × T d′ consisting of the points (xϕ) such that
x = (x,0), ϕ = (ϕ,0) with (x,ϕ) ∈ Rd × T d′ and the 0’s denote the origins

in Rd−d and Rd′−d, respectively. Then Rd × T d′ is an analytic surface in

Rd × T d′
If G ⊂ Rd × T d′ is analytically regular, then its “extension Ĝ to Rd × T d

′

,

Ĝ = {(x,ϕ) | (x,ϕ) ∈ Rd × T d
′

, x = (x,y), ϕ = (ϕ,ψ)with (x,ϕ) ∈ G} is
analytically regular in Rd × T d′ .
(6) On every regular (or locally analytic) surface Σ ⊂ Rd×T d′ , one can define
the “area measure”: if (U,Ξ) is a regular (or analytic) system of local coor-
dinates adapted to Σ with basis Ω, there is a regular (or analytic) function σ
on Ω such that for E ⊂∈ Σ ∩ U :

area(E) =

∫

Ξ−1(E)

σ(0, . . . , 0, βd+d′−ℓ+1, . . . , βd+d′)dβd+d′−ℓ+1 . . . dβd+d′

(4.13.12)
provided Ξ−1(E) is measurable in the Riemannian sense (in this case, one
says that E is measurable with respect to the area measure).
If Σ ⊂ Rd is a regular surface and (U,Ξ) is a well-adapted orthogonal and
of Fermi type system of local coordinates (in the sense of Definition 12, §3.7,
p.177, and Proposition 12, p.183) with respect to the scalar product η · χ on
Rd one has

σ(0, . . . , 0, βd+d′−ℓ+1, . . . , βd+d′) =
√
γℓ (4.13.13)

essentially by (a very reasonable) definition; σ in the other coordinate sys-
tems is computed by ordinary coordinate transformations. The simplicity of
Eq. (4.13.13) provides a further illustration of the notion of “well-adapted
orthogonal” systems of coordinates of §3.7.
(7) One may think that it is possible to define something like “C∞-regular”
sets by simply replacing the word analytic by C∞ everywhere above. However,
the property in Observation (4), for instance, would not hold. See exercises to
§4.13.

The problem of the (Riemann) measurability of sets is not always trivial
and the interest in the above digression on the definition of analytically regular
sets rests mainly on the validity of the following proposition.

28 Proposition. Let Σ ⊂ Rd × T d′ be a surface locally analytic in the open
set U and let E be the analytically regular set contained in U .

16 The reader can attempt a proof starting with the ℓ = 1 case.
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The set E ∩ Σ is then measurable with respect to the area measure on Σ,
i.e., given ε > 0, there exist two functions χ+ and χ− of class C∞ on Σ,
0 ≤ χ− ≤ χ+ ≤ 1, such that if χE, is the characteristic function of E ∩Σ:

(i) χ−(ξ) ≤ χE(ξ) ≤ χ+(ξ), ∀ ξ ∈ Σ ∩ E, (4.13.14)

(ii)

∫

E∩Σ
(χ+(ξ)− χ−(ξ)) dσξ < ε, (4.13.15)

where the integral denotes the surface integral on Σ, see Observation (6) above.

We do not describe the proof of this proposition. Although it is not partic-
ularly difficult it would require a preliminary analysis of the structure of the
analytic surfaces and their intersections which, being marginal for us, would
lead us too far away from our problem of discussing the integrability criteria
for mechanical systems.

addcontentslinetocsubsectionExercises and Problems
1. Show that the function on T 1: ϕ→ cosϕ is analytic.

2. Show that the T 1-valued function x→ x mod 2π is analytic.

3. If f ∈ C∞(T 1) and if its Fourier coefficients can be bounded as |bfk| ≤ Fck, c < 1, then
f is analytic on V . Prove this statement.

4. Generalize Problem 3 to the case of a function on T ℓ.

5. Show that a “surface” of R relatively closed in U ⊂ R and locally analytic in U (U open)
is, inside U , a union of at most denumerably many points without accumulation points in
U or coincides with U . Show that a bounded analytically regular set in R is a union of
finitely many points and closed intervals.

6. Show that straight lines, planes, half-lines, half-planes, and half-spaces are analytic sets
in R2 and R3.

7. Show that triangles, polygons, disks and their boundaries are analytically regular in R2

and in R3.

8. Show that the regular solids, the spheres, the diedra, the triedra, etc., and their bound-
aries are analytically regular in R3.

9. Show that the disk and the ellipse, or the ball and the ellipsoidal ball (i.e. the sets whose
boundary are the sphere or the ellipsoid), and their boundaries are analytic sets in R2 or
R3, respectively.

10. Show that a disk in R3 is not an analytic set although it is analytically regular.

11. Let x1, x2, . . . be a numeration of the rational numbers in [0, 1]. For every xk, consider
the open interval with length 2−1−k and center xk. Show that the union of such intervals
is an open set dense in [0, 1] with external measure (in the Riemannian sense) ≥ 1 and with
the internal measure < 1

2
. Call this union A.

12. Let g ∈ C∞(R) be a positive function on (− 1
2
, 1
2
) and zero elsewhere. Set

f(x) =
∞X

k=1

1

k!
g(2k+1(x− xk))

and show that f is positive on A (see Problem 11) and zero outside. Show also that f is in
C∞(R).
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13. Show that the set D∞
def
= {(x, y) | 0 ≤ x ≤ 1, f(x) ≤ y < +∞ ⊂ R2, with f as defined

in Problem 12, has a piecewise C∞ boundary. Show that the intersection between D∞ and
the x-axis is not measurable in the Riemannian sense.

14. Let v ∈ C∞(R1) and consider the surface in R2 with equations z = v(x), x ∈ R. Show
that the “area” of a line element over dx (i.e. its length) is, according to Eq. (4.13.13),

dσ =
q

1 + ( dv(x)
dx

)2dx.

15. Let v ∈ C∞(R2) and consider the surface inR3 with equations z = v(x, y), (x, y) ∈ R2.
Show that the area of a surface element over dxdy is, according to Eq. (4.13.13),

dσ =

s
1 + (

∂v(x, y)

∂x
)2 + (

∂v(x, y)

∂y
)2dxdy.

4.14 Analytically Integrable Systems. Frequency of
Visits and Ergodicity

In §4.8, Definition 11, p.289, we introduced the notion of “analytically inte-
grable” Hamiltonian systems defined on an open set W ⊂ Rℓ×Rℓ or Rℓ×T ℓ
or Rℓ ×Rℓ1 × T ℓ2 , ℓ1 + ℓ2 = ℓ, in phase space.

The interest in analytically integrable systems is twofold: essentially all
concrete integrable systems so far met were analytically integrable (and this
could be verified with some labor); furthermore, if t = (it1)

∞
i=0, the (f, t)

histories of the points in the integrability region W of phase space have a
well-defined average value for all the f ∈ C∞(W ), and also for many other
more singular functions f , for instance for the characteristic functions of the
analytically regular sets.

To illustrate this remarkable property, it is convenient to introduce the
following notions.

18 Definition. Let W be a subset of the phase space (⊂ Rℓ ×Rℓ or Rℓ×T ℓ
or Rℓ × Rℓ1T ℓ2 , ℓ1 + ℓ2 = ℓ) of an analytic time-independent Hamiltonian
system. Suppose that the system is analytically integrable on W .
Let E = (E0, E11, . . . , Ep) be a family of subsets of W such that:
(i) ∪pi=0Ei = W, Ei ∩ Ej = ∅ if i 6= j, i.e., E is a “partition of W”;
(ii) E1, . . . , Ep are analytically regular;
(iii) d(Ei, Ej) > 0 if i 6= j, i, j = 1, . . . , p.
Obviously, E0 = W\ ∪pj=1 Ej is an open set.
The partition E will be called an “analytically regular partition” of W . Denote
χEi the characteristic function of the sets Ei, i =, 0, 1, . . . , p, and let

fE(ξ) =

p∑

j=0

j χEj (ξ), ξ ∈ W (4.14.1)

and, finally, we call “(G, t) history of (p,q) ∈W” the (fE , t) history of (p,q)
when t = (ti)

∞
i=0 is a divergent monotonic sequence.
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Observation. The (E , t) history is a sequence of integers between 0 and p: the
k-th element of this sequence simply indicates into which set among those of
E the point Stk(ξ) falls, if t→ St(ξ), t ≥ 0, is the solution to the Hamiltonian
equations with initial datum ξ =( p,q).

The following proposition is very remarkable.

29 Proposition. Given an analytic Hamiltonian system analytically inte-
grable in the subset W of phase space, the limit

lim
N→+∞

1

N

N−1∑

j=0

χE(Sjt1(ξ)) (4.14.2)

exists, ∀ t1 > 0, ∀ ξ ∈W and for all analytically regular subsets E of W .
This limit will be called naturally the “frequency of visit to E by the mo-
tion starting in ξ” with respect to the sequence of observation times t =
(it1)

∞
i=0, t1 > 0.

Proof. The image I(E) ⊂ V ×T ℓ of E via the analytic integrating transfor-
mation I, see Definition 11, §4.8, p.289, will still be analytically regular, see
observation (3) to Definition 17, p.338. Since for I(ξ) = (A,ϕ),

I(Stξ) = (A,ϕ+ ω(A)t), (4.14.3)

the proof of the above proposition is “reduced” to the one contemplated in
the following one.

30 Proposition.Let ω = (ω1, . . . , ωℓ) be an ℓ-tuple of real numbers and let
E ⊂ T ℓ be an analytically regular subset of T ℓ. If t = (it1)

∞
i=0, t1 > 0, the

frequency of visits

νE(ϕ) = lim
N→+∞

1

N

N−1∑

j=0

χE(ϕ+ ωt) (4.14.4)

exists, ∀ϕ ∈ T ℓ. Furthermore, if the numbers ω1, . . . , ωℓ and σ = 2π
t1

are
rationally independent,

νE(ϕ) =
1

(2π)ℓ

∫

T ℓ

dϕ′ (4.14.5)

Proof. We shall only treat the simple case when (ω1, . . . , ωℓ, σ) are ratio-
nally independent because it is easy. The general case can be reduced to this
one with some patient though interesting work which we leave to the reader,
referring, as a guide, to the sequence of problems at the end of this section.

The idea of the proof is to use the Riemann measurability of E (conse-
quence of its analytic regularity, see Proposition 28) to find two C∞(T ℓ) func-
tions χ− and χ+ verifying Eqs. (4.13.14) and (4.13.15) to infer that νE(ϕ), if
existing, must be between the averages of χ− and χ+ which, in turn, exist and
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differ at most by ε by Eq. (4.13.15) and Proposition 6, §4.2, Eq. (4.2.10), p.251.
Then the arbitrariness of ε implies the actual existence of νE(ϕ) and the fact
that it is between the averages 1

(2π)ℓ

∫
T ℓ χ

±(ϕ′) dϕ′. Again the arbitrariness

of ε and Eqs. (4.13.15) and (4.13.14) imply Eq. (4.14.5). mbe

Observations.
(1) The reader will note that the analytic regularity of E is used in the above
proof only to infer the Riemann measurability of E. However, if ω1, . . . , ωℓ, σ
were not rationally independent the analytic regularity should again be used
to prove the reducibility of the general case to the rationally independent one.
This is the reason why the Riemann measurability is not in itself a genera]
sufficient condition for the existence of the limit of Eq. (4.14.4). See problems
at the end of this section.
(2) Of course if ω1, . . . , ωℓ, σ are rationally independent the Riemann measur-
ability of E suffices, alone, to deduce Eqs. (4.14.5) and (4.14.6) as it appears
clear from the above proof.

So every motion of a Hamiltonian system analytically integrable in W
visits an analytically regular set E with a well-defined frequency of visit.
One can wonder about the frequency of joint visits to two given analytically
regular sets E and E′. The remarkable fact is that they are, on the average,
“independent”. The frequency of a visit to E followed j time units later by a
visit to E′ is, on the average over j, equal to the product of the frequency of
visit to E and of that of E′: ∀ ξ ∈ W, ∀ t1 > 0,

lim
N→+∞

1

N

N−1∑

j=0

νE∩Sjt1 (E′)(ξ) = νE(ξ)νE′(ξ). (4.14.6)

In other words, visit to E by a given motion does not put any restrictions on
the possibility of a visit to E′ j time units later, at least on the average on j.

This is the content of the following proposition.

31 Proposition. In the assumptions of Proposition 29, let E,E′ ⊂W be two
analytically regular sets. Then property (4.14.6) holds for all ξ ∈ W, ∀ t1 > 0.

Observation. This proposition is a corollary of the following Proposition 32
on the quasi-periodic motions on T ℓ in the same way in which Proposition 29
appears to be a corollary of Proposition 30.

32 Proposition. Let E,E′ ⊂ T ℓ be two analytically regular sets and let
ω ∈ Rℓ, t1 > 0. Denote E′+ tω the set of points ϕ′+ tω mod 2π as ϕ′ varies
in E′ (E′ + tω is the set into which E′ evolves in time t under the quasi
periodic flow on T ℓ with pulsations ω). If νE(ϕ) is the frequency of visits of
the points ϕ+ jt1ω, j = 0, 1, . . . to E, it is, ∀ϕ ∈ T ℓ,

lim
N→+∞

1

N

N−1∑

j=0

νE∩(E′+jt1ω)(ϕ) = νE(ϕ)νE′(ϕ). (4.14.7)
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Observations
(1) When ω1, . . . , ωℓ and σ = 2π

t1
are rationally independent νE(ϕ) is the

measure of E, see Eq. (4.14.5). Hence, Eq. (4.14.7) means that in this case
the fraction of E occupied by images of points of E′ is a fraction of E equal,
on the average, to the measure of E′. In other words, E′ + jt1ω is uniformly
scattered in T ℓ, on the average. This holds for ∀E′ analytically regular.
(2) By considering the case ℓ = 1 and taking E and E′ to be two small
intervals, one sees that the limit of νE∩(E′+jt1ω)(ϕ) as j →∞ does not exist

in general: even in the case of rational independence of ω, 2π
t1

the average over
j in Eq. (4.14.7) is essential. Therefore, even though on the average E′+ jt1ω
is uniformly scattered in T ℓ, it is not true that for large times j this set is
uniformly scattered. This is due manifestly to the fact that the rotations of
the torus are “rigid” transformations and they do not “mix” the points of T ℓ.
Proof. As in the case of Proposition 29, let us only treat the simple case
when ω1, . . . , ωℓ and σ = 2π

t1
are rationally independent. The general case can

be treated by solving the last of the problems at the end of this section.
Proceeding as in the proof of Proposition 30 and using the Riemann mea-

surability [see Eq. (4.13.15)] of the sets E,E′, the problem of proving Eq.
(4.14.7) is reduced to that of proving, ∀ f, g ∈ C∞(T ℓ),

lim
N→+∞

1

N

N−1∑

j=0

f(ϕ)g(ϕ+ jt1ω) = f(ϕ) g(ϕ) (4.14.8)

where the bar over a function of ϕ denotes the average:

f(ϕ) = lim
N→+∞

1

N

N−1∑

j=0

f(ϕ+ jt1ω). (4.14.9)

Note that Eq. (4.14.8) would directly become Eq. (4.14.7) if one could take
f = χE , g = ηE′ .

To prove this proposition, Eq. (4.14.8) shall be applied to the functions
χ+, χ′+ which, according to Proposition 28, approximate χE , χE′ from above
and to the functions χ−, χ′− which approximate χE , χE′ from below, following
the approximation idea of the proof of Proposition 30.

Eq. (4.14.8) can now be checked. By the simplifying assumption of rational
independence, see Proposition 6, §4.2, p.251,

f(ϕ) =

∫

T ℓ

f(ϕ′)
dϕ′

(2π)ℓ
= f̂0, g(ϕ) =

∫

T ℓ

g(ϕ′)
dϕ′

(2π)ℓ
= ĝ0, (4.14.10)

f̂n, ĝn being the Fourier coefficients of f, g, respectively. Furthermore, since
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f(ϕ)g(ϕ+ jt1ω) =
∑

n,n′

f̂n ĝn′ei(n·ϕ+n′·ϕ+jt1n
′·ω)

=
∑

m

eim·ϕ
( ∑

n+n′=m

f̂n ĝn′ei jt1n
′·ω
) (4.14.11)

one finds, still by Proposition 6, §4.2,

f(ϕ)g(ϕ+ jt1ω) =Fourier coefficient of order 0

of the function in Eqs. (4.14.11)

=
∑

n

f̂n ĝ−ne
−i jt1n·ω

(4.14.12)

Then 1
N

∑N−1
j=0 f(ϕ)g(ϕ+ jt1ω) is

∑

n

f̂n ĝ−n

1

N

N−1∑

j=0

e−i jt1n·ω = f̂0ĝ0 +
∑

n 6=0

f̂n ĝ−n

1

N

e−i Nt1n·ω − 1

e−i t1n·ω − 1
(4.14.13)

and, by the usual argument of passage to the limit under the series sign,
it follows that the limit as N → +∞ of Eq. (4.14.13) is just f̂0ĝ0 which
shows, recalling (4.14.10), the validity of Eq. (4.14.8) and, hence, the above
proposition validity (in the special case treated here). mbe

The above propositions imply some simple consequences.
Let E = (E0, E1, . . . , Es) be a partition of the phase spaceW of an analytically
integrable Hamiltonian system. Suppose that E is analytically regular in W
in the sense of Definition 18, p.341. Given t = (i t1)

∞
i=0, the partition E and

k ≥ 0, 0 ≤ j1 < j2 < . . . < jk, define

E

(
j1 . . . jk
α1 . . . αk

)
def
= S−j1t1(Eα1) ∩ S−j2t1(Eα2) ∩ . . . ∩ S−jkt1(Eαk

).

(4.14.14)
This is the set of the points ξ ∈W such that

Sj1t1(ξ) ∈ Eα1 , Sj2t1(ξ) ∈ Eα2 , . . . , Sjkt1(ξ) ∈ Eαk
. (4.14.15)

From Eq. (4.14.15) and from the fact that E is a partition of W , it is

E

(
j1 . . . jk
α1 . . . αk

)
∩ E

(
j1 . . . jk
β1 . . . βk

)
= ∅ (4.14.16)

unless α1 = β1, . . . , αk = βk. Also

0,s⋃

α1,...,αk

E

(
j1 . . . jk
α1 . . . αk

)
= W and (4.14.17)
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0,s⋃

α

E

(
j1 . . . jp−1 jp jp+1 . . . jk
α1 . . . αp−1 ααp+1 . . . αk

)
= E

(
j1 . . . jp−1 jp+1 . . . jk
α1 . . . αp−1 αp+1 . . . αk

)
(4.14.18)

It is also clear that if αi 6= 0, ∀ i =, . . . , k, the set E

(
j1 . . . jk
α1 . . . αk

)
is analyt-

ically regular because the time evolution transformations (St)t∈R are analytic
(being such after the analytic change of coordinates I, [see Eq. (4.8.14)] which
integrates the system,17 and because the analytic image of an analytically
regular set is still analytically regular [see Observation (3) to Definition 17,
p.338).

The sets E

(
j1 . . . jk
α1 . . . αk

)
have a simple physical meaning.

We imagine that the partition E models an actual observation of some
physical quantity. The results of the observations, read on a dial, give a finite
number of results 1, 2, . . . , s or 0 (“off the dial”). Since the results of physical
measurements can always be numbered from 1 to some s, this is a very general
model.

Thus the phase space W is divided by collecting together all the physical
configurations ξ ∈W that produce the same result for the value of the physical
quantity described by Eq. (4.14.1) in this model.

Given a sequence of observation times 0, t1, t2, . . . , tj = jt1, we can de-
cide to record the results of the observations made at times j1t1, . . . , jkt1.
We see that the possible outcomes of such observations are (s + 1)k k-
tuples (α1, . . . , ak) and we can partition W into (s + 1)k sets of the form

E

(
j1 . . . jk
α1 . . . αk

)
collecting the points falling in Eα1 at time j1t1, in Eα2 at

time j2t1, . . ., in Eαk
at time jkt1 .

In terms of the above mathematical notions, it is possible to formulate an
interesting proposition whose physical meaning can easily be gathered from
the just discussed interpretation.

33 Proposition. Let W be the phase space of a time-independent analytically
integrable Hamiltonian system. Let t1 > 0 and let E = (E0, . . . , Es) be an
analytically regular partition of W . Then ∀ ξ ∈ W , the frequencies of visits
to the sets of the form of Eq. (4.14.14) by the motion starting at ξ exist.
Denoting such frequencies

p

(
j1 . . . jk
α1 . . . αk

∣∣∣ξ
)

def
= ν( j1...jk

α1...αk

)(ξ) (4.14.19)

it also follows that:
(i) ∀ k ∈ Z+, ∀ 0 ≤ j1 < j2 < . . . < jk integers, ∀ α1, α2, . . . , αk in (0, 1, . . . , s)

17 Here we use a well-known fact that when composing analytic functions, one obtains
analytic functions. The reader can attempt a proof of this starting with the ℓ = 1 case.
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p

(
j1 . . . jk
α1 . . . αk

∣∣∣ξ
)

def
= ν( j1...jk

α1...αk

)(ξ) ≥ 0 (4.14.20)

(ii) ∀ k ∈ Z+, ∀ 0 ≤ j1 < j2 < . . . < jk integers, ∀ α1, α2, . . . , αk in
(0, 1, . . . , s), ∀ p = 1, 2, . . . , k:

s∑

α=0

p

(
j1 . . . jp−1 jp jp+1 . . . jk
α1 . . . αp−1 ααp+1 . . . αk

∣∣∣ξ
)

= p

(
j1 . . . jp−1 jp+1 . . . jk
α1 . . . αp−1 αp+1 . . . αk

∣∣∣ξ
)

(4.14.21)
(iii) ∀ k ∈ Z+, ∀ 0 ≤ j1 < j2 < . . . < jk integers:

∑

α1,...,αk

p

(
j1 . . . jk
α1 . . . αk

∣∣∣ξ
)
≡ 1 (4.14.22)

(iv) ∀ k ∈ Z+, ∀ 0 ≤ j1 < j2 < . . . < jk, 0 ≤ i1 < i2 < . . . < ih integers, and
∀ α1, α2, . . . , αk, β1, β2, . . . , βh in (0, 1, . . . , s)

lim
N→∞

1

N

N−1∑

ℓ=0

p

(
j1 . . . jk i1+ℓ . . . ih+ℓ

α1 . . . αk β1 . . . βh

∣∣∣ξ
)

= p

(
j1 . . . jk
α1 . . . αk

∣∣∣ξ
)

p

(
i1 . . . ih
β1 . . . βh

∣∣∣ξ
)
.

(4.14.23)

Properties (i), (ii), (iii), and (iv) will be referred to, respectively, as “pos-
itivity”, “compatibility”, “normalization”, and “ergodicity” properties of the
frequencies of the motion “generated by ξ and observed on E”.
Observation. It will appear that the above proposition is just a fancy statement
of the results already obtained. However, it is very useful because it introduces
a few qualitative notions which are very natural and important.

Proof. First suppose the existence of the frequencies of Eq. (4.14.19). Then
(i) is obvious, while (ii) and (iii) follow from Eqs. (4.14.16)-(4.14.18) and Eqs.
(4.14.16) and (4.14.17), respectively.

So it remains to prove the existence of the frequencies and (iv). The ex-

istence of the frequencies for the sets E
(
j1...jk
α1...αk

)
with α1 6= 0, . . . , αk 6= 0

follows from their analytic regularity stated after their definition and from
Proposition 29. It remains, therefore, to examine the cases when some among
α1, . . . , αk are 0.

Proceeding inductively from Eqs. (4.14.16), (4.14.18), note that if k = 1,

Eq. (4.14.17) and the definition of frequency imply existence of p
(
j1
0

∣∣∣ξ
)

and,

actually,

p
( j1

0

∣∣∣ξ
)

= 1−
s∑

α=1

p
(j1
α

∣∣∣ξ
)
. (4.14.24)
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In fact, in general, if E is visited with well defined frequency ν its complement
is visited with frequency equal to (1 − ν). If k = 2, by the same arguments,
we deduce that for a > 0,

p

(
j1 j2
0α

∣∣∣ξ
)

= p

(
j2
α

∣∣∣ξ
)
−

s∑

α′=1

p

(
j1 j2
α′ α

∣∣∣ξ
)
. (4.14.25)

Hence the frequency

p

(
j1 j2
0 0

∣∣∣ξ
)

= p

(
j1
0

∣∣∣ξ
)
−

s∑

α=1

p

(
j1 j2
0α

∣∣∣ξ
)
. (4.14.26)

exists for the same reasons, etc., inductively.
Finally, (iv) follows, by Proposition 31, immediately when α1 6= 0, . . . , αk 6=

0, β1, . . . , βh 6= 0, because E
(
j1...jk
α1...αk

)
and E

(
i1...ih
β1...βh

)
are analytically regu-

lar and Eq. (4.14.23) is just a transcripton in other symbols of Eq. (4.14.6).
However the general case, when some of the α’s or β’s may be zero, can be
treated in the same way as that used to show the existence of the frequencies
of visit, see Eqs. (4.14.24)-(4.14.26). mbe

It is useful to reinterpret Proposition 33 as follows.
Given ξ ∈ W , consider the (E , t) history of ξ, see Definition 18, §4.14,

p.341. It is the sequence of a = (a0, a1, . . .), ai = 0, 1, . . . , s such that

Sit1(ξ) ∈ Eai , i = 0, 1, . . . . (4.14.27)

The frequencies of Eq. (4.14.19) can be “computed” from the history a as

p

(
j1 . . . jk
α1 . . . αk

∣∣∣ξ
)

= lim
N→∞

1

N
nN

(
j1 . . . jk
α1 . . . αk

∣∣∣a
)
, (4.14.28)

where nN (. . .) is the number of values of h, integer and smaller than N , such
that

S(h+j1)t1(ξ) ∈ Eαa , . . . , S(h+jk)t1(ξ) ∈ E)ak (4.14.29)

[see Eqs. (4.14.15) and (4.14.19)], i.e., it is the number of times when

ah+j1 = α1, . . . , ah+jk = αk (4.14.30)

occur simultaneously, with h integer in [0, N). In other words, Eq. (4.14.28)

says that p
(
j1...jk
α1...αk

∣∣∣ξ
)

is the frequency of appearance of the “string α1, . . . , αk

at sites following each other at successive distances j2−j1, j3−j2, . . . , jk−jk−1

in the history a of ξ. It is then natural to set the following general definition.

19 Definition. Let a = (ai)
∞
i=0 be a sequence, ai = 0, 1, . . . , s, ∀ i ∈ Z+.

Given k > 0, 0 ≤ j1 < j2 < . . . < jk integers and α1, . . . , αk in (0, 1, . . . , s)
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we say that a “string homologous to
(
j1...jk
α1...αk

)
” is “realized in a at the h-th

site” if

ah+j1 = α1, ah+j2 = α2, . . . , ah+jk = αk. (4.14.31)

The frequency of realization in a of strings homologous to
(
j1...jk
α1...αk

)
will be

defined in terms of the quantity

pN

(
j1 . . . jk
α1 . . . αk

∣∣∣a
)

=
1

N

{
number of times a string homologous

to
(
j1...jk
α1...αk

)
is realized in a at sites h between 0 and N

} (4.14.32)

We shall set

p

(
j1 . . . jk
α1 . . . αk

∣∣∣a
)

def
= lim

N→∞
pN

(
j1 . . . jk
α1 . . . αk

∣∣∣a
)

(4.14.33)

whenever the limit exists.
We shall say that a sequence a is “ergodic” if:
(i) it has well-defined frequencies of appearance for all the strings of symbols,
i.e., the limits (4.14.33) exist for all choices of the indices;
(ii) there are at least two distinct symbols α, β occurring with positive fre-
quency in a:

p
( 0

α

∣∣∣a) > 0, p
( 0

β

∣∣∣a) > 0; (4.14.34)

(iii) for all choices of indices

lim
N→∞

1

N

N−1∑

ℓ=0

p

(
j1 . . . jk i1+ℓ . . . ih+ℓ

α1 . . . αk β1 . . . βh

∣∣∣a
)

= p

(
j1 . . . jk
α1 . . . αk

∣∣∣a
)

p

(
i1 . . . ih
β1 . . . βh

∣∣∣a
)
.

(4.14.35)

As k, j1, . . . , jk, α1, . . . , αk vary, the family of numbers (4.14.33) will be called
the “distribution of a”.
If a only verifies (i) [or (i) and (ii)], it will be called a “sequence with well-
defined frequencies” (respectively, a “sequence with nontrivial frequencies”) of
the occurrence of the symbols.
Finally, an ergodic sequence is said “mixing” if for all the choices of indices,

lim
ℓ→∞

p

(
j1 . . . jk i1+ℓ . . . ih+ℓ

α1 . . . αk β1 . . . βh

∣∣∣a
)

= p

(
j1 . . . jk
α1 . . . αk

∣∣∣a
)

p

(
i1 . . . ih
β1 . . . βh

∣∣∣a
)
.

(4.14.36)
which is obviously stronger than Eq. (4.14.35).
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Observations.
(1) From the definition, Eq. (4.14.33), of the distribution of a as a family of
frequencies of certain events, it immediately follows that such numbers verify
Eqs. (4.14.20), (4.14.21), and (4.14.22) with a replacing ξ.
(2) Using the language of probability theory (see §2.23), we can say that to any
sequence a with well-defined frequencies of occurrence of the symbols it is pos-
sible to associate a family (Ek,pk)∞k=1 of probability distributions as follows.
Ek will be the set of (s+1)k events, which we can denote α = (α0, . . . , αk−1),

αi = 0, 1, . . . , s, whose probability is p
(

0...k−1
α0...αk−1

)
. By Eq. (4.14.33), this

probability coincides, by definition, with the frequency of occurrence in a of

strings homologous to
(

0 ... k−1
α0 ... αk−1

)
.

For this reason, the sequence (Ek,pk)∞k=1 is also called the “probability distri-

bution of the symbols of a” and p
(

0...k−1
α0...αk−1

∣∣∣a
)

is called the “probability of

he string α = (α0, . . . , αk−1) in a”.

Proposition 33 can be reinterpreted in terms of the above definition:

34 Proposition. By the assumptions of the preceding proposition, denote for
ξ ∈ W the (E , t) history, t = (i t1)

∞
i=0, t1 > 0 of ξ as a(ξ). Then, if Eq.

(4.14.34) holds, a(ξ) is an ergodic non mixing sequence.

Observation. The only statement not already contained in Proposition 33 is
the one concerning mixing.

Proof. By the assumed analytic integrability of the system, we can imagine
that a = a(ξ) is the (E , t) history of a point ϕ ∈ T ℓ with respect to an ana-
lytically regular partition E = (E0, . . . , Ep) of T ℓ and to the transformations
(St)t∈R of T ℓ given by

Stϕ = ϕ+ tω mod 2π. (4.14.37)

For simplicity, we shall only deal with the case when ω1, . . . , ωℓ, σ = 2π
t1

are
rationally independent and when it is also assumed that there are two sets

Eα, Eβ such that p
(

0
α

∣∣∣a) > 0, p
(

0
β

∣∣∣a) > 0, having a diameter so small that

there is a point ϕ0 ∈ Eα at a distance from Eβ , greater than twice the
diameter of Eα.

These are serious restrictions. However, the general case can be reduced to
the above, as it will become apparent after having gone through the problems
at the end of this section.

The rational independence assumption of ω1, . . . , ωℓ, σ and the analytic
regularity of E imply that

p

(
0 j

γ γ′

∣∣∣a
)

=
1

(2π)ℓ

∫

Eξ∩S−j t1Eβ

dϕ, ∀ γ, γ′ (4.14.38)

[see Proposition 30, p.342, Eq. (4.14.5)].



4.14 Frequency of Visit 351

If a(ξ) were mixing, by Eq. (4.14.36), one would also have

lim
j→∞

p

(
0 j

γ γ′

∣∣∣a
)

= p

(
0

α

∣∣∣a
)
V p

(
0

β

∣∣∣a
)
> 0 (4.14.39)

However this would mean that for j large enough, it should be

p

(
0 j

α β

∣∣∣a
)

=

∫

Eξ∩S−j t1Eβ

dϕ > 0 (4.14.40)

Hence, Eα ∩ S−j t1Eβ 6= ∅ eventually. But, by the rational independence of
ω1, . . . , ωℓ, σ the trajectory ϕ̃− j t1 ω, j ≥ j0, of any point ϕ̃ chosen in Eβ is
dense in T ℓ (see §4.2). Therefore, given ϕ0 ∈ Eα, there must exist infinitely
many values of j ≥ 0 such that the distance of ϕ̃− j t1 ω from ϕ0 is less than
the diameter of Eβ . For such values of j, it must be that Eα ∩ S−j t1Eβ = ∅
since these torus rotations do not deform the sets but they only translate
them, and ϕ0 is chosen so that d(ϕ0, Eβ) > {twice the diameter of Eβ}. mbe

4.14.1 Exercises and Problems

Solve the following connected sequence of problems for ℓ = 2 first drawing
graphical representations of the various maps and transformations. The nota-
tions are those of §4.14. The aim is to solve problem 8 below.

1. Let ω1, . . . , ωℓ be rationally dependent and not all zero. Show that there exists ℓ < ℓ
rationally independent numbers bω1, . . . , bωℓ and an ℓ × ℓ matrix J with integer coefficients

and such that ω = J eω, i.e., ωj =
Pℓ
k=1 Jjkbωk, j = 1, . . . , ℓ.

2. In Rℓ consider the plane πℓ = JRℓ = {x | xj =
Pℓ
k=1 Jjkyk, y ∈ Rℓ and the plane π⊥

ℓ

orthogonal to it. Show that there exists an ℓ× (ℓ − ℓ) matrix J⊥ with integer coefficients

such that π⊥
ℓ = J⊥Rℓ−ℓ.

3. Define the map (J × J⊥)T of T ℓ × T ℓ−ℓ onto T ℓ, ∀ (ϑ,ν) ∈ T ℓ × T ℓ−ℓ as:

(J × J⊥)(ϑ,ν) = (Jϑ+ J⊥ν mod 2π.

If one defines bE = (J × J⊥)−1
T E, for E ⊂ T ℓ, and if E is analytically regular in T ℓ, show

that bE is such in T ℓ × T ℓ−ℓ ≡ T ℓ. (Hint: Note that (J × J⊥)T T ℓ regarded as a matrix
denoted (J×J⊥)T linearly maps Rℓ onto Rℓ; hence, det(J×J⊥) 6= 0. Hence, (J×J⊥)−1

T )E

is analytically regular in Rℓ and bE is obtained by considering (J × J⊥)−1
T E, after reducing

mod 2π, the coordinates of its points, as a subset of the torus T ℓ × T ℓ−ℓ ≡ T ℓ.)

4. If ϕ0 ∈ T ℓ and ϕ0 = (J × J⊥)T (ϑ0,ν0) show that the frequency of visits to E of the
trajectory of ϕ0 under the transformation ϕ0 → ϕ0 + tω coincides with the frequency of
visit to bE of the trajectory of (ϑ0,ν0) under the transformation (ϑ0,ν0)→ (ϑ0 + eω t,ν0)
(Hint: Note that ϕ0 +ω t = (J × J⊥)T (ϑ0 + bω t),ν0) by the construction of J .)

5. Let bE(ν0) = bE ∩{(ϑ,ν) | (ϑ,ν) ∈ T ℓ×T ℓ−ℓ, ν = ν0}, then the frequency of visits to E
of the trajectory of ϕ0 for the transformations ϕ0 → ϕ0 + tω coincides with the frequency

of visits to
bbE(ν0) = {ϑ |ϑ ∈ T eℓ, (ϑ,ν0) ∈ bE(ν0)} ⊂ T eℓ by the trajectory of ϑ0 under the
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transformation ϑ0 → ϑ0 + bω t. Furthermore, if E is analytically regular in T ℓ, then
bbE(ν0)

is such in T ℓ (Hint: Interpret
bbE(ν0) as the intersection of bE(ν0) with a “plane”.)

6. If ω1, . . . , ωℓ are rationally independent but ω1, . . . , ωℓ, σ = 2π
t1

are not rationally inde-
pendent there are ℓ integers m1, . . . ,mℓ and q > 0, integer too, such that

σ =
m ·ω
q

.

The problem of the determination of the frequency of visits to E ⊂ T ℓ by the trajectory
of ϕ ∈ T ℓ under the map ϕ→ ϕ+ω2π j

σ
, j = 0, 1, . . . is equivalent (via a suitable change

of coordinates) to the analogous problem when the relation between σ and ω is simply
σ = m

q
ω1. (Hint: The transformation is analogous to that described in Problems 2 and 3

above. It is the transformation associated, in the same way as above, to the matrix J of the
transformation

ω1 = ω′
1 −

ℓX

i=2

miω
′
i, ωj = m1ω

′
j , j = 2, . . . , ℓ.)

7. Consider the trajectory of ϕ0 ∈ T ℓ under the transformations ϕ0 → ϕ0 + 2π
σ
jω with

σ = m
q
ω1, m, q integers, and assume that ω1, . . . , ωℓ are rationally independent.

Think of T ℓ as T 1 × T ℓ−1 and, if (ϕ,ψ) ∈ T 1 × T ℓ−1, show that the map under analysis
can be written as (ϕ,ψ) → (ϕ + 2πq

m
j,ψ + ω′j) where ω′ = (ω′

2, . . . , ω
′
ℓ) are ℓ − 1 ratio-

nally independent numbers which together with 2π form a set of ℓ rationally independent
numbers.
If E ⊂ T ℓ is analytically regular, show that the frequency of visit to E exists and depends
only on ϕ. (Hint: Note that

1

Mm

Mm−1X

j=0

χE(ϕ0 +
2πq

m
j,ψ0 +ω′ j)

=
1

Mm

m−1X

k=0

M−1X

p=0

χE(ϕ0 +
2πq

m
(k +mp), (ψ0 + kω′) +mpω′)

=
1

m

m−1X

k=0

“ 1

M

M−1X

p=0

χE(ϕ0 +
2πq

m
(k +mp), (ψ0 + kω′) +mpω′)

”
,

and, letting ϕk = ϕ0 + 2πq
m
k, ψk = ψ0 + kω′, this can be rewritten

1

m

m−1X

k=0

“ 1

M

M−1X

p=0

χE(ϕk , ψk +mpω′)
”

=
1

m

m−1X

k=0

„
1

M

M−1X

p=0

χEk(ϕ0)(ψk +mpω′)
«
,

where Ek(ϕ0) = {ψ |ψ ∈ T ℓ−1, (ϕ0 + 2πq
m
k,ψ) ∈ E} is still analytically regular for

k = 0, . . . ,m − 1. Hence, the frequency of visit to E exists because mω′ has rationally

independent components and it is given by 1
m

Pm−1
k=0

R
Ek(ϕ0)

dϕ′

(2π)ℓ−1 .)

8. On the basis of the above problems, deduce the proofs of Propositions 30 and 31 in the

general case, from their validity in the rationally independent cases.
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4.15 Analytic Integrability Criteria. Complexity of
Motions and Entropy

Summarizing the preceding sections discussion, the following criteria of non
analytic integrability, on a phase space subset W , have been obtained for an
analytic time-independent Hamiltonian system:

(i) if in W there is one ξ whose (E , t) history (t = (i t1)
∞
i=0) on an analytically

regular partition E of W contains some strings without well-defined frequency
of occurrence;
(ii) if in W there is one ϕ whose trajectory T has a closure T that cannot be
mapped bicontinuously on a torus T s, s ≤ ℓ, ℓ being the number of degrees
of freedom;
(iii) if in W there is one ξ whose (E , t) history on an analytically regular
partition E of W has nontrivial frequency distributions but is not ergodic;
(iv) if in W there is one ξ whose (E , t) history on an analytically regular
partition E of W is “too ergodic”, i.e., mixing.

The review of non integrability criteria will be concluded by examining an-
other very interesting property of the analytically integrable systems: namely
that the motions of such systems have a “small complexity”. This leads to
another non integrability criterion, see (v), p.359.

To obtain such a result a quantitative meaning is needed for the notion
of “complexity” of the motions associated with points moving on a regular
(analytic) surface under the action of a family (“semigroup”) (St)t∈R+ of C∞

(analytic) transformations.
A natural way to evaluate the complexity of a motion is to count the

number of different strings of history appearing in the (E , t) history of the
motion on an analytically regular partition.

20 Definition. Let a be a sequence a = (ai)
∞
i=0, ai ∈ (0, . . . , s). Assume that

a has well-defined frequencies of symbol appearances (see p.348).
The “number of strings of symbols of length k appearing in a” is defined as

Nabs(a, k) =
{
number of choices of (α0, . . . , αk−1)

∈ (0, . . . , s)k such that p

(
0 . . . k − 1

α0 . . . αk−1

∣∣∣a
)
> 0
} (4.15.1)

where, we recall, p
(

0 ... k−1
α0 ... αk−1

∣∣∣ a
)

denotes the frequency of appearance in a

of a string homologous to
(

0 ... k−1
α0 ... αk−1

∣∣∣a
)
, see Definition 19, p.348

Clearly Nabss(a, k) < (s+ 1)k. We shall set18

Sabs(a) = lim
k→+∞

1

k
logNabs(a, k) (4.15.2)

which we call the “absolute complexity” of the sequence a.

18 The limit always exists (see Problem 21, p.364).
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Observations.
(1) The number in Eq. (4.15.2) can give an idea of how complex the sequence
a might be. However, Sabs(a) is a rather rough measure of the complexity of
a: in its evaluation, in fact one puts on the same footing strings occurring in
a with a frequency of occurrence much smaller than that of other strings or,
by the Observation (2), to Definition 19, p.348, with a “probability” much
smaller than that of others.
(2) The existence of the limit of Eq. (4.15.8) is easy to prove and very instruc-
tive (see Problem 23 below).

The following more sophisticated definition takes into account the possi-
bility that some strings may be present in a with extremely small probability
and gives them less importance.

21 Definition. Let a = (ai)i∈Z+ , a = (ai)
∞
i=0, ai = 0, 1, . . . , s be a sequence

with well defined frequencies of symbol occurrence as in Definition 20.
Given ε > 0, consider all the possible subsets Cε of the set of the k-tuples
α0, . . . , αk−1, αi = 0, . . . , s, such that

∑

α0,...,αk−1

p

(
0 . . . k − 1

α0 . . . αk−1

∣∣∣a
)
< ε. (4.15.3)

These are the sets Cε of “k-strings” (strings of length k) whose total frequency
of occurrence is smaller than ε. Let

N (a, k, ε)
def
= minimum, over the choices of Cε, of the

number of k-tuples outside Cε
(4.15.4)

and let
S(a, ε) = lim sup

k→+∞

1

k
logN (a, k, ε), (4.15.5)

S(a) = lim
ε→0

S(a, ε). (4.15.6)

This last quantity will be called the “entropy” of a and it can also be regarded
as a measure of the complexity of a.

Observations.
(1) This is a measure of complexity more interesting than Eq. (4.15.2).
Through Eq. (4.15.4) and the two limits in Eqs. (4.15.5) and (4.15.6), in
some way, one discards from the number of strings of a those which appear
with a very small frequency (see, also, Proposition 37 to follow).
(2) Obviously,

0 < S(a) ≤ Sabs(a) ≤ log(s+ 1), (4.15.7)

and one can note that the two numbers given in Eqs. (4.15.2) and (4.15.6)
can be thought of as obtained by permuting the following two limits:
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Sabs(a) = lim
k→∞

lim
ε→0

1

k
logN (a, k, ε), (4.15.8)

S(a) = lim
ε→0

lim
k→∞

1

k
logN (a, k, ε), (4.15.9)

if all the above limits exist.
(3) The term entropy given to Eq. (4.15.6) is due to the analogy of this
definition with Boltzmann’s fundamental idea on the proportionality between
the entropy of the state of a system, in the thermodynamic sense of the word,
and the number of ways of realizing the same macroscopic state by equivalent
microscopic states.
This analogy is evident if one is not biased by the various limit steps taken in
Eqs. (4.15.5), (4.15.6), (4.15.8), and (4.15.9), and at first one ignores them.

The following proposition holds.

35 Proposition. Consider a Hamiltonian system analytically integrable on
the phase-space subset W . Let E = (E0, . . . , Es) be an analytically regular
partition of W . Let t1 > 0, t = (i t1)

∞
i=0.

For all ξ ∈W , denote a(ξ) the (E , t) history of ξ. Then

S(a(ξ)) = 0, ∀ ξ ∈ W. (4.15.10)

Observation. As already seen in the propositions of §4.14, the statement of
this proposition is an immediate consequence of an analogous proposition
concerning the torus rotations. In this case, the proposition is the following.

36 Proposition. Let ω ∈ Rℓ and let (St)t∈R be the quasi-periodic flow on
T ℓ with pulsations ω (i.e. Stϕ = ϕ + tω). Consider the transformations
(Sjt1 )

∞
j=0, t1 > 0, and let E = (E0, . . . , Es) be an analytically regular partition

of T ℓ into (s+ 1) sets. The (E , t)-history a(ϕ) of ϕ ∈ T ℓ is such that

S(a(ϕ)) = 0, ∀ ϕ ∈ T ℓ. (4.15.11)

Observations.
(1) The argument presented in the proof below essentially gives the proof of a
more general theorem of great importance in the theory of entropy (“Koush-
nirenko’s theorem”, [4]).
(2) Actually, one could prove a stronger result namely,

Sabs(a(ϕ)) = 0, ∀ϕ ∈ T ℓ. (4.15.12)

However, in the course of the proof, we show Eq. (4.15.12) only in the ℓ = 1
case. The argument could be adapted to prove Eq. (4.15.12) in general. How-
ever, for ℓ > 1, an alternative proof of the weaker result of Eq. (4.15.11) is
preferable because the method of this proof is in itself interesting and, as
mentioned in Observation (1), contains the germs of interesting extensions.
(3) Equations (4.15.10) and (4.15.11) have an interesting monotonicity prop-
erty: if E ′ is a partition finer than E in the sense that every set in E can be
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thought of as a union of sets in E , then the absolute complexity (and the
entropy) of a′(ϕ) is not smaller than that of a(ϕ). This reflects the intuitively
clear fact that by increasing the precision of the measurements, the motion can
only look more complicated since more of its features may become manifest.

Proof: As mentioned in Observation (2), the cases ℓ = 1 and ℓ > 1 will
be considered separately . We only treat the case when ω1, . . . , ωℓ,

2π
t1

are
rationally independent. The problems of §4.14 show that the general case can
be reduced to this special one.

Case ℓ = 1. To fix the ideas, suppose s = 1 and E0 = (λ, 2π), E1 =
[0, λ], λ ∈ (0.2π). Consider the images of the points 0 and λ for the maps
ϕ → ϕ + jt1ω1, j = 0, . . . , k − 1 There are at most 2(k + 1) points (and at
least 2) dividing the interval [0, 2π] in 2(k+ 1), at most, consecutive intervals
J1, J2, . . .. Then all points internal to some such interval have the same (E , t)
history in the first k sites of their history.

To the 2(k + 1), at most, histories of the points internal to the above
intervals, we can add the 2(k + 1) histories, at most, of their extreme points.
We thus obtain all the possible strings of the history with length k that can
appear in the (E , t) history of a point ϕ ∈ T 1. Hence,

Nabs(a(ϕ), k) ≤ 4(k + 1) (4.15.13)

and Eq. (4.15.12) follows from the definition given by Eq. (4.15.2).

Case ℓ > 1. The entire proof will be based on the possibility of estimating
the volume |E| of a set E in terms of the area |∂E| of its boundary ∂E. If
E ⊂ Rℓ is a bounded set its volume |E| cannot exceed the volume of the
sphere with surface area equal to the surface area |∂E| of E (“isoperimetric
inequality”). So an inequality of the type

|E| < Cℓ |∂E|
ℓ

ℓ−1 (4.15.14)

holds Cℓ being a suitable E-independent constant. However, on T ℓ, such an
inequality is false for sets which “wrap around T ℓ” (e.g., if E = T ℓ, |E| =
(2π)ℓ, |∂E| = 0 as ∂E = ∅); but of course, it is still true for sets with small
enough diameter.

To apply isoperimetric inequalities in T ℓ, it is therefore useful to think of
T ℓ as the union of many small sets. We shall regard T ℓ as a union of 2ℓ cubes
with side π parameterized by an index σ:

Cσ = {ϕ |ϕ ∈ T ℓ, πσi ≤ ϕi ≤ π (σi + 1), i = 1, . . . , ℓ} (4.15.15)

where each σi takes the value 0 or 1. We call Σ the set of the 2ℓ σ’s.
Given (α0, . . . , αk) ∈ {0, . . . , s}k and (σ0, . . . , σk−1) ∈ Σk, consider the

sets
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E

(
0 . . . k − 1

α0 . . . αk−1

)
=Eα0 ∩ S−t1Eα1 ∩ . . . ∩ S−(k−1)t1Eαk−1

B

(
0 . . . k − 1

σ0 . . . σk−1

)
=Cσ0 ∩ S−t1Cσ1 ∩ . . . ∩ S−(k−1)t1Cσk−1

(4.15.16)

Since the rotations of the torus are “rigid transformations”, i.e., they do not
change the form and volume of the sets that they transform, it will be possible
to infer that the sum of the surfaces of the sets E ∩ B, with E,B like Eq.
(4.15.16) with the same value of k, is such that

∑
α0,...,αk−1
σ0,...,σk−1

∣∣∣∂
(
E
(

0 ... k−1
α0...αk−1

)
∩B

(
0 ... k−1
σ0...σk−1

))∣∣∣ ≤ 2(k + 1)L, (4.15.17)

where L =
∑s

j=0 |∂Ej | + 2ℓ(2ℓπℓ−1). This simple relation follows from the
geometric observation that

⋃
α0,...,αk−1
σ0,...,σk−1

∂
(
E

(
0 . . . k − 1

α0 . . . αk−1

)
∩B

(
0 . . . k − 1

σ0 . . . σk−1

))

=
k−1⋃

h=0

[
S−ht1(∂Eαh

) ∪ S−ht1(∂Cσh
)
]
,

(4.15.18)

and the right-hand-side points are counted twice in the left-hand side except
for a subset of total area zero corresponding to the edges and corners of the

sets E
(

0 ... k−1
α0...αk−1

)
∩B

(
0 ... k−1
σ0...σk−1

)
. We can now use Eq. (4.15.14) to bound

p

(
0 . . . k − 1

α0 . . . αk−1

∣∣∣a(ϕ)

)
=

∫

E

(
0 ... k−1

α0...αk−1

) dϕ

(2π)ℓ
=
E
(

0 ... k−1
α0...αk−1

)

(2π)ℓ

=
∑

σ0,...,σℓ

∣∣∣E
(

0 ... k−1
α0...αk−1

)
∩B

(
0 ... k−1
σ0...σk−1

)∣∣∣
(2π)ℓ

≤ Cℓ
∑

σ0,...,σℓ

∣∣∣∂
(
E
(

0 ... k−1
α0...αk−1

)
∩B

(
0 ... k−1
σ0...σk−1

))∣∣∣
ℓ

ℓ−1

(2π)ℓ

≤ Cℓ


 ∑

σ0,...,σℓ

∣∣∣∂
(
E
(

0 ... k−1
α0...αk−1

)
∩B

(
0 ... k−1
σ0...σk−1

))∣∣∣
(2π)ℓ




ℓ
ℓ−1

,

(4.15.19)

having used the rational independence of (ω1, . . . , ωℓ,
2π
t1

) in the first step
[applying Proposition 30, Eq. (4.14.5)], and in the last step the inequality
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(α+β)x ≥ αx+βx, ∀ x ≥ 1, ∀α, β ≥ 0, has also been used. The isoperimetric
inequality has been used in the intermediate step.

Equations (4.15.19) and (4.15.17) will now be used to estimate the total
frequency of the strings of length k in a(ϕ) having “small probability” and,
“precisely” such that given η > 0,

p

(
0 . . . k − 1

α0 . . . αk−1

∣∣∣a(ϕ)

)
≤ e−kη. (4.15.20)

Recalling the ideas involved in the proof of the Chebysčev inequality, Propo-
sition 34, p.119, and if the label ∗ indicates that the sum is restricted to

p
(

0 ... k−1
α0...αk−1

∣∣∣a(ϕ)
)
≤ e−kη,

∗∑

α0,...,αk−1

p

(
0 . . . k − 1

α0 . . . αk−1

∣∣∣a(ϕ)

)

≤
∑

α0,...,αk−1

( e−η k

p
(

0 ... k−1
α0...αk−1

∣∣∣a(ϕ)
)
)γ

p

(
0 . . . k − 1

α0 . . . αk−1

∣∣∣a(ϕ)

)

≤
∑

α0,...,αk−1

p

(
0 . . . k − 1

α0 . . . αk−1

∣∣∣a(ϕ)

)1−γ

(4.15.21)

no matter how γ > 0 is chosen. Then let γ = 1
ℓ , i.e., such that (1− γ) ℓ

ℓ−1 = 1
and deduce from Eqs. (4.15.21), (4.15.19), and (4.15.17) that the total prob-
ability that Eq. (4.15.20) holds is bounded by

e−
η k
ℓ

( Cℓ
(2π)ℓ

)1−γ ∑
α0,...,αk−1
σ0,...,σk−1

∣∣∣∂
(
E
(

0 ... k−1
α0...αk−1

)
∩B

(
0 ... k−1
σ0...σk−1

))∣∣∣

≤ (2π)1−γe−
η k
ℓ 2(k + 1)L

(4.15.22)

Hence, given ε > 0 and η > 0, Eq. (4.15.22) shows that if k is so large that
the right-hand side of Eq. (4.15.20) is smaller than ε, we can find, among the
sets Cε appearing in Eq. (4.15.3), a set

Cε(η) = {set of the k-tuples α1, . . . αk, verifying Eq. (4.15.20)}. (4.15.23)

Since [see Eq. (4.15.22) and Observation (1) to Definition 19, p.348] it is∑
α0,...,αk−1

p
(

0 ... k−1
α0...αk−1

∣∣∣a(ϕ)
)

= 1 it becomes clear that the complement of

Cε(η) cannot contain more than eηk elements because it consists of sets with
probability ≥ e−ηk. One then finds that

N (ε, a(ϕ), k) ≤ eηk (4.15.24)
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if k is large enough. Hence,

S(a(ϕ), ε) ≤ η (4.15.25)

and Eq. (4.15.11) follows from the arbitrariness of η.
So far the analytic regularity of E has been only used to deduce the first of

Eqs. (4.15.19) which, as remarked elsewhere (see Observation (1), to Proposi-
tion 30, p.342), follows simply from the Riemann measurability of E1, . . . , Es.
However, in the general case when ω1, . . . , ωℓ,

2π
t1

are not rationally indepen-
dent, as assumed above, analytic regularity has to be used again to reduce
the general case to the above-treated rationally independent case. mbe

The above propositions provide a further non integrability criterion.

(v) If in W there is one ξ whose (E , t) history on an analytically regular
partition E of W has positive entropy, then the system is not analytically
integrable on W .

This criterion can be added to those listed at the beginning of §4.15, p.353
and to the other criteria, also quite remarkable, that emerge from the problems
at the end of this section, see problems 13-20. We now quote, without proof,
some results on entropy theory and non integrable systems showing that in
fact the previously stated non integrability criteria (i), (iii), (iv), and (v) are
not empty of content [(ii) has already been discussed in §4.13, Observation (3)
Proposition 27, p.336], i.e. the propositions below illustrate other properties
of entropy (Proposition 37) or they show that there actually are systems
whose non integrability could be decided on the basis of the above criteria
(Proposition 38).

37 Proposition. Let a = (ai)i∈Z+0, ai = 0, 1, . . . , p − 1 be an ergodic se-
quence.
(i) The entropy of a can be computed as

S(a) = lim
N→∞

− 1

N

∑

α0,...,αN−1

p
(

0 ... N−1
α0...αN−1

∣∣∣a
)

logp
(

0 ... N−1
α0...αN−1

∣∣∣a
)
. (4.15.26)

(ii) Given ε > 0, there exists Nε such that ∀N ≥ Nε the pN strings(
0 ...N−1
α0...αN−1

)
of history with length N , a priori possible, can be divided into

classes C1
ε(N) and Crareε (N) such that

∑

α0,...,αN−1∈Crare
ε

p

(
0 . . . N − 1

α0 . . . αN−1

∣∣∣a
)
< ε (4.15.27)

and for every
(

0 ... N−1
α0...αN−1

)
∈ C1

ε (N)

e−(S(a)+ε)N ≤ p

(
0 . . . N − 1

α0 . . . αN−1

∣∣∣a
)
≤ e−(S(a)−ε)N (4.15.28)
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(iii) The number of elements in C1
ε (N) is such that

e−(S(a)−ε)N ≤ |C1
ε (N)| ≤ e−(S(a)+ε)N (4.15.29)

Observations.
(1) This is the “Shannon-McMillan theorem”, [25].
(2) Equation (4.15.26) is very useful because it sometimes allows the explicit
calculation of S(a). The statement (ii) tells us that if N is large the number
of strings of a that are “really important” is measured by S(a). Furthermore,
such strings have about the same probability of appearance, and their number
is therefore estimated by Eq. (4.15.29).
In other words, one can think that in a rough (and weak) sense, see Eqs.
(4.15.27) and (4.15.28), a consists of strings of large length each appearing
“almost” equally probable (i.e., “almost” equally often) in a.If a is not ergodic,
this last statement is not generally true: this is one of the reasons why the
ergodic sequences are interesting.

The following proposition (Hopf-Anosov-Sinai theorem, see [4]) gives an
example of an analytic Hamiltonian system which is not analytically inte-
grable.

38 Proposition. Let Σ ⊂ Rd be an analytic surface, bounded and with neg-
ative curvature. The geodesic motion on Σ (i.e., the motion of a unit mass
ideally constrained to Σ) is not analytically integrable because for every ana-
lytically regular partition E of its phase space there exists a dense set of data
whose (E , t) history, t = (jt1)j∈Z+ is mixing and also has positive entropy.

These last two theorems are two important examples of “ergodic theory”
problems. This is a young theory; nevertheless, it is already rich in interesting
results and, even more, interesting open problems.

4.15.1 Exercises and Problems

Can one build sequences of preassigned distribution? See Problems 1-12 below.

1. Find examples of sequences a of symbols ai = ±1 with non definite frequencies (Hint:

For instance 10 symbols 1 followed by 1021
symbols −1, followed by 1022

symbols +1, etc.)

2. Consider the sequence of symbols ai = ±1:

a = (1,−1, 1, 1,−1,−1, 1, 1, 1,−1,−1,−1, . . .).

Show that it has well-defined frequencies and that p
“

0
1

˛̨
˛a
”

= 1
2
, p
“

0 0
1 1

˛̨
˛a
”

= 1
2
.

3. Show that the sequence in Problem 2 is non ergodic (Hint: Show that Eq. (4.14.35) is
false for j1 = 0, i1 = j,α1 = β1 = 0.)

4. Find an example of a subset A ⊂ T ℓ such that setting E0 = A,E1 = T ℓ/A, there is
in T ℓ a point p whose history on the partition E = (E0, E1) with respect to the rotation
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ϕ→ ϕ+ω mod 2π, supposed irrational, does not have well-defined frequencies. (Hint: Let
a be a sequence of 0’s and 1’s without well-defined frequencies, see Problem 1; then given
p, let A = ∪k,ak=0(p+ kω).)

5. Using Proposition 28, §4.13, p.339, and the method of proof of Proposition 30, §4.14,
p.342, show that if E ⊂ T ℓ is Riemann measurable, then every point of T ℓ evolving under
an irrational rotation transformation visits E with well-defined frequencies.

6. Let E = {0, 1}, p0 = 1
2
, p1 = 1

2
, and consider the probability distributions (E,p) and

(E,p)N , see Definition 20, §2.23, p.118. Let AN (0) ⊂ EN be the sequences α0, . . . , αN−1,

αj = 0, 1, in which the symbol 0 appears with frequency closer to 1
2

than N− 1
8 , i.e.

AN (0) =


α0, . . . , αN−1

˛̨
˛ 1

N

“N−1X

j=0

(1− αj)
”
− 1

2

˛̨
˛ < 1

N
1
8

ff
.

Show that the probability of AN (0) in (E,p)N is such that p(AN (0)) > 1 − 1

8N
3
4

. (Hint:

Use Chebysčev’s inequality, Proposition 34, p.119; see, also, Proposition 33, p.119.)

7. In the context of Problem 6, regard AN (0) as a subset eAN (0) of the space of the infinite
sequences a = (α0, α1, . . .) of 0’s and 1’s defined by a ∈ eAN (0)←→(a0, . . . , aN−1) ∈ AN (0).
Show that the sets eAk2 (0) have the finite intersection property, i.e., ∩qk=1

eAk2(0) 6= ∅,∀ q ≥ 1

(Hint: Use Problem (6) to note that if eA1, eA2, eA4, . . . eAk2 are all regarded as subsets in

Ek2 in a natural way, they have a probability in Ek2 : p(Ak2 (0)) > 1 − 1

8k
3
2

. Hence, the

complement of the intersection of any number of the Ak2 ’s has a probability such that

p((∩Ak2 (0))c) ≤
∞X

k=0

p(Ak2 (0)c) ≤ 1

8

∞X

k=1

1

k
3
2

< 1

since (∩Eα)c ⊂ ∪Ecα, in general. Hence, ∩Ak2 (0) cannot be empty.)

8. Extend Problem 6 to show that for every given string (σ1, . . . , σs) or 0’s and 1’s, the
set AN (σ1, . . . , σs) ⊂ (E,p)N consisting of the strings α = (α0, . . . , αN−1) ∈ EN in which
the string (σ1, , . . . , σs) appears somewhere, with a frequency differing from 2−s by at most

N− 1
8 is such that

p(AN (σ1, . . . , σs)) > 1− εs

N
3
4

for some εs. (Hint: Proceed as in Problem 6, observing that AN (σ1, . . . , σs) is the set
α0, . . . , αN−1 | 1

N

„PN−1
j=0 (αj − σ1)2(αj+1 − σ2)2 . . . (αj+s−1 − σs)2

«
− 1

2s < 1
N1/8

ff
).

9. Extend Problem 7 as follows: regard AN (σ1, . . . , σs) as a subset eAN (σ1, . . . , σs) in
the space of the infinite sequences a of 0’s and 1’s defined by a ∈ eAN (σ1, . . . , σs)←→
(a0, . . . aN−1) ∈ AN (σ1, . . . , σs). Show that ∃Ns, s = 1, 2, . . . , such that ∀ n, q ≥ 1:

Bn,q
def
= ∩ns=1 ∩qk=1 ∩0,1

σ0...σs
eAN

s+k2
(σ0 . . . σs) 6= ∅.

(Hint: See the hint to Problem 7 to estimate the probability or the complement of B. One

now finds the condition:
P∞
k=1

P∞
s=1

2sεs

(N
s+k2 )3/4 < 1.)

10. In the context of Problem 9, show that if ∩n,qBn,q 6= ∅ and a ∈ ∩n,qBn,q , then a has
well-defined frequencies and:

(i) p

„
0 ... N−1
α0...αN−1

˛̨
˛̨a
«

= 2−N , ∀N, ∀ α1 . . . αN ;

(ii) a is ergodic and mixing;
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(iii) Sabs(a) = log 2, S(a) = log 2.
(Hint: For (ii), check the mixing directly; for (iii), apply, with patience, Definition 21, p.354.)

11. Show that ∩n,qBn,q in Problem 9 is nonempty. (Hint: Enumerate, from 1 to∞, the sets
ANa+k2(σ1 . . . σs) and denote them as D1,D2, . . .. Then, by Problem 9, ∩mj=1Dj 6= ∅, ∀m.
Let am ∈ ∩mj=1Dj . Since the sequences aq have only two possible entries at each site, there
must exist a subsequence aqi , qi → +∞, and a a∞ such that aqi eventually coincides with
a∞ on any finite number of sites: a∞ ∈ ∩jDj .)

12. Extend Problems 6-11 to the case E = {{0, 1}, p0 > 0, p1 > 0, p0 + p1 = 1, p0 6= 1
2
.

Show that there are sequences of 0’s and 1’s such that Sabs(a) = 1og2, S(a) = −p0 log p0−
p1 log p1 < Aabs(a).

Other necessary integrability criteria emerge from the following series of
problems together with other remarkable properties of integrable systems.

13. Let A1, . . . , Aℓ be ℓ prime integrals for an ℓ-degrees-of-freedom Hamiltonian system on
W ⊂ R2ℓ, or W ⊂ Rℓ×T ℓ or W ⊂ Rℓ× (Rℓ1 ×T ℓ2), ℓ1 + ℓ2 = ℓ, open. Call A(W ) the set
of the values of (A1, . . . , Aℓ) onW : A(W ) ⊂ Rℓ. Suppose that the equation A(p, q) = a can
be inverted with nonzero Jacobian near p0,q0,a0 p = α(a,q) so that A(α(a,q),q) = a.
Define the ℓ× ℓ matrices:

Mij =
∂Ai

∂pj
, Nij =

∂Ai

∂qj
, Tij =

∂αi

∂qj
, Rij =

∂αi

∂aj
, .

Study the “Hamilton-Jacobi” equations:

A(
∂s

∂q
,q) = a, i.e.

∂s

∂q
= α(a,q)

and find conditions “guaranteeing their solubility” near q0, a0. Check that conditions could
be {Ai, Aj} = 0, ∀ i, j = 1, . . . , ℓ, i.e.,

ℓX

s=1

„
∂Ai

∂ps

∂Aj

∂qs
− ∂Ai

∂qs

∂Aj

∂ps

«

(see, also, Definition 19, §3.12). (Hint: It is only needed that the differential form α · dq
be exact i.e., ∂αi

∂qj
=

∂αj

∂qi
or Tij = Tji. By the implicit function theorem and by the chain

differentiation rule, it follows from A(α(a,q),q) ≡ a that

ℓX

s=1

∂Ai

∂ps

∂αs

∂aj
= δij , and

ℓX

s=1

„
∂Ai

∂ps

∂αs

∂qj

«
+
∂Ai

∂qj
= 0;

i.e., with the above notations, NR = 1 and MT + N = 0. So, since T = −M−1N , the
integrability condition becomes

M−1N = (M−1N)T = NT (M−1)T←→NMT = MNT

because the Jacobian determinant detM 6= 0. The last expression once written explicitly,
yields the result (“Liouville’s theorem”).)

14. Show the following properties of the Poisson bracket see Definition 19, §3.12:

{F,G} = −{G,F},

{F,GL} = {F,G}L+ {F, L}G,

{F, {G,L}}+ {G, {L, F}}+ {L, {F,G}} = 0.
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Two observables on phase space F,G are said to be “in involution” if {F,G} = 0.

15. In the context of Problems 13 and 14, suppose that A1, . . . , Aℓ are ℓ prime integrals in
involution. Consider the completely canonical transformation C generated by the function

(a,q) → s(a,q) in Problem 13 (via κ =
∂s(a,q)
∂a

, p =
∂s(a,q)
∂q

. Denote it (a,κ) = C(p,q).

Show that H(C−1(a,κ)) = h(a) is κ independent. (Hint: Since the A’s are prime integrals
(A = a(p,q)) and the map (p,q)←→(a,κ) is completely canonical, it must be that

ȧ =
∂H(C−1(a,κ))

∂κ
= 0.

i.e., H(C−1(a,κ)) is κ independent.)

16. Using the fact that the completely canonical transformations preserve the Poisson
brackets, see Observation (2), p.237, to Corollary 25, §3.12, show that a necessary condition
for the canonical integrability of a Hamiltonian system on a region W of phase space is the
existence in W of ℓ independent prime integrals in involution.

17. Show that a necessary and sufficient condition in order that A ∈ C∞(W ) be a prime
integral for a regular Hamiltonian system on W is that {A,H} = 0, if H is the Hamiltonian
function. More generally, if St(p,q), t ∈ J , denotes a solution to the Hamilton equations in
W and F ∈ C∞(W ), show that

d

dt
F (St(p,q)) = {H,F}(St(p,q)), ∀ t ∈ J.

Here W ⊂ R2ℓ or Rℓ × T ℓ or Rℓ × (Rℓ1 × T ℓ2 ), ℓ1 + ℓ2 = ℓ is open. (Hint: Just compute
the derivative of F using the Hamilton equations, to express ṗ, q̇, and the definition of the
Poisson bracket.)

18. Let W be as in the above problems and let H ∈ C∞(W ) be a regular Hamiltonian
function. Assume that H is integrable on W and let I be the integrating transformation
I : W←→V × T ℓ, V ⊂ Rℓ, let (A,ϕ) = I(p,q) and denote ω(A) the pulsations of the
quasi-periodic motions on the torus {A}×T ℓ. We say that the system is “non isochronous”
in W if the matrix Jij(A) = ∂ωi

∂Aj
(A) has a non vanishing determinant.

Show that any prime integral B ∈ C∞(W ) for a non isochronous integrable Hamiltonian
system must be a function of A1, . . . , Aℓ introduced above. (Hint: Let B = b(A,ϕ) be a
prime integral in the (A,ϕ) variables. It must be b(A,ϕ) ≡ b(A,ϕ+ω(A)t), ∀ t ∈ R. If the
components of ω(A) are rationally independent the points ϕ+ω(A)t, t ∈ R densely cover
T ℓ; hence, for such A’s, B must depend only on A and not on ϕ. However, if det J 6= 0,
the set of A’s in V such that ω(A) has rationally independent coordinates is dense in V
(see Problems 9 and 15, §5.10, p.477 and 478). Hence, B must always depend only on A.)

19. There is a theorem by Arnold concerning the case when W is an invariant open bounded
set for a regular Hamiltonian flow generated by H ∈ C∞(W ) and on W one can define ℓ
independent prime integrals A = (A1, . . . , Aℓ) in involution (see Problem 14), with A1 ≡ H
and such that the sets A(p,q) = a are, for a ∈ A1 (W ), regular closed bounded and
connected surfaces in W . Then H is integrable on W .
Are there systems integrable but not canonically integrable? (Answer: If ℓ = 2, some partial
results are known ([43]; another partial answer is in Problem 22 below). The proof of
Arnold’s theorem can be found on page 269 of [1]).

20. Find an example of a Hamiltonian system whose motions are all quasi-periodic but
which is not integrable. (Hint: consider two point masses free on a circle and on a line,
respectively; let their positions be determined by (ϕ1, q2) ∈ T 1 × R if ϕ1 is the angular

position of the first particle and q2 the position of the second. Let H(p1, p2, ϕ1, q2) =
p21
2

.)
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21. Suppose that in the region W an analytic Hamiltonian H(p,q) admits ℓ independent
prime integrals A = (A1, . . . , Aℓ) and H = A1. Suppose that the surfaces A = a are
tori of dimension ℓ. Write their parametric equations as p = P(a,ϕ),Q(a,ϕ) and suppose
that the evolution is ϕ → ϕ + ω(A) t: i.e. suppose that all motions are quasi periodic.

If det ∂ω(A)
∂A

6= 0, i.e. if the system is anisochronous, then {Ai, Aj} = 0,∀ i, j = 1, . . . , ℓ.
(Hint: Suppose that {Ai, Aj} 6= 0 then evolve an initial datum (a,ϕ) with the Hamilton
equations with Hamiltonian Ai for a small time ε and then with the Hamiltonian A1 = H
for a long time t. Since Ai and H have zero Poisson bracket the two evolutions “commute”
and the final datum has to be the same as the one obtained by first evolving (a,ϕ) for a
time t with the Hamilton equations for H and then for a time ε with Aj . In the first case
the result will be a datum (a′,ϕ′ +ω′t) with a′,ϕ′,ω′ close O(ε) to (a,ϕ,ω); in the second
case the result will be (a′′,ϕ′′ +ωt) with a′′,ϕ′′ close to a,ϕ within O(ε). However since
{Ai, Aj} 6= 0 it is ω′ 6= ω and this is a contradiction for t large.)

22. Check that combining Problems 21 and 19 above a new criterion of completely canonical
integrability follows.

23. Let k → f(k) be a function defined for k = 1, 2, . . . such that 0 ≤ f(k), f(k + h) ≤
f(k) + f(h), for all h, k = 1, 2, . . .. Show that

lim
k→+∞

f(k)

k
= inf

k

f(k)

k

def
= s

and apply this result to prove the existence of the limit (4.15.2) by showing that f(k) =

logNabs(k,a) has the above subadditivity properties. (Hint: Let ε > 0 and let kε be such

that s ≤ 1
kε
f(kε) ≤ s+ ε; write k = hkε + p with h = 0, 1, . . . and p = 0, 1, . . . , kε − 1 and

note that s ≤ k−1f(k) ≤ (hkε + p)−1(hf(kε) + f(p))−−−−−→
k→+∞ k−1

ε f(kε) < s+ ε.)
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Stability Properties for Dissipative and
Conservative Systems

5.1 A Mathematical Model for the Illustration of Some
Properties of Dissipative Systems

In various possible senses, the stability properties of motions are more easily
analyzed in systems moving in the presence of friction, as already noted in
Chapter 2.

Therefore, we shall mainly concentrate our attention on such systems,
studying some stability questions selected among others because they seem
particularly significant for the generality of the methods used to treat them.

Similar questions will later be asked about conservative systems. However,
the answers, when known, will be much harder to obtain.

The gyroscope is, in some sense, the prototype for systems with many
degrees of freedom. In fact, general systems of linear oscillators trivially reduce
to systems of independent one dimensional oscillators, as explained §4.1-4.4 in
the conservative cases; this remains true even in the presence of linear friction.

On the other hand, the gyroscope with friction, or even some of its partic-
ular cases, already presents many of the possibilities and difficulties that can
be met in more complex systems.

For this reason, in the upcoming sections, we shall illustrate the general
theory through the treatment of a single example, described below and drawn
from the gyroscope theory, which will be used to motivate the successive
steps of a theory and of a method of analysis which, as will become evident,
is applicable to many other dissipative systems as well.

The example is given by Eqs. (5.1.18) and (5.1.19) and this section is
devoted to their gyroscopic interpretation.
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We consider a rigid body consisting of N masses, m1,m2, ...,mN > 0, with
a fixed point O (all the constraints being ideal) immersed in a viscous fluid
opposing to the motion a frictional force at the i-th point:

−λmiẋ
(i) (5.1.1)

The moment of the frictional force with respect to 0 is then given by

−λ
N∑

i=1

mi(Pi−O)∧ ẋ(i) = −λ
N∑

i=1

mi(Pi−O)∧(ω∧(Pi−O)) = λIω (5.1.2)

with the notations of §4.11.
The second cardinal equation,1 implies

Iω̇ = −λIω − ω ∧ Iω, (5.1.3)

where ω is the vector whose components in a co-moving frame (O; i1, i2, i3)
are the derivatives of the corresponding components of ω in the same frame.
Equation (5.1.3) extends Eq. (4.11.31) to the case when the moment of the
external forces is -λIω instead of 0.

Assume that the co-moving frame has been fixed once and for all so that
the inertia matrix I is diagonal, see Eq. (4.11.9), p.308, with elements

I1, I2, I3. (5.1.4)

In order to obtain nontrivial motions, it will be convenient to imagine that
the system is subject to the action of other forces having a moment M with
respect to O. Otherwise, as is intuitively clear and as we shall shortly see,
the system will just stop. The simplest force laws are those with moment M
having constant components on the axes of (O; i1, i2, i3):

M = R1i1 +R2i2 +R3i3 (5.1.5)

or those with moment components in (O; i1, i2, i3) dependent only upon the
angular velocity

M′(ω) = R′1(ω)i1 + R′(ω)2(ω)i2 +R′3(ω)i3 (5.1.6)

which can be imagined (as in the examples below) generated by some “inner
mechanisms” regulating their action as a function of the motion of the body.

In the presence of forces with moments of Eqs. (5.1.5) and (5.1.6) added
to the friction forces, the equations of motion of the system would become

Iω̇ = −ω ∧ Iω − λIω + M + M′(ω). (5.1.7)

Even in the simplest situations, e.g.if

1
K̇O = −λ Iω.
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M = R i3, M′(ω) = linear function of ω (5.1.8)

it could a priori happen that the differential equation E. (5.1.7) admits solu-
tions t→ St(ω), with suitable initial datum ω, diverging as t→ +∞.2

We wish to avoid having to deal with such phenomena, too idealized from
a physical point of view, since it is clear that any real system “breaks down
into pieces” if ω reaches too large a value, when the centrifugal forces exceed
the materials resistance. This is done by supposing that the friction coefficient
λ has some extra dependence on ω. For instance,

λ(ω) = (λ1 + λ2ω
2), λ(ω) = (λ1 + λ′2ω

2
1 + λ′′2ω

2
2 + λ′′′2ω

2
3) (5.1.9)

which is a special case of the more general and realistic friction model in which
Eq. (5.1.1) is replaced by −λµi

(
1 + (ẋ(i) · Liẋ(i))

)
ẋ(i), λi, µi > 0 and Li are

3× 3 positive-definite matrices.
Summarizing the above discussion, the mechanical system whose proper-

ties we wish to analyze will be described by the equation

Iω̇ = −ω ∧ Iω − λ(ω)Iω + M + M′(ω), (5.1.10)

where λ(ω) is given by Eq. (5.1.9) and M′(ω) is a linear function of ω.
The above system is general enough to present a great variety of phenom-

ena. For simplicity, we shall impose further restrictions, studying the following
particular case of Eq. (5.1.10).

(i) The rigid body is a gyroscope: I1 = I2, I3 = J. (5.1.11)

(ii) M = R i3, R > 0. (5.1.12)

(iii) M′(ω) = α1ω1i1 + α2ω2i2, α1 = α2 = α > 0. (5.1.13)

(iv) λ(ω) is given by the first or second of Eqs. (5.1.9),(5.1.13).

It might be useful to have in mind a physical representation of the special
system mathematically described by Eqs. (5.1.9)-(5.1.13): think of the body
as consisting of six masses m located at the points ±̺ i1,±̺ i2,±̺′ i3. Then

I = I1 = I2 = 2m(̺2 + ̺′
2
), J = I3 = 4m̺2. (5.1.14)

The force given by Eq. (5.1.12) can be imagined to be generated by small
“jet motors” located at the four points ±̺i1,±̺i2 of the z3 = 0 plane, pro-
ducing a thrust f identical at each site and perpendicular to the coordinate
axis on which the site lies and parallel to the z3 = 0 plane. The moment of
such forces is

2 However, in this case, the global existence of the solutions, assuming λ constant and
M′ linear in ω1, ω2, ω3, follows from an a priori estimate, for t ∈ R+. Let Ω = Iω and

multiply both sides of Eq. (5.1.7) scalarly by Ω. It follows: 1
2
dΩ2

dt
≤ KΩ2 +K ′ for some

K,K ′ > 0, which implies (KΩ(t)2 +K ′) ≤ (KΩ(0)2 +K ′)e2Kt ,∀ t ≥ 0.
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M = 4̺ f i3 (5.1.15)

like Eq. (5.1.12) with R = 4̺f . The other force given by Eq. (5.1.13) is
generated by small jet motors located at the two points on the axis i3, exerting
a thrust along i1 and i2, respectively, with intensities

f ′ω2i1 and f ′ω1i2 (5.1.16)

and, therefore, their moment is

f ′̺′(ω1i1 + ω2i2) (5.1.17)

like Eq. (5.1.13) with α = f ′ ̺′.
The somewhat bizarre force given by Eq. (5.1.16) must be thought of as

generated by jets producing a thrust proportional to the amount of air entering
them per unit time, supposing them to be oriented as i2 and i1 respectively,
and orthogonal to i3. The amount of air entering the jets per unit time is in
this way proportional to ω2z and ω1, respectively.

Obviously, if f ′ 6= 0, the gyroscope will tend to increase its rotation speed
around the axes i1, i2, but not indefinitely: just as long as the system reaches
a rotation speed causing so strong a friction as to compensate for the force of
the motor (this is what actually happens if λ′1, λ

′′

2 , λ
′′′

2 > 0).
Explicitly writing Eq. (5.1.10) by components, given the assumptions of

Eqs. (5.1.9)-(5.1.13), it is

ω̇1 =− (λ1 + λ2ω
2)ω1 + αω1 − ω2ω3

ω̇2 =− (λ1 + λ2ω
2)ω2 + αω2 + ω1ω3

ω̇3 =− (λ1 + λ2ω
2)ω3 +R,

(5.1.18)

with R,α, λ1, λ2 > 0, if the first of Eqs. (5.1.9) is assumed and if (J−I)/I = 1,
a case to which one can reduce by the change of variables ω′i = ωi

J−I
I ; α,R

are real numbers supposed positive, for definiteness.
If the second of Eqs. (5.1.9) is assumed, then

ω̇1 =− (λ1 + λ′2ω
2
1 + λ′′2ω

2
2 + λ′′′2 ω

2
3)ω1 + αω1 − ω2ω3

ω̇2 =− (λ1 + λ′2ω
2
1 + λ′′2ω

2
2 + λ′′′2 ω

2
3)ω2 + αω2 + ω1ω3

ω̇3 =− (λ1 + λ′2ω
2
1 + λ′′2ω

2
2 + λ′′′2 ω

2
3)ω3 +R,

(5.1.19)

with R,α, λ1, λ
′
2, λ
′′
2 , λ

′′′

2 > 0. Define λ2 = min(λ′1, λ
′′
2 .λ

′′′

2 ) > 0.
A symmetry in Eq. (5.1.18), absent in Eq. (5.1.19), leads to the elimination

of one of the variables. In fact, if ω2 def= ω2
1 + ω2

2 , we find, by multiplying the
first of Eqs. (5.1.18) by ω1, and the second by ω2 and adding them:
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1

2

dω2

dt
=− (λ1 + λ2ω

2 + λ2ω
2
3)ω

2 + αω2,

dω2
3

dt
=− (λ1 + λ2ω

2)ω3 +R,

(5.1.20)

with λ1, λ2, R, α > 0: much simpler as it involves only two unknowns, ω2, ω3..

5.2 Stationary Motions for a Dissipative Gyroscope

Remark that Eqs. (5.1.18) and (5.1.19) admit global solutions in the future.

1 Proposition. Equation (5.1.19) admits a solution t→ St(ω0), t ∈ R+, for
every initial datum ω0 ∈ R3.

Furthermore, if λ2 = min(λ′1, λ
′′
2 .λ

′′′

2 ) and Ω = (2R
λ2

)
1
3 + (2|α=λ1|

λ2
)

1
2 :

(i) |St(ω0)| ≤ |ω0|+Ω, ∀ t ≥ 0 (5.2.1)

(ii) |St(ω0)| ≤ 2Ω, ∀ t ≥ (|ω0|2 − 4Ω2)

2λ2Ω4
. (5.2.2)

Observations.
(1) Equation (5.2.1) means that the trajectory of the motions of the ω’s are
bounded uniformly for t ≥ 0.
(2) Equation (5.2.2) means that all motions take place inside the ball with
radius 2Ω after a finite transient time (which may depend upon the initial
datum).

Proof. To show global existence, it suffices to show, on the basis of Definition
3 and Proposition 5, §2.5, p.28, an a priori estimate, i.e., it suffices to show
that if t → St(ω0) is a solution to Eq. (5.1.19) for t ∈ [0, T ] with datum ω0,
then it verifies the inequality (5.2.1), ∀ t ∈ [0, T ].

This is a simple consequence of the structure of Eq. (5.1.19). In fact, let
ω = St(ω0) and multiply the equations by ω1, ω2, ω3, respectively; adding the
results yields

d

dt

1

2
ω2 = −λ(ω)ω2 +α (ω2

1 +ω2
2)+Rω3 ≤ |α−λ1|ω2−λ2ω

4 + |ω3|. (5.2.3)

Assuming the inequalities

λ2

2
ω4 > |α− λ1|ω2,

λ2

2
ω4 > R|ω| (5.2.4)

the right-hand side of Eq. (5.2.3) is negative. Hence, if initially |ω0| > Ω with

Ω
def
=
(2R
λ2

) 1
3

+
(2|α− λ1|

λ2

) 1
2

, (5.2.5)

the quantity |St(ω0)| ≡ |ω| must decrease as t grows, at least until it becomes
≤ Ω. This implies both global existence and the estimate (5.2.1).
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To find the estimate (5.2.2), note that |ω| ≥ 2Ω implies that the right hand
side of Eq. (5.2.3) is smaller than −λ2Ω

4. Hence, as long as |St(ω0)| ≥ 2Ω,
one must have

|St(ω0)|2 ≤ |ω0|2 − 2λ2Ω
4t (5.2.6)

which means that for t ≥ |ω0|2−4Ω2

2λ2Ω4 , it will be |St(ω0)| ≤ 2Ω. mbe

In general, the simplest information about the nature of the motions de-
scribed by a differential equation can be obtained through the study of sta-
tionary solutions.

2 Proposition. Equation (5.1.19) has, ∀R > 0 and ∀α > 0, a unique sta-
tionary solution ω̂. This solution has ω̂1 = ω̂2 = 0, while ω3 is the unique real
solution to the equation

−(λ1 + λ
′′′

2 ω̂
2
3)ω̂3 +R = 0. (5.2.7)

Proof. Setting ω̇1 = ω̇2 = 0 in the first two of Eqs. (5.1.19) and imagining3

known λ(ω̂) and ω̂3, one obtains two homogeneous linear equations for ω̂1, ω̂2

with determinant

(α− λ(ω̂))2 + ω̂2
3 (5.2.8)

which vanishes only for ω̂3 = 0 and α = λ(ω̂), but the third of Eqs. (5.1.19)
does not admit a stationary solution with ω̂3 = 0. Hence, Eq. (5.2.8) does not
vanish and, therefore, ω̂1 = ω̂2 = 0, which in turn implies that ω̂3 has to verify
Eq. (5.2.7). This equation admits just one solution by the strict monotonicity
in ω3 of the left-hand side. mbe

A natural question is: how does the actual motion of the gyroscope look
if the angular velocity is ω̂?

3 Proposition. The motion of the gyroscope corresponding to the stationary
solution ω̂ of Eq. (5.1.19) is a rotation with constant angular velocity ω̂3

around the axis i3, which remains fixed in space.

Proof. Let t → (θ(t), ϕ(t), ψ(t)) be a description of the motion in terms of
the Euler angles (θ, ϕ, ψ) of (O; i1i2, i3) with respect to the fixed reference
frame (O, i, j,k).

From Eqs. (4.11.12), (4.11.13), and (4.11.14),4 p.309, one deduces the re-
lationship between θ̇(t), ϕ̇(t), ψ̇(t), and the vector ω(t). In general,

θ̇ = ω1 cosψ − ω2 sinψ, (5.2.9)

3 λ(ω) denotes λ1 + λ′2ω
2
1 + λ′′2ω

2
2 + λ

′′′

2 ω2
3 .

4 Without the bars, since now there is no need of them.
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ϕ̇ =
ω1 sinψ − ω2 cosψ

sin θ
(5.2.10)

ψ̇ = ω3 −
cos θ

sin θ
(ω1 sinψ + ω2 cosψ). (5.2.11)

Letting ω2 = ω2 = 0 and ω3 = ω̂3, one deduces from Eq. (5.2.9) that θ
is constant (θ̇ = 0). Hence suppose, without loss of generality, to have fixed
(O; i, j,k) so that θ(0) 6= 0 or π.

The second equation, Eq. (5.2.10), impliesϕ̇ = 0. Hence, ϕ is a constant.
Since θ and ϕ determine the position of i3 in (O; i, j,k), it follows that i3 is
fixed in (O; i, j,k) and, therefore, the system rotates around i3 (fixed) with
angular velocity given by ψ̇ = ω̂3, by Eq. (5.2.11). mbe

We can now begin the study of non stationary motions. If α < λ1 the
motions are particularly simple.

4 Proposition. If α < λ1 the solutions t→ St(ω) of Eq. (5.1.19) with initial
datum ω verify

|St(ω)− ω̂| < c(|ω|) e−(λ1−α)t, (5.2.12)

where c(x) is a suitable increasing function of x ∈ R+.
The corresponding motion of the gyroscope tends asymptotically to become a
uniform rotation with angular velocity ω̂3 around the axis i3 which in turn
tends to acquire a fixed position in (O, i, j,k), the fixed reference frame.

More precisely, if t→ (θ(t), ϕ(t), ψ(t)) is the description of the motion of
the Euler angles, whose angular velocity is ω(t) = St(ω), for t ≥ 0, there exist
constants t1 > 0, C1 > 0, θ, ϕ, ψ, depending on the initial data and such that

|θ(t)− θ| ≤C1 e
−(λ1−α) t

|ϕ(t)− ϕ| ≤ C1

sin θ
e−(λ1−α) t

|ψ(t)− ψ − ω̂3t| ≤
C1

sin θ
e−(λ1−α) t.

(5.2.13)

For instance, C1 can be chosen as C1 = 4 c(Ω+|ω|)
λ11−α , see Eq. (5.2.12).

Proof. First check that Eq. (5.2.12) implies Eq. (5.2.13). In fact, Eqs. (5.2.9)
and (5.2.12) imply that θ(t)−−−−→t→+∞ 0 exponentially. Hence, we can define

θ = lim
t→+∞

θ(t) = lim
t→+∞

(
θ(0) +

∫ t

0

θ̇(τ)dτ
)

= θ(0) +

∫ +∞

0

θ̇(τ)dτ (5.2.14)

because the integral converges, see Eq. (5.2.13). Also,

|θ(t)− θ| = |
∫ +∞

t

θ̇(τ)dτ | ≤ 2
e−(λ1−α) t

λ1 − α
c(Ω + |ω|) (5.2.15)
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by Eqs. (5.2.9) and (5.2.12).
Possibly by rotating the fixed frame, suppose that θ 6= 0, π. Then Eq.

(5.2.10) implies that ϕ̇ tends to zero exponentially since, as above, it is

ϕ = ϕ(0) +

∫ +∞

0

ϕ̇(τ) dτ, (5.2.16)

|ϕ(t)− ϕ| ≤ 2c(Ω + |ω|)
infτ≥t | sin θ(τ)|

e−(λ1−α) t

λ1 − α
(5.2.17)

which show the second of Eqs. (5.2.13).
Similarly Eqs. (5.2.12) and (5.2.11) imply that ω3 approaches ω̂3 exponen-

tially, as t→ +∞. Hence, setting

ψ = ψ(0) +

∫ +∞

0

(ψ̇(τ)− ω̂3) dτ, (5.2.18)

one finds, by Eqs. (5.2.11) and (5.2.12), for t ≥ t1

|ψ(t)− ψ − ω̂3t| = |ψ(0) +

∫ +∞

0

ψ̇(τ)dτ − ψ − ω̂3t|

= |
∫ +∞

t

(ψ̇(τ)− ω̂3) dτ ≤
2 c(Ω + |ω|)

infτ≥t1 | sin θ(τ)|
e−(λ1−α) t

λ1 − α

(5.2.19)

proving Eq. (5.2.13). Naturally, the time t1 has to be chosen so that infτ≥t1
| sin θ(τ)| ≥ 1

2 | sin θ| > 0, say.
To prove Eq. (5.2.12) remark that from Eq. (5.1.19), multiplying the first

equation by ω1, and the second by ω2 and adding the results, one finds

d

dt

1

2
(ω2

1 + ω2
2) ≤ −(λ− α)(ω2

1 + ω2
2), hence (5.2.20)

ω1(t)
2 + ω2(t)

2) ≤
(
ω1(0)2 + ω2(0)2

)
e−2(λ1−α) t (5.2.21)

Furthermore, setting z
def
= ω3 − ω̂3, the third of the Eqs. (5.1.19) becomes

ż =ω̇3 − λ1z − λ′′′2
(
ω2

3 − ω̂2
3

)
−
(
λ′2ω

2
1 + λ′′2 ω

2
2

)
ω3

=
(
− λ1 − λ′2ω2

1 − λ′′2ω2
2)z − λ′′′2 (ω2

3 + ω̂3ω3 + ω2
3

)
z

− ω̂3(λ
′
1ω

2
1 + λ′′2ω

2
2).

(5.2.22)

Since the general solution to the equation

ẏ = f(t)u+ g(t), t ≥ 0, (5.2.23)

is, ∀ f, g ∈ C∞(R),

y(t) = y(0) e

∫ t

0
f(τ)dτ

+

∫ t

0

g(τ)e

∫ t

τ
f(θ)dθ

dτ, (5.2.24)
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Eq (5.2.21) implies

z(t) = z(0) e
−
∫

t

0

(
−λ1−λ′

2ω
2
1−λ′′

2 ω
2
2)−λ′′′2 (ω2

3+ω̂3ω3+ω
2
3

)
dτ

−
∫ t

0

ω̂3 (λ′2ω
2
1 + λ′′1ω

2
2)e
−
∫

t

τ

(
λ1+λ′

2ω
2
1+λ′′

2 ω
2
2+λ′′′2 (ω2

3+ω̂3ω3+ω
2
3

))
dθ
dτ.

(5.2.25)

The functions which multiply λ′2, λ
′′
2 , λ
′′′
2 are nonnegative therefore

|z(t) ≤ |z(0)|e−λ1t + λ2|ω̂3|(ω1(0)2 + ω2(0)2)

∫ t

0

e−2(λ1−α)τe−λ1(t−τ)dτ

≤e−(λ1−α)t
(
|z(0)|+ λ2

|ω̂3|(ω1(0)2 + ω2(0)2)

λ1 − α
)

≤
(
|ω̂3|+ |ω3(0)|+ λ2

λ1 − α
|ω̂3|ω(0)2

)
,

(5.2.26)

by Eq. (5.2.21) if λ2
def
= max(λ′1, λ

′′
2).

Hence, Eq. (5.2.12) follows from Eqs. (5.2.26) and (5.2.21) with

c(x)2 =
(
|ω̂3|+ x+

λ2

λ1 − α
|ω̂3x

2
)

(5.2.27)

mbe
The analysis for α > λ1, is much more interesting and involves quite a few

general ideas which will be discussed in the upcoming sections. The character
of motion will change: for α ≫ λ1 it will be described, asymptotically for
t → +∞, by a behavior very different from the one seen so far, where the
gyroscope sets itself in a state of uniform rotation around the axis i3, fixed in
space.

5.2.1 Exercises

1. Suppose that R = 0 in Eq. (5.1.18). Show that for α < λ1, something analogous to the
statement of Proposition 4 holds.

2. Same as Problem 1, for Eq. (5.1.19).

3. Show that for α > λ1, Eqs. (5.1.18) and (5.1.19) with R = 0 admit infinitely many
stationary solutions, and find them.

4. Consider a gyroscope like the one in Eq. (5.1.14), but assume that the friction is linear,
that the two little jets arranged along the i2 axis in −̺i2 or +̺i2 produce a thrust in the
direction i3 equal to f1i1, while the two jets on ±̺′i3 produce a constant thrust R i1. Show
that the equations of motion become

ω̇1 =− λω1 + ω2ω3 − σ ω3,

ω̇2 =− λω2 − ω1ω3 + α,

ω̇3 =− λω3 + σ ω1

for suitably chosen α, σ and after a change of variables ωi → ωi
J−I
I

. Find the stationary
solutions for the above equation.
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5. Set ω3 = x, ω2 = z, ω1 = y and suppose that the friction is different for the different com-
ponents of the angular velocity; i.e., suppose that the friction moment is (−λ1ω1,−λ2ω2,−
l3ω3). Study the same problem as in Problem 4 with λ1 = 1, λ2 = b, λ3 = σ, fixing
b = 8

3
, σ = 10 (“Lorenz model”).

6. Find whether an analogue of Proposition 4 holds for the equations in Problems 4 and 5
for some values of α.

7. Find the stationary solutions for the equations

γ̇1 =− 2γ1 + 4γ2γ3 + 4γ4γ5,

γ̇2 =− 9γ2 + 3γ1γ3,

γ̇3 =− 5γ3 − 7γ1γ2 + α,

γ̇4 =− 5γ4 − γ1γ5,

γ̇5 =− γ5 − 3γ1γ4.

Using the same method of the proof of Proposition 4, for α small, find a proof of the state-
ment analogous to that appearing in Proposition 4, Eq. (5.2.12) (“five-mode approximation
to the Navier-Stokes equations on T 2”).

8. Same as Problem 7 for the equations

γ̇1 =− 2γ1 + 4
√

5γ2γ3 + 4
√

5γ4γ5,

γ̇2 =− 9γ2 + 3
√

5γ1γ3,

γ̇3 =− 5γ3 − 7
√

5γ1γ2 − 9γ1γ7 + α,

γ̇4 =− 5γ4 −
√

5γ1γ5,

γ̇5 =− γ5 − 3
√

5γ1γ4 − 5γ1γ6

γ̇6 =− γ6 − 5γ1γ5,

γ̇7 =− 5γ7 − 9γ1γ3,

(“seven-mode truncation of the Navier-Stokes equations on T 2”).

5.3 Attractors and Stability

For α > λ1, the motions of the model considered in §5.2 will exhibit a behavior
qualitatively different from that seen for α < λ1. It is therefore convenient to
introduce some notions well suited to discuss various results in suggestive and
agile language.

The notions on stability and attractors that will be introduced can be sub-
jected to the same critiques already presented in Chapter 2 when we intro-
duced similar notions; i.e., they should not be taken too seriously as absolute
definitions. Usually everyone, motivated by their own scopes, ideas, and needs,
introduce their own definitions and it makes no sense to insist on a standard
nomenclature, as much as it makes no sense to agree once and for all on the
choice of the units of measure of the various physical entities. Here we shall
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choose some significant definitions and not discuss alternative definitions, re-
calling that in applications the “correct” notions of stability and attractivity
will be determined by the applications themselves.

In this and in the following sections, autonomous differential equations in
Rd of the form

ẋ = f(x) (5.3.1)

will be considered, supposing that the solutions have bounded trajectories,
see Definition 3, §2.5, p.28, i.e., that the solution flow St to Eq. (5.3.1) has
the property that there exists a function µ : R+ →R+ such that

|St(u)| ≤ µ(|u|), ∀ t ≥ 0, ∀u ∈ Rd. (5.3.2)

Proposition 1, §5.2, p.369, shows that Eq. (5.1.19) has this property with
µ(|u|) = |u|+Ω.

The first interesting notion is that of a stable set.

1 Definition. Consider the flow St solving, for t > 0, a differential equation
in Rd like Eq. (5.3.1), with bounded trajectories. If A ⊂ Rd, we denote St(A)
the set of the points u having the form u = St(w) for some w ∈ A.
A set A will be called “invariant” for Eq. (5.3.1) [or for the motions of Eq.
(5.3.1) or for its trajectories] if

St(A) ⊂ A, ∀ t ≥ 0, (5.3.3)

i.e., A is invariant if the trajectories originating in A develop, entirely, within
A. If the inclusion in (5.3.3) holds also for t < 0, the set A will be called “bi-
invariant”.
An invariant, set A will be called “stable” for the evolution described by Eq.
(5.3.1) if every neighborhood U of A contains a neighborhood V such that

St(V ) ⊂ U, ∀ t ≥ 0, (5.3.4)

i.e., A is stable if motions starting sufficiently close to A do not go too far
from it.

Examples

(1) The equation of the harmonic oscillator,

ẋ = −y, ẏ = x, (5.3.5)

is an equation in R2 such that every circle around the origin is invariant and stable.

(2) Proposition 1, §5.2, relative to the gyroscope equation (5.1.19), provides another exam-

ple. Equation (5.2.1) says that the ball with radius 2Ω is invariant. From Eq. (5.2.1), it also

follows that it is stable.

Another notion, closely related to the above, is that of attractor.
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2 Definition. A closed set A ⊂ Rd, invariant for the evolution associated
to Eq. (5.3.1), is called an “attractor” for the motions of Eq. (5.3.1) if there
exists an open set U ⊃ A such that

lim
t→+∞

d(St(u), A) = 0, ∀u ∈ U, (5.3.6)

where d(x,A) = (distance of x from A) and the set U is said to be a “partial
basin of attraction” for A.
The union of all the partial basins of attraction will be called the “attraction
basin” of A and denoted as B(A).
An attractor A is called minimal if it does not contain any proper subset which
is also an attractor.
A partial basin of attraction U for an attractor A will be called “normal” if
for every u ∈ U there is at least one point π(u) ∈ A such that

lim
t→+∞

d(St(u), St(π(u))) = 0, (5.3.7)

and the point π(u) will be called a “projection” of u on A.

Examples and Observations
(1) The ball with radius 2Ω, as well as that with radius Ω, are attractors for
Eq. (5.1.19). The first statement follows from Eq. (5.2.2), while the second
can be deduced from the remark following Eq. (5.2.5) by slightly improving
it (exercise).
(2) For α < λ the point ω̂ is an attractor for Eq. (5.1.19) as is shown by Eq.
(5.2.12). Its basin is all of R3, and it is a normal basin. Clearly, every basin
of attraction for an attractor consisting of just one point is normal for it.
(3) The unit circle is an attractor for the solutions of the equation in R2:

ẋ = −1

2
x (x2 + y2 − 1), ẏ = −1

2
y (x2 + y2 − 1), (5.3.8)

In fact, by multiplying the first of Eqs. (5.3.8) by x the second by y and adding
the results,

d

dt

x2 + y2

2
= −(x1 + y2 − 1)

x2 + y2

2
(5.3.9)

Setting ̺ = x2 + y2, this becomes ˙̺ = −̺(̺− 1), implying, if ̺(0) 6= 0,

̺(t)− 1

̺(t)
=
̺(0)− 1

̺(0)
e−t (5.3.10)

hence limt→+∞ ̺(t) = 1 and the attraction basin for the unit circle consists
of R2/{0}. The basin is normal because the point (x, y) 6= 0 has projection

π(x, y) =
( x√

x2 + y2
,

y√
x2 + y2

)
(5.3.11)
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on it and, in this case, the projection on the attractor is unique.
As an exercise one can look at the trajectories of Eqs. (5.3.8) and at the

geometrical meaning of Eq. (5.3.11). The unit circle is an attractor consisting
of fixed points; it is also minimal.
(4) In general, it is not true that an attractor is a stable set.
To obtain some understanding of the mechanism (somewhat pathological, in
fact) by which a point may be attractive without being stable, consider the
unit circle S1 in R2 and let f ∈ C∞(S1) be a function described as θ → f(θ),
where θ ∈ [0, 2π] parameterizes a point on S1. Suppose that f(θ) > 0, ∀ θ ∈
(0, 2π) and f(0) = 0 = f(2π); then, by the Taylor expansion, one realizes that
1/f(θ) is not summable to either the right or to the left of 0. Consider the
equation

θ̇ = f(θ) (5.3.12)

as an equation of motion of a point moving on S1, interpreting the angle θ,
in Fig. 5.1, as the position.

θ

y

x

O

Figure 5.1: Illustration of remark (4) via Eq. (5.3.12).

It appears immediately that since f(0) = 0, the point θ = 0 is an equilib-
rium position for Eq. (5.3.12). But if θ0 > 0, then St(θ0) = θ(t) increases with
t, because f > 0 and f vanishes only for θ = 0 or θ = 2π, and it takes an infi-
nite amount of time to reach 2π. This is so because the time needed to reach
2π starting from θ0 < 2π is

∫ 2π

η0
dθ
f(θ) = +∞ since f(θ)−1 is not integrable.

However, in a finite time, θ(t) reaches any other position θ′ ∈ (θ0, 2π) (as∫ θ′
θ0

dθ
f(θ) < +∞). Hence,

lim
t→+∞

θ(t) = 2π, ∀ θ0 ∈ (0.2π). (5.3.13)

All circle points evolve counterclockwise towards 2π, reaching it from the left,
with the obvious exception of the points θ0 = 0 and θ0 = 2π. Next, let f be
an R2-valued function in C∞(R2) which in a circular annulus U around the
unit circle has the value

f(x, y) =
(
− yf(θ)− x

2
(x2 + y2 − 1), xf(θ)− y

2
(x2 + y2 − 1)

)
(5.3.14)

if (r, θ) are the polar coordinates of (x, y).
The equation ẋ = f(x) associated with Eq. (5.3.14) can be written in polar
coordinates and for (x, y) ∈ U :
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θ̇ = f(θ),
d

dt
r2 = −r2(r2 − 1) (5.3.15)

and the second relation shows that the set U is invariant and that the unit cir-
cle is an attractor. The first of Eqs. (5.3.15) shows that the point θ = 0, r = 1
is a minimal attractor on the unit circle, which is unstable since arbitrarily
close to it, there are points reaching it after going as far as ∼ 2 away (e.g., the
point r = 1, θ = ε > 0), i.e., after traveling a distance approximately equal to
the circle diameter.
(5) As the reader may guess, the problem of finding the basin of attraction of
an attractor is a difficult problem. Very often it is only possible to determine
some partial basins of attraction. The same remark applies to the determina-
tion of the minimal attractors.
In many applications, knowing partial domains of attraction or non minimal
attractors is sufficient and the knowledge of such “global properties” as the
maximal basins or the minimal attractors are not needed.
(6) It is convenient not to require that a partial basin of attraction U for
A be invariant. This may rightly be considered a natural requirement; note,
however, that V = U ∪t≥0 St(U) is an open invariant basin of attraction for
A, i.e., any partial basin of attraction for A is contained inside an invariant
partial basin of attraction. The total basin B(A) is obviously invariant.
(7) If the differential equation (5.3.1) is also normal in the past, see p.28, it is
possible to constructB(A) from a partial basin U for A as B(A) = ∪t∈RSt(U).

The question of the normality of a basin U for an attractor A is obviously
quite important. For simplicity, assume A bi-invariant.

Intuitively, the normality of U with respect to A depends on two factors:
the speed of approach of the points of U to A and the speed of reciprocal
separation of two points in A. One can expect that U is normal with respect
to A if the speed of reciprocal separation of two points in A is much smaller
than the speed of approach to A by the points of U .

To make precise this intuitive idea, let us introduce some new concepts.

3 Definition. Let U be a partial attraction basin for an attractor A for Eq.
(5.3.1). We define the “attraction modulus” of A for U (or the “attractor
strength”) as the function

dU (t) = sup
u∈U
τ≥t

d(Sτ (u), A), (5.3.16)

and dU (t) may be +∞. Note that dU (t) decreases monotonically with t.

Together with this notion, it is convenient to introduce another notion
measuring how quickly two points on A can separate from each other. Note
that from the regularity theorem for differential equations, see §2.4, it follows
that if Γ is a bounded closed set, the quantity
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sup
x,x′∈Γ

x6=x′

|St(x)− St(x′)|
|x− x′| = mt(Γ ) (5.3.17)

is finite for all t > 0 and bounded on every finite interval [0, T ], T > 0. It can
be naturally called the “maximal expansion rate” for Eq. (5.3.1) relative to
t ∈ R and to Γ ⊂ Rd. To this notion, the following definition is related.

4 Definition. Let A be a bi-invariant attractor for Eq. (5.3.1) which is not a
single point. The “uniform coefficient of maximal expansion” for Eq. (5.3.1)
on A will be defined as the quantity

Mt(A) = sup
x6=x′∈A
|τ|≤t

|Sτ (x)− Sτ (x′)|
|x− x′| = sup

τ≤t
mτ (A), (5.3.18)

Note that Mt(A) is monotonically increasing with t for t > 0.

Observations.
(1) The normality and boundedness assumptions on trajectories of Eq. (5.3.1),
made at the beginning of this section, do not guarantee existence of global
solutions in the past for all initial data.5 Hence, it is important to stress that
in Eq. (5.3.18) A is bi-invariant and negative times are also involved.
(2) Even if A is bounded, so that |Sτ (x)−Sτ (x′)| ≤ {diameter of A} for all τ ,
the function Mt(A) can increase very rapidly with t. A simple though rather
trivial example is the following. Let f ∈ C∞(R) be such that

f(x) =x if |x| < 1

2

f(x) =− x(x2 − 1) if |x| < 1.
(5.3.19)

Then the interval [−1, 1] is an attractor for the solutions of the differential
equation z = f(x) and

Mt([−1, 1]) ≥ et. (5.3.20)

Eq. (5.3.20) follows by considering the evolutions of x0 = 0 and x1 = ε 6= 0.
(3) By definition,Mt(A) ≥ 1. When A is a single point, we shall setMt(A) = 1.
(4) If A is a periodic orbit with minimal period T > 0, then Mt(A) is bounded
in t and Mt(A) ≤MT (A), ∀ t ≥ 0.

The following proposition makes quantitative the idea discussed above
about the normality of an attraction basin U for an attractor A of Eq. (5.3.1).
It provides a sufficient, though by no means necessary, condition for the nor-
mality of a basin.

5 Proposition. Let A be a bounded bi-invariant attractor for Eq. (5.3.1) and
let U be an attraction basin for A. Assume the existence of C > 0, ε > 0 such
that for all t ≥ 0:

5 For instance, the differential equation ẋ = − 1
2
x3 is normal in the future but not in the

past; its solutions cannot be extended beyond t0 = −x(0)−2.
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Mt+1(A)2dU (t) <
C

(1 + t)1+ε
. (5.3.21)

Then U is normal for A.
If A is a periodic trajectory, it is normal if there is a C>0 such that

dU (t) <
C1

(1 + t)1+ε
. (5.3.22)

Observations.
(1) Note that the statement concerning the periodic orbits is a consequence of
the general statement. In fact, if A is a periodic orbit, it is clear that Mt(A)
is bounded, see Observation (4), to Definition 4 above.
(2) Equation (5.3.21) implies the existence of a constant C2 such that

mτ (A) ≤ C2, ∀ τ ∈ [−1, 1]. (5.3.23)

It also implies

diameter of U < (2dU (0) + diameter of A)

≤ (2C + diameter of A) < +∞ (5.3.24)

Proof. Let tn = n, n = 0, 1, ..., and let x ∈ U . Let an ∈ A be a point with
minimal distance from Sn(x), among the points of A. The natural idea is that
a projection a(x) of x can be defined as

π(x) = lim
n→+∞

S−n(an). (5.3.25)

To prove the existence of the above limit, let us compare S−n(an) with
S−n−1(an+1), assuming that A is not a single point (a case in which every-
thing becomes trivial). Let U be the closure of U , bounded by Eq. (5.3.24). By
the remark after Eq. (5.3.17), supτ∈[0,1]mτ (U) ≤ µ < +∞. By Eq. (5.3.21),

|S−n(an)− S−(n+1)(an+1)| ≤Mn+1(A) |S1(an)− an+1|
≤Mn+1(A) (|S1(an)− Sn+1(x)|+ |Sn+1(x)− an+1|)
≤Mn+1(A) (|S1(an)− S1Sn(x)|+ dU (n+ 1))

≤Mn+1(A) (m1(U)dU (n) + dU (n+ 1))

≤Mn+1(A)dU (n)(1 +m1(U)) ≤ C (1 +m1(U))

(1 + n)1+ε
Mn+1(A)−1

(5.3.26)

Hence, the series
∑∞
n=0 |S−n(an)−S−n−1(an+1)| converges and, therefore,

the limit of Eq. (5.3.25) exists. It also verifies
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|π(x) − S−n(an)| = |π(x)− a0 −
n∑

k=1

(
S−k(ak)− S−(k−1)(ak−1))|

≤ CMn+1(A)−1(1 +m1(U))

∞∑

h=n+1

1

h1+ε
−−−−→n→∞ 0.

(5.3.27)

We now compare Sn(π(x)) with Sn(x):

|Sn(π(x)) − Sn(x)| ≤ |Sn(π(x)) − an|+ |an − Sn(x)|
≤ |Sn(π(x)) − Sn(S−n(an))|+ dU (n) ≤Mn(A)|π(x) − S−n(an)|+ dU (n)

≤ C (1 +m1(U))

∞∑

h=n+1

1

h1+ε
+ dU (n)−−−−→n→∞ 0. (5.3.28)

Finally, if t = n+ τ, τ ∈ (0, 1), is large enough,

|St(x)− St(π(x))| = |SτSn(x)− SτSn(π(x))|
≤ mτ (U)|Sn(x) − Sn(π(x))| ≤ µ |Sn(x)− Sn(π(x))| (5.3.29)

because Sn(x) ∈ U for n large enough. Since the right-hand side of Eq. (5.3.29)
approaches zero, by Eq. (5.3.28) the proposition is proved. mbe

5.3.1 Exercises

1. Investigate the normality of some basins of partial attraction for the attractors associated
with the equation ẋ = f(x) in R2:

f(x, y) =
“
− y (x2 + y2 − 1)− x

2
ψ(x2 + y2), x (x2 + y2 − 1) − y

2
ψ(x2 + y2)

”
,

where ψ ≥ 0 is a C∞ function of its argument vanishing in 1 only. Show that the normality

of the attractor is related to the convergence of the integral
R
dr2

r2
r2−1
ψ(r2)

near r = 1.

2. An attractor may be minimal and non connected. Find an example. (Hint: Starting from
Observation (4) to Definition 2, 377, improve the idea, i.e., take f(θ) vanishing not only in
0 and 2π, but also in π, positive elsewhere, so that the integral

R
f(θ) 1

dθ
diverges near 0

and π.)

3. Consider a Hamiltonian system with ℓ degrees of freedom, integrable on some region
W of its phase space. Show that each of the tori covering W is an invariant set for the
Hamiltonian flow. Each is stable, but none are attractive.

4. In the context of Problem 3, note that the invariant tori in W having pulsations ω
with rational components are covered by periodic orbits. Show that none of these orbits
are stable if the Jacobian matrix Jij = ( ∂ωi

∂Aj
(A) has a non vanishing determinant in W .

(Hint. As close as we wish to a given “rational” torus, there must be one with rationally
independent components if det J 6= 0 (use the implicit function theorem, or see Problem
15, §5.10, p.478). Every point on such “irrational torus” evolves covering it densely, and
this implies instability because . . .. On the contrary if ∂ω

∂A
= 0, the periodic orbits, when

existing, are stable.)

5. Let A1, A2 be two attractors with partial basins U1, U2, respectively. Show that A1 ∩A2

is an attractor with partial basin U1 ∩ U2, if A1 ∩ A2 6= ∅.
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6. Show that if the set of the attractors contained in a given bounded attractor A is finite
then there is a minimal attractor in A.

7. Find an example of “an attractor without minimal attractors”. (Hint: Let f ∈ C∞(R) be
everywhere positive for x < 0 except at the points xj = − 1

j
, j = 1, 2, . . ., where it vanishes

(so that
R

dx
f(x)

does not converge near any of the xj). Suppose, also, that f(x) < 0 for

x > 0. Then ẋ = f(x) admits [xj , 0] as attractors; however, it has no minimal attractors
because {0} is not an attractor.)

8. Show that the bi-invariance assumption is essential in proposition 5. (Hint: Consider
ẋ = −x, A = [−1, 1] and show that A is not normal.)

9. Show that every bounded attractor A contains a bi-invariant attractor eA. (Hint:eA =

∩t≥0St(A).)

5.4 The Stability Criterion of Lyapunov

Consider a differential equation, like Eq. (5.3.1), with bounded trajectories. A
simple and useful criterion for the stability of one of its stationary solutions
(“fixed points”) is the following proposition (“Lyapunov’s theorem”).

6 Proposition. Let x0 be an equilibrium point for Eq. (5.3.1), ẋ = f(x), with
f ∈ C∞(Rd):

f(x) = (f (1)(x), . . . , f (d)(x)) (5.4.1)

and define the “stability matrix” (or “Lyapunov matrix”)

Lij =
∂f (i)(x0)

∂xj
, i, j = 1, . . . , d. (5.4.2)

If the eigenvalues of L, i.e., the solutions of the d-th degree equation in λ

det(L− λ) = 0 (5.4.3)

(see Appendix E), have a negative real part, then x0 is stable and is locally
attractive with exponential strength.6

If at least one of the eigenvalues has a positive real part, then x0 is unstable.

Observations.
(1) More precisely, if all the eigenvalues λ1, . . . , , λd of L have a negative real
part, there exists t0 > 0 (“halving time”) and ̺ > 0 such that for |x0−w| < ̺,
one has

d(St(w),x) ≤ 2 · 2− t
t0 |w|, ∀ t ≥ t0. (5.4.4)

(2) The reason why the above proposition is true and natural is made clear
by the analysis of the “linear case”, i.e., by the analysis of Eq. (5.3.1) with

6 i.e. there is a small enough neighborhood U of x0 which is a partial basin of attraction
for x0 with an exponential strength of attraction, see Definition 3, p.378.
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f (i)(x) =

d∑

j=1

Lijxj = (Lx)j . (5.4.5)

In this case, x0 = 0 is a stationary point for the equation; the equation itself
can now be written as

ẋ = Lx, (5.4.6)

and its stability matrix is just L. As seen in the problems of §2.2-§2.6, one
can look for d linearly independent solutions of Eq. (5.4.6) having the form

x(t) = eλ t v (5.4.7)

Such a solution exists if there exists v 6= 0 such that

Lv = λv (5.4.8)

If we assume that the d-th degree algebraic equation for λ, det(L − λ) = 0,
has d pairwise distinct roots λ1, . . . , λd and if v(1), . . . ,v(d) are the associated
eigenvectors of Eq. (5.4.8), it is well known that v(1), . . . ,v(d) are linearly
independent (see Appendix E, p.523.) Then the function of t ∈ R:

x(t) =

d∑

j=1

αj e
λj t v(j) (5.4.9)

is, for every choice of α1, . . . , αd ∈ C, a solution to Eq. (5.4.6).
By the linear independence of the vectors v(1), . . . ,v(d), by suitably fixing

the coefficients α1, . . . , αd one can impose that Eq. (5.4.9) verifies any preas-
signed initial condition. Hence, Eq. (5.4.9) is the most general solution of Eq.
(5.4.6). If Reλi < 0, i = 1, . . . , d, it is clear that

|x(t)| ≤ e−νt
d∑

j=1

|αj | |v(j)|, ∀t ≥ 0 (5.4.10)

where −ν = maxi=q,...,dReλi < 0; hence, the origin is an attractor with basin
Rd itself. Every bounded sphere is attracted by the origin with exponential
strength, by Eq. (5.4.10).

If instead Reλ1 > 0 and Imλ1 6= 0, say, and if λ2 = λ1,v
(2) = v(1)

(the bar denotes complex conjugation),7 it is clear that by (5.4.9), the initial

datum ε (v(1) + v(1)) evolves into

2 ε eReλ1 tRe (v(1)eiImλ1 t). (5.4.11)

7 Since L is a real matrix its eigenvalues appear in complex-conjugate pairs or are real.
Similarly, the eigenvectors can be chosen to be either real or appearing in complex-
conjugate pairs corresponding to complex-conjugate eigenvalues.
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Hence, arbitrarily close to the origin, there are points evolving indefinitely
far away from the origin. Therefore, O not only does not attract, but it is
unstable.

The following proof will reduce the nonlinear case to the linear one. If
Reλi < 0, i = 1, 2, . . . , d, one shows that if a point is close enough to the
origin, then the nonlinear terms of f can initially be neglected for the purposes
of studying the equation of the motion and, by the preceding argument, the
point starts approaching O. Therefore, the nonlinear terms become even less
important and, more and more precisely, the system will move as if it were
subject to a linear equation.

If Re λ1 > 0, on the contrary, O cannot be stable because the initial

datum ε (v(1) + v(1)) moves away from the origin, if ε is small enough, at
least as much as needed so that the nonlinear terms of the equation become
sizeable. This suffices to exclude stability of the origin, even though it cannot

exclude its attractivity (since the point could go far from O in the v(1),v(1)

plane (roughly)) and, then, under the influence of nonlinearity, it could come
back towards 0 along a direction i where Reλi < 0, except, of course, when
Reλi > 0, for all i = 1, . . . , d. The reader will recognize the above ideas in
the following proof.

Proof. Let UR be a radius R ball centered at the origin. Assuming that
Reλi < 0, i = 1, . . . , d, we must determine ̺0 so that the evolution t→ St(w)
of an initial datum w ∈ U̺0 develops, ∀ t ≥ 0 in UR: St(w) ∈ UR, ∀ t ≥ 0.

For simplicity, suppose that λ1, . . . , λd are pairwise distinct. The reader
can think of the general case as a problem (basically, it is just an algebraic
problem). Proceed as in the small oscillations theory of §2.14, Proposition 20,
p.65, and write Eq. (5.3.1), assuming, without loss of generality, that x0 = 0:

ẋ = Lx + (f(x) − Lx) ≡ Lx + N(x) (5.4.12)

where N is an Rd-valued C∞(Rdd) function with a second-order zero in O.
By Taylor’s theorem, see Appendix B, given R > 0, there is a constant CR
such that

|N(x)| ≤ CR|x|2, ∀x ∈ UR (5.4.13)

Consider Eq. (5.4.12) as an equation in which N(x(t)) is thought of as a
known function of t, ∀ t ≥ 0. Then a particular “solution” would be

p(t) =

∫ t

0

d∑

i=1

eλi (t−τ)αi(N(x)(τ))v(i) dτ (5.4.14)

where, in general, given w ∈ Rd we shall set

w =
d∑

j=1

αj(w)v(j). (5.4.15)
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Since v(1), . . . ,v(d) is a basis in Cd, such a representation is possible and
defines the coefficients αi(w) (which, in general, may be complex even for real
w); and, furthermore, there is a constant A such that

d∑

j=1

|αj(w)| ≤ A |w|. (5.4.16)

We shall suppose to have chosen the vectors v(i) so that |v(i)| ≡ 1, i = 1, . . . , d,
which implies that A ≥ 1. Then the solution to Eq. (5.4.12), t→ x(t), t ≥ 0,
with the initial datum w will be

St(w) =

d∑

i=1

αi(w) eλi t v(i) +

∫ t

0

d∑

i=1

eλi (t−τ)αi(N(Sτ (w))(τ))v(i) dτ.

(5.4.17)
The boundedness assumption on the trajectories implies existence of µ(R) <
+∞ such that |St(w)| ≤ µ(R), ∀ t ≥ 0, ∀w ∈ UR. Then, setting, ∀ ̺ ≤ R,

D̺(t) = max
0≤τ≤t
|w|≤̺

|Sτ (w)|, (5.4.18)

one deduces from Eqs. (5.4.17), (5.4.18), (5.4.16), and (5.4.13):

|Sτ (w)| ≤ e−νtA|w|+A

∫ t

0

e−ν (t−τ)Cµ(R)D̺(t)
2 dτ ≤ A̺+

ACµ(R)

ν
D̺(t)

2,

(5.4.19)
where ν = mini=1,...,d |Reλ1|. By the arbitrariness of t and by the monotonic-
ity of D̺(t), as a function of t, Eq. (5.4.19) means that

D̺(t) ≤ A̺+
ACµ(R)

ν
D̺(t)

2, (5.4.20)

i.e. if 4
ACµ(R)

ν ̺ < 1, it must either be that

D̺(t) ≥
1 +

√
1− 4ACµ(R)ν−1̺

2ACµ(R)ν−1
≥ 1

2ACµ(R)ν−1
(5.4.21)

or, if K > 1 is a suitably chosen constant (R-dependent).

D̺(t) ≤
1−

√
1− 4ACµ(R)ν−1̺

2ACµ(R)ν−1
≤ K ̺ (5.4.22)

If |w| ≤ ̺0 < R and ̺0 is chosen so that

̺0 =
1

2

1

2ACµ(R)ν−1
, (5.4.23)
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we see that Eq. (5.4.22) must hold for all t ≥ 0, by continuity, since for t = 0,

|w| = D̺(0) ≤ ̺0. (5.4.24)

Hence for all w ∈ T̺0 ,

D̺(t) ≤ K |w| (5.4.25)

which implies that O is stable.
Attractivity of O is obtained via the autonomy of the Eq. (5.4.12) or

(5.3.1). If in fact there is a time t0 > 0 and a ̺ < ̺0, [choose here ̺0 as given
by Eq. (5.4.23) with R = 1, say], such that

|St(w)| ≤ 1

2
|w|, ∀ t ≥ t0, w ∈ U̺, (5.4.26)

Then by the autonomy of the differential equation it is

|St(w)| ≤ 2−n|w|, ∀ t ≥ nt0, w ∈ U̺, (5.4.27)

as seen by iterating Eq. (5.4.26). Hence Eq. (5.4.27) implies

|St(w)| ≤ 2 · 2− t
t0 |w|, ∀ t ≥ t0, (5.4.28)

because t
t0

is, in general, not an integer. It remains to check Eq. (5.4.26). The
first of Eqs. (5.4.19), together with Eq. (5.4.25), implies

|St(w)|λee−νt|w|+ ACµ(1)

ν
K2|w|2 ≤ |w|(e−νtA+

ACµ(1)K
2̺

ν
), (5.4.29)

∀ |w| ≤ ̺ with ̺ arbitrary provided ̺ ≤ ̺0. If ̺ is chosen so small that
A
ν Cµ(1)K

2̺ < 1
4 , it follows that

|St(w)| ≤ (e−νt +
1

4
)|w| (5.4.30)

and Eq. (5.4.26) follows by choosing t0 so that Ae−νt0 = 1
4 , i.e. t0 = 1

ν log 4A.
The statement concerning the instability is left to the reader.

mbe

5.4.1 Exercises

1. Compute the Lyapunov matrix for the stationary points of the equation ẋ = a x(1− x),
a ∈ R, and find for which values of a they are stable.

2. Consider the pendulum differential equation on R2: ẋ = y, ẏ = −g sinx. Find the
stationary points and compute their Lyapunov matrices, identifying the unstable ones. Find
the explicit values of the eigenvalues of the Lyapunov matrix relative to all the stationary
points and find the stable ones. (Hint: Stability cannot be decided on the basis of the
Lyapunov’s criterion; use energy conservation instead.)
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3. Consider the Euler equations Eq. (4.11.32)-(4.11.34), p.312. Assume I1 < I2 < I3 and
compute the Lyapunov matrix of the stationary solutions different from ω = 0. Show that
the only other stationary solutions are uniform rotations around either the i1 axis, or the
i2 axis, or the i3 axis. Show that for solutions of this type the Lyapunov criterion does not
exclude stability for the rotations around i1 and i3.

4. In the context of Problem 3, with I1 = I2 = I, I3 = J , make use of the integrability of
the gyroscope to discuss the stability of the three uniform rotations.

5. Suppose that the differential equation in Rd, ẋ = f(x), admits a prime integral A(x),
i.e. a function A ∈ C∞(Rd) such that, ∀x ∈ Rd, ∀ t ≥ 0, it is A(St(x)) ≡ A(x). Suppose
that A has a strict minimum at x0 ∈ Rd. Show that x0 is a stable stationary point.

6. Use Problem 5 and the conservation of energy to discuss the stationary rotations of the
frictionless gyroscope (with I1 < I2 < I3) and their stability properties along the following
lines. First find the Deprit variables of the uniform stationary rotations (see §4.11, p.317
and p.320) around the inertia axis ik, k = 1, 2, 3. (Answer: Kz, A,A, γ, ϕ, ψ + ωt for i3).
Then, using the Deprit Hamiltonian as a prime integral and Problem 5, show that the
rotation around the i3 axis is stable if I3 > I2, I3. (Hint: Note tat the Deprit Hamiltonian
can be written as

H =
A2

2I3
+

1

2
(
sin2 ψ

I1
+

cos2 ψ

I2
)(A2 − L2)

which has a minimum when A = L if and only if I3 > I2, I3.)

7. If the differential equation ẋ = f(x) on Rd is such that there exists a function A ∈
C∞(U), U ⊂ Rd, which is monotonically non increasing along the motions (i.e. A(St(x)) ≤
A(x), ∀ t ≥ 0, ∀x ∈ U , as long as Sτ (x) ∈ U, ∀ τ ∈ [0, t], we shall say that A is a monotonic
function for the given differential equation in the domain U . If A is monotonically decreasing
we call it a “Lyapunov function” for the differential equation. Show that every point where
a Lyapunov function has a strict minimum is a stable fixed point.

8. In the context of Problem 7, and under the assumptions of Proposition 6, define

A(w) =

Z +∞

0
|St(w)|22

t
t0 dt

for |w| small enough, say, |w| < ̺. Show that:
(i) A is well defined for all |w| < ̺ if ̺ is chosen as in Eq. (5.4.29).
(ii) A ∈ C∞(U̺), where U̺ = {w | |w| < ̺}.
(iii) A is a Lyapunov function in the sense of Problem 7.

(iv) 2
t

t0 A(St((w)) is monotonic in t ≥ 0, ∀w ∈ U̺.
(v) A has a strict minimum at w = 0. This is the “second Lyapunov theorem” (on the
existence of a Lyapunov function whenever a stationary point has a stability matrix with
eigenvectors with negative real part).

9. Compute the function A of Problem 8 for the linear equation ẋ = Lx, supposing that
all the eigenvalues of L are pairwise distinct and have a negative real part. Show that A
is a positive definite quadratic form in w. (Answer: If γ0 = 1

2t0
log 2 > ν log 2

2
log 4A, with

A being the constant introduced in Eq. (5.4.16) and not to be confused with the quadratic
form A that we wish to compute, it is A(w) =

Pd
i,j=1(λi + λj + γ0)−1αi(w)αj(w), where

αi(w) is defined as in Eq. (5.4.15).)

10. In the context of Problem 9, show that the ellipsoid A(w) = a > 0 has in w an outer

normal n(w) such that n(w) ·Lw < 0. (Hint: Note that n(w) = ∂wA(w)
|∂wA(w)| (∂w denoting the

gradient); furthermore, by Problem 9 (iii), the derivative of 2
t

2t0 A(St(w)) is non positive:
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“A log 2

2t0
+
dA

dt

”
2

t
t0 ≤ 0 ⇒ dA

dt
≤ − log 2

2t0
A,

so if dA/dt = 0, it must be that A = 0, i.e., w = 0 because A is positive definite. However,
dA/dt = ∂w(w · Lw); hence, ∂w(w · Lw) < 0 if w 6= 0.)

11. Show that the proof of Proposition 6 can be interpreted as saying that if A0(w) denotes
the Lyapunov function of the linear differential equation ẋ = Lx, see Problems 9 and 10,
and if A(w) is the Lyapunov function of the differential equation ẋ = f(x) with the origin as
a fixed point with Lyapunov matrix L, then, assuming that the real part of the eigenvalues
of L is negative, A(w) = A0(w) + O(|w|3).

12. Consider a one-parameter family of differential equations in Rd: ẋ = f(x, α), with

x0 = 0 being a stationary point for all values of α ∈ (a, b) ⊂ R. Suppose that the Lyapunov
matrix of 0, L(α) has pairwise distinct eigenvalues, all with real part ≤ −ν < 0, ∀α ∈ (a, b).
Let α0 ∈ (a, b) and let Aα0 be the Lyapunov function of Problem 11, relative to the
equation ẋ = f(x, α0). Show the existence of δ > 0, ε > 0 such that the neighborhood

Vδ
def
= {x|Aα0 (x) < δ} has an outer normal n(x) such that, ∀x ∈ ∂Vδ it is n(x)·f(x, α) < 0,

∀α ∈ [α0 − ε, α0 + ε]. (Hint: First consider the linear case, then Problems 10 and 11).

13. From Problem 12, deduce that Vδ is invariant for the equation ẋ = f(x, α) for all
α ∈ [α0 − ε, α0 + ε]. (Hint: Suppose the contrary and proceed per absurdum.)

14. Consider a Hamiltonian differential equation in R2d associated with the Hamiltonian
function H(p,q) = 1

2
p2+V (q). Let (0,q0) be an equilibrium point. Show that its Lyapunov

matrix has eigenvalues that can be collected into pairs of opposite value, either both real
or both purely imaginary. Furthermore, show that this implies that its stability cannot be
settled on the basis of the Lyapunov criterion, while its instability can sometimes be settled

on this basis. (Hint: Note that the Lyapunov matrix has the structure L =

„
A −B
C D

«

where A,B, C,D are the d× d matrices

A = 0, Bij =
∂2V

∂qi∂qj
, C = 1, D = 0.

So if L

„
u

v

«
with u,v ∈ Rd, it must be that λu + Bv = 0,u = λw so that −λ2v = Bv.

But B is symmetric so that its eigenvalues are real (see Appendix F), hence . . .).

15. Show that the Lyapunov matrix eigenvalues are invariant under regular changes of
coordinates y = a(x). (Hint: If σ is defined in the vicinity of the stationary point x0 ∈ Rd
for ẋ = f(x) and if Jij(y) =

∂σi(x)
∂xj

, for y = σ(x), is the Jacobian matrix of the nonsingular

change of coordinates, (i.e., such that det J 6= 0), then the differential equation becomes,
in y coordinates, ẏ = J(y)f(σ−1(y)), and this implies that the Lyapunov matrix at y0 =
σ−1(x0) is L′ = J(y0)LJ(y0)−1; hence, det(L′ − λ) = det(JLJ−1 − λ) = det(J(L −
λ)J−1) = det(L− λ).)

16. Let H be a Hamiltonian function describing in some local system of coordinates N
point masses in Rd subject to conservative active forces and constrained by a bilateral
ideal constraint to a surface Σ (in the sense of Chapter 3).
Let (0,x0), x0 ∈ Σ, be a stationary point. Give arguments (or prove) that the eigenvalues of
the Lyapunov matrix for the Hamiltonian equations corresponding to the given stationary
point appear in pairs of opposite eigenvalues either both real or both purely imaginary. This
is a refinement of Problem 15 extending it to the case of a system ideally constrained to Σ.
(Hint: In a system of local regular coordinates around x0 and adapted to Σ, the Lagrangian
takes the form [see Eq. (3.11.23), p.215]: L = 1

2

Pd
i,j=1 g(β)ij β̇iβ̇j − V (β), with g being
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a C∞ positive-definite matrix function and with V also of class C∞. So the Hamiltonian
is [see Eq. (3.11.25), p.215] H = 1

2

Pd
i,j=1 g(β)−1

ij pipj + V (β). Hence, the matrix L is„
A −B
C D

«
with

A = 0, Bij =
∂2V

∂qi∂qj
, C = G−1, D = 0,

where Gij = g(β0)ij and β0 is the point representing x0 in our system of coordinates. So if

L

„
u

v

«
= λ

„
u

v

«
, u,v ∈ Rℓ, this means Bv + λu = 0, G−1u = λv, i.e., (B + λ2G)v = 0;

hence, 0 = det(B + λ2G) = det
“
B + λ2

√
G
√
G) = det

“√
G(
√
G−1B

√
G−1 + λ2)

√
G
”

=

(detG) det(
√
G−1B

√
G−1 + λ2), see Appendix F for the definition of the square root of

a positive-definite matrix). So, since
√
G−1B

√
G−1 is a symmetric matrix (because G is

such, see Appendix F), it follows that λ2 is real, positive or negative, etc.).

17. Show that Proposition 6 holds if the hypothesis of bounded trajectories is weakened

into that of normality or even into no assumption at all; in the latter case, show that global

solutions exist for t ≥ 0 for initial data close enough to x0. (Hint: Simply carefully examine

the proof of Proposition 6.)

5.5 Application to the Model of §5.1. The Notion of
Vague Attractivity of a Stationary Point

In the case of Eq. (5.1.19), it is easy to compute the Lyapunov matrix relative
to the stationary solution ω̂:

L =



α− λ1 − λ′′′2 ω̂2

3 −ω̂3 0
o33 α− λ1 − λ′′′2 ω̂2

3 0
0 0 −λ1 − 3λ′′′2 ω̂2

3


 , (5.5.1)

whose eigenvalues are
(α− λ1 − λ′′′2 ω̂2

3)± iω̂3. (5.5.2)

Hence, ω̂ is stable and attractive for some of its neighborhoods not only if
α < λ1 as already seen in §5.2 and §5.3, but also for λ1 ≤ α < λ1 +λ′′′2 ω̂2

3 , see
Proposition 6, §5.4, p.382. The attractivity of ω̂ in this interval of variability
of α is exponential near ω̂:

if α− λ1 − 3λ′′′2 ω̂
2
3 < 0 then (5.5.3)

|St(ω)− ω̂| ≤ 2 · 2 t
t0 |ω − ω̂|. (5.5.4)

if |ω − ω̂| is small enough; t0 > 0 depends only on the matrix L [see §5.4,
comment after Eq. (5.4.30)], and it can be estimated as inversely proportional
to (λ1 + λ′′′2 ω̂2

3)− α.
A discussion identical to the one developed in the case α < λ1 shows that

Eq. (5.5.3) implies that every motion of the gyroscope associated with an
evolution t→ St(w) like Eq. (5.5.3), for the angular velocity of the comoving
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frame, asymptotically tends to become a uniform rotation around the i3 axis
which, in turn, tends to a fixed position in space.

The difference between the cases α < λ1, and λ1 ≤ α < λ1 + λ′′′2 ω̂2
3 lies in

the fact that now we can no longer guarantee that ω̂ is a “global attractor”,
i.e., with basin of attraction coinciding with R3. The criterion of Lyapunov
has, in fact, only a local character, and thus it can only lead to the recognition
of local stability, instability, or attractivity.

Of course, it is of interest to investigate whether or not the attraction basin
for ω̂ is all of R3, and if not, it would be important to understand where the
other attractors for the equation are located. However, this analysis could not
be done using general results such as the Lyapunov criterion and we shall
not discuss this point in further detail, contenting ourselves with the local
information found so far. In any event, it has to be stressed that these kinds
of problems are very difficult and very little understood in general.

The motion ω̂ is no longer stable for α > λ1 + λ2ω̂
2
3 , not even locally, by

the second part of Proposition 6, §5.4. We then inquire about what happens
to a solution of Eq. (5.1.19) following an initial datum ω slightly different
from ω̂ and for α > ac = λ1 + λ2ω̂

2
3 , at least for small α− αc.

The first question is whether for α slightly larger than αc,

αc = λ1 + λ′′′2 ω̂
2
3 , (5.5.5)

the motion of the data ω close to ω̂ departs very much from the motion ω̂. As
we shall see, this question naturally leads to the following interesting notion
of “vague attractivity”.

5 Definition. Let (x, α) → f(x, α) be an Rd-valued C∞(Rd × I) function
with I = open interval, such that the differential equations

ẋ = f(x, α), (5.5.6)

parameterized by α ∈ I, have uniformly bounded trajectories8 with respect to
α ∈ I and, furthermore, admit a stationary solution x0 ∈ Rd such that

f(x0, α) = 0. (5.5.7)

x0 will be called “vaguely attractive” near αc ∈ I if there is a neighborhood U
of x0 such that for every δ > 0, one can find tδ > 0, εδ > 0, ̺δ > 0 such that

S
(α)
t (U) ⊂ Γ (δ), ∀ t ≥ tδ, ∀ α ∈ (αc − εδ, αc + εδ),

S
(α)
t (Γ (δ)) ⊂ Γ (̺δ), ∀ t ≥ tδ, ∀ α ∈ (αc − εδ, αc + εδ),

(5.5.8)

with ̺δ −−−→δ→0
0. Here S

(α)
t is the solution flow for Eq. (5.5.5) and Γ (δ) = cube

with side 2δ centered around x0.

8 If S
(α)
t denotes the flow generated by Eq. (5.5.5), this means that the bound on the

trajectory of x ∈ Rd, |S(α)
t (x)| ≤ µ(|x|) holds and µ is continuous and α-independent.
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Observations.
(1) In other words, x0 is vaguely attractive near αc, if there is a neighborhood
U which is a basin of attraction for an attractor containing x0 and having a
diameter smaller than any arbitrarily prefixed length δ > 0 for all α’s close
enough to αc. Furthermore, this attractor, contained in Γ (δ), “uniformly at-
tracts” the points of U and has a “weak stability”, as expressed more precisely
by the first and second of Eqs. (5.5.7), respectively.
Note that for α = αc, the point x0 must be attractive for the points in U .
In fact x0 is vaguely attractive for α near αc if and only if it is stable and
attractive for Eq. (5.5.6) with α = αc.
(2) One can also say that x0 is vaguely attractive near αc if it is the attractor
of a neighborhood U of x0, for α = αc while for α close to αc it still attracts
the points of U not too close to x0. The “attractivity away from x0 is uniform
in α” near αc.
(3) If in αc the Lyapunov matrix L(α) for Eq. (5.5.5) relative to x0 has eigen-
values with a negative real part, it follows from the arguments of the proof of
Proposition 6, §5.4, that x0 is vaguely attractive near αc. Actually, the set U

can be taken such that for some ε0 > 0 it is S
(α)
t U ⊂ U, ∀ |α−αc| < ε0, ∀ t ≥ 0,

(this follows from the Problems 12 and 13, §5.4, p.388.)
(4) Hence, the vague-attractivity notion is interesting only when L(αc) has
some eigenvalues with a vanishing real part.
(5) All the upcoming examples of vague attractivity will have the property
that U can be chosen to fulfill Eq. (5.5.8) for all t ≥ 0. It seems not impossible
that the neighborhood U of vague attractivity could always be chosen in this
way.
(6) The condition that Γ (δ) be a cube with side 2δ centered at x0 could be
equivalently replaced by the requirement that Γ (δ) be a family of neighbor-
hoods of x0 with diameter tending to zero with δ.
(7) The assumption that x0 should be α independent is only apparently more
restrictive than the natural assumption of the existence of a stationary solu-
tion x(α) depending in a C∞-regular way on α. With a change of coordinates,
one can always reduce the stability theory, of such a stationary point, to that
relative to the case when x(α) = 0.
(8) If x0 is replaced in the above definition by an invariant set A and ΓA(δ) =
{set of the points at distance < δ from A}, one defines the notion of a “vague
attractor”.
This notion could be extended to the case when A depends on α, although
not as straightforwardly and as unambiguously, as in the case A = {x(α)}
discussed in Observation (7).
(9) Last but not least, the vague attractivity of x0 is a notion invariant under
changes of coordinates; it is also invariant under changes of the equation itself
(i.e., of the function f(x, α), for x outside some neighborhood of x0). Vague
attractivity is an “intrinsic local property” of Eq. (5.5.5) near x0 and αc.
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The above facts play an important role in the formulation of simple vague
attractivity criteria which show that it is a property that can be inferred from
the knowledge of the x derivatives of f(x, αc) in x0 of order not exceeding
3. To illustrate this important fact and to provide, in this way, some simple
vague-attractivity criteria, it is convenient to introduce the notion of “normal
form” of a differential equation near a stationary solution.

6 Definition. Let ẋ = f(x, α), f ∈ C∞(Rd × R), be a differential equation
in Rd with uniformly bounded trajectories (see footnote 8 to p.383) and with
x0 = 0 as a stationary point ∀α ∈ I = (a, b).
Let L(α) be the stability matrix at x0 = 0 and suppose that λ1(α), λ1(α), . . . ,
λp(α), λ′1(α), . . . , λ′q(α) are 2p+q of its eigenvalues, the first 2p being arranged
into complex-conjugate non real pairs and the last q being real.
We say that the differential equation has, for α ∈ I, a “normal form” with
respect to the mentioned eigenvalues of L(α) if, writing the coordinates of x
as (x(1),x(2), . . . ,x(p), y(1), . . . , y(q), z) with x(j) ∈ R2, j = 1, . . . , p, y(i) ∈
R, i = 1, . . . , q, and z ∈ Rd−2p−q, the equation has the form, ∀α ∈ I,

ẋ
(j)
1 =(Reλ1(α))x

(j)
1 − (Imλ1(α))x

(j)
2

+N
(j)
1 (x(1), . . . ,x(p), y(1), . . . , y(p), z, α),

ẋ
(j)
2 =(Imλ1(α))x

(j)
1 − (Reλ1(α))x

(j)
2

+N
(j)
2 (x(1), . . . ,x(p), y(1), . . . , y(p), z, α),

ẏ(h) =λ′h(α)y(h) +M (h)(x(1), . . . ,x(p), y(1), . . . , y(p), z, α),

ż =L̃(α) + P̃(x(1), . . . ,x(p), y(1), . . . , y(p), z, α),

(5.5.9)

j = 1, . . . , p, h = 1, . . . , q, L̃(α) being a (d− 2p− q)× (d− 2p− q) matrix with

C∞ entries (as functions of α) and N(j),M (h), P̃ being C∞ functions of their
arguments with the extra property that N(j),M (h) have a zero of third order
at the origin in the x, y, z variables, for all α ∈ I, while P̃ has a second-order
zero, at least, at the origin (in the same variables).

Observation. If p = 0 or q = 0 or d = 2p+ q, the above definition makes sense
in an obvious way by deleting parts of Eq. (5.5.9).

Vague attractivity near αc may be easily discussed once the equation is in
normal form with respect to the eigenvalues of L(α) whose real part vanishes
for α = αc, In general, the equations that one wishes to study will not have
normal form, but they may acquire such a form after a change of variables.
This is as suitable for vague-attractivity analysis, by Observation (9), p.391.

For instance, Eq. (5.1.19) does not have normal form near αc with respect
to the two complex eigenvalues of L(α). Therefore, before discussing a vague-
attractivity criterion, it is convenient to remark that there is a simple and
rather weak sufficient condition for the existence of a system of coordinates
where the equation ẋ = f(x, α) assumes normal form.
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7 Proposition. Let ẋ = f(x, α), f ∈ C∞(Rd ×R), be a differential equation
parameterized by α and with uniformly bounded trajectories as α ∈ I = (a, b).
Suppose that f(0, α) = 0 and let L(α) be the stability matrix of 0.
Suppose that for α ∈ I, L(α) has d pairwise-distinct eigenvalues Λ1(α), . . . ,
Λd(α), among which 2p are non real; write them as λ1(α), λ1(α), . . . , λp(α),
λ′1(α), . . . , λ′q(α), (2p+ q = d), and arrange them so that the functions α →
λi(α) are C∞-functions of α, for α ∈ I.9
(i) There is a (global) coordinate system on Rd × I: (Rd × I,Ξ), with basis
Rd×I, denoted (x, α) = Ξ(ξ(1), . . . , ξ(p),η(1), . . . ,η(q), α′) with α′ = α, ξ(j) ∈
R2, η(h) ∈ R, such that in the new coordinates, the equations takes the form,
(j = 1, . . . , p; h = 1, . . . , q),

ξ̇
(j)
1 =((Reλ1(α)) ξ

(j)
1 − (Imλ1(α)) ξ

(j)
2 ) + F

(j)
1 (ξ(1), . . . , α),

ξ̇
(j)
2 =((Imλ1(α)) ξ

(j)
1 − (Reλ1(α)) ξ

(j)
2 ) + F

(j)
2 (ξ(1), . . . , α),

η̇(h) =λ′h η
(h) + F (h)(ξ(1), . . . , α),

(5.5.10)

where F
(j)
1 , F

(j)
2 , F (h) are in C∞(Rd × I) and have a second-order zero at the

origin in the variables ξ,η for each α ∈ I.
(ii) If Λk(αc) 6= Λk(αc) + Λℓ(αc), k, h, ℓ = 1, . . . , d, and if the equation ẋ =
f(x, α) has already the form of Eq. (5.5.10) for a ∈ I, there is a coordinate
system on a suitable neighborhood U × J of (0, αc), (U × J,Ξ), such that in
the new coordinates, Eq. (5.5.10) takes normal form with respect to all the
eigenvalues of L(α). Calling (β, α′) the new coordinates, the transformation
Ξ can be chosen as

βj = xj −
d∑

k,ℓ=1

Sjkℓ(α)xk xℓ, α′ = α (5.5.11)

with Sjkℓ = Sjℓk ∈ C∞(J), a “quadratic change of coordinates”; its inverse
will (therefore10) have the form

xj = βj +
d∑

k,ℓ=1

Sjkℓ(α)βk βℓ +Gj(β, α), α′ = α, (5.5.12)

where Gj ∈ C∞(Ξ(U × J)) has a third-order zero at β = 0, ∀α ∈ J .

Observations.
(1) Note that by defining, for (j = 1, . . . , p; h = 1, . . . , q)

9 Since the eigenvalues are supposed to be pairwise distinct and they are roots of a d-th
order polynomial, this is possible and it follows from general results in Algebra.

10 By the implicit function theorem, (see Appendix G).
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z(j) = ξ
(j)
1 + i ξ

(j)
2 , z(j) = ξ

(j)
1 − i ξ

(j)
2 ,

N (j)(z(1), z(1), . . . , z(p), z(p), η(1), . . . , η(q), α)

= F
(j)
1 (ξ(1), . . .) + i F

(j)
2 (ξ(1), . . .),

M (h)(z(1), z(1), . . . , z(p), z(p), η(1), . . . , η(q), α) = F (h)(ξ(1), . . .)

(5.5.13)

Eq. (5.5.10) assumes the more symmetric form

ż(j) =λj(α)z(j) +N (j)(z(1), z(1), . . . , α), j = 1, . . . , p,

η̇(h) =λ′h(α)η(h) +M (h)(z(1), z(1), . . . , α), h = 1, . . . , q,
(5.5.14)

(2) If the eigenvalues λ1(αc), λ1(αc) are non degenerate and Reλ1(αc) =
0, Imλ1(αc) 6= 0, it follows from (ii) that it will be possible to put the equa-
tion ẋ = f(x, α) into normal form with respect to λ1(αc), λ1(αc) in the sense
of Definition 6 above. This is obvious if Λk(αc) 6= Λh(αc) + Λℓ(αc), ∀ k, h, ℓ,
but it is also generally true as a consequence of (ii) (see below).
Suppose, in fact, that the equation has already the form of Eq. (5.5.10). We
then perform the quadratic change of coordinates that would put into nor-
mal form, (with respect to all the eigenvalues), the equation obtained from
Eq. (5.5.10) by replacing the eigenvalues λ1(α), λ1(α), . . . , λp(α), λ′1(α), . . . ,

λ′q(α), by Λ̃1(α), . . . , Λ̃d(α)) = λ1(α), λ1(α), λ2(α) + ε2, λ2(α) + ε2, . . . , ,
λ′1(α) + ε′1, . . . , λ

′
q(α) + ε′q, where ε2, . . . , ε

′
1, . . . are chosen so that the condi-

tion Λ̃k(α) + Λ̃h(α) 6= Λ̃ℓ(α), ∀ k, h, ℓ is fulfilled (and the ε′h are real).
Taking into account the quadratic nature of the maps of Eqs. (5.5.11) and
(5.5.12), it is clear that the original equation will take, in the new coordi-
nates, normal form with respect to the only two eigenvalues which have not
been modified, i.e., λ1(α), λ1(α). If the equation does not have the form of
Eq. (5.5.10), but λ1(α), λ1(α) are non degenerate, one can apply a similar
argument.
(3) From the proof, it appears that the normal-form coordinates (for all the
eigenvalues or, via the previous observations (2) suitably adapted, for some
of them) can sometimes be found even when the “non resonance condition”
on the eigenvalues [in (ii) above] is not fulfilled, provided the equation verifies
additional properties. Such conditions can be explicitly stated by requiring
that Eq. (5.5.22) below be solvable. In the problems 16 and 17 at the end of
this section, we give some examples of explicit use of this remark.

Proof. To find ξ(1), . . . , ξ(p), η(1), . . . , η(q) coordinates, consider the eigenvec-

tors (w(1)(α), . . . ,w(d)(α)) ≡ (v(1)(α),v(1)(α), . . . ,v(p)(α),v(p)(α),v
′(1)(α),

. . . ,v
′(q)(α)), of L(α) associated with the eigenvalues (λ1(α), λ1(α), . . . , λp(α),

λ′1(α), . . . , λ′q(α)), α ∈ I, respectively. At fixed α ∈ I, such vectors are linearly
independent, by the assumption of distinct eigenvalues.
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We may and shall assume that the above eigenvectors are C∞ functions
of α. Since they form a basis in Cd, any x ∈ Rd can be written, defining

ζ(j) def= ξ
(j)
1 + i ξ

(j)
2 , as

x =

p∑

j=1

[
ζ(j)v(j)(α) + ζ

(j)
v(j)(α)

]
+

q∑

h=1

η(h) v
′(h)(α). (5.5.15)

and, remarking that v(j)(α),v
′(j)(α) are eigenvectors of L(α), it is immediate

to check that in the (ξ(1), . . . , ξ(p), η(1), . . . , η(q)) coordinates, the equation
ẋ = f(x, α) takes the form of Eq. (5.5.10).

To prove (ii), write Eq. (5.5.10) as

ẋj = fj(x, α) =
d∑

k=1

Ljk(α)xk +
d∑

k,ℓ

Fjkℓxhxℓ (5.5.16)

with Fjkℓ = Fjℓk ∈ C∞(Rd × J), j = 1, . . . , d.
Performing the change of coordinates in Eqs. (5.5.11) and (5.5.12), after

some algebra Eq. (5.5.16) becomes, in the new coordinates β,

β̇j =ẋj − 2
∑

k,ℓ

Sjkℓ(α)xkẋℓ =
d∑

k=1

Ljk(α)βk +
d∑

h,ℓ=1

{ d∑

k=1

(
LjkSkhℓ(α)

− Sjhk(α)Lkℓ − Sjℓk(α)Lkh(α) + Fjhℓ(0, α)
)}
βh βℓ +Gj(β, α)

(5.5.17)
where Gj has a third-order zero at β = 0, ∀α ∈ J .

Therefore, if there is a solution Sjhk(α) to the linear system of dd(d+1)
2

equations in dd(d+1)
2 unknowns (recall that Sjhℓ = Sjℓk, Fjhℓ = Fjℓk) de-

scribed for j, h, ℓ = 1, . . . , d by

d∑

k=1

(
LjkSkhℓ(α) − Sjhk(α)Lkℓ − Sjℓk(α)Lkh(α)

)
+ Fjhℓ(0, α) = 0 (5.5.18)

and if the solution Sjhk depends on α in a C∞ way for α near αc, then
Proposition 7 will have been proved.

Define a matrix W (α) in terms of the eigenvectors of L(α), w(1)(α), . . . ,
w(d)(α), as

W (α)hk
def
= w

(k)
h (α), h, k = 1, . . . , d. (5.5.19)

The linear independence of the eigenvectors w(i) implies that detW (α) 6= 0,
∀α ∈ I, so that W (α)−1 exists and is a C∞-matrix function of α ∈ I, and if
a matrix Λ(α) is defined as Λ(α)hk = Λh(α)δhk, it is
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L(α) = W (α)Λ(α)W (α)−1 (5.5.20)

(see Appendix F for details on this relation between a matrix, its eigenvalues,
and its eigenvectors). Inserting Eq. (5.5.20) into Eq. (5.5.18) one finds

d∑

k,d=1

(
W (α)jsΛs(α)W (α)−1

sk Skhℓ(α) − Sjhk(α)W (α)ksΛs(α)W (α)−1
kℓ

− Sjℓk(α)W (α)ksΛs(α)W (α)−1
sh (α)

)
+ Fjhℓ(0, α)

and multiplying both sides by W (α)−1
rj W (α)ℓpW (α)hq summing over j, h, ℓ,

and setting

σspq(α) =
∑

j,k.ℓ

W (α)−1
sk Skhℓ(α)W (α)hqW (α)ℓp

ϕspq(α) =
∑

j,k.ℓ

W (α)−1
sk Fkhℓ(0, α)W (α)hqW (α)ℓp

(5.5.21)

one finds that Eq. (5.5.18) becomes

ϕspq + (Λs(α)− Λp(α) − Λq(α))σspq(α) = 0 (5.5.22)

which can certainly be solved uniquely for σ and via Eq. (5.5.21) yields a C∞

solution to Eq. (5.5.18), ∀α ∈ J . This solution is real because Eq. (5.5.18) is
a linear equation with real coefficients and real known terms. mbe

Observation. Note that in the above proof, the determination of the change of
coordinates leading to the form of Eq. (5.5.10) only involves the matrix L(α),
i.e., the first x derivatives at the origin of f(x, α). The definition of Sjkℓ(α),
i.e., of the coordinates putting the equation into the normal form, only involves
L(α) and Fjkℓ(0, α), i.e., the first and second derivatives of f(x, α) at 0.

It is now possible to discuss a simple vague-attractivity criterion.

8 Proposition. Let ẋ = f(x, α), f ∈ C∞(Rd ×R), be a differential equation
parameterized by α, with uniformly bounded trajectories as α ∈ I = (a, b),
(see footnote 8) and such that f(0, α) = 0, ∀α ∈ I.
Suppose that for α = αc, the stability matrix of the origin, L(αc), has one pair
of conjugate imaginary eigenvalues λ1(αc), λ1(αc) 6= 0, while all the other d−2
eigenvalues have negative real parts.
Also suppose that the equation has normal form with respect to λ1, λ2 near
αc ∈ I, and write the differential equations for the first two components of x,
x1 and x2, as

ẋ1 =(Reλ1(α)x1 − (Imλ1(α))x2) +N1(x1, x2,y, α),

ẋ2 =(Imλ1(α)x1 + (Reλ1(α))x2) +N2(x1, x2,y, α),
(5.5.23)
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with N1, N2 ∈ C∞(Rd ×R) and having a third-order zero at the origin x1 =
x2 = 0,y = 0, for all α ∈ I, having denoted y the last d− 2 coordinates of x.

If x1 + ix2
def
= ̺eiθ define

γα = lim
̺→0

lim
y→0

x1N1 + x2N2

(x2
1 + x2

2)
2

(5.5.24)

for α ∈ I. Then the origin is vaguely attractive near αc if

γ =
1

2π

∫ 2π

0

γαc(θ) dθ < 0, (5.5.25)

while if γ > 0 is is not vaguely attractive.
The same conclusions can be drawn under the sole assumption that the differ-
ential equation takes the form of Eq. (5.5.23) without requiring that N1 and
N2 be of third order, but only requiring the existence of the limit Eq. (5.5.24),
i.e., only requiring that x1N1 + x2N2 be of fourth order.

Observations.
(1) As already remarked, the assumption on the normality of the equation
with respect to λ1(α), λ1(α) is not really restrictive if (as assumed above)
Imλ1(αc) 6= 0 and if all the remaining eigenvalues have a negative real part.
In fact, one can always change coordinates and put the equation in this form
(see observation (2), p.394, to Proposition 7).
(2) The number γ can, in principle, be computed in any system of coordi-
nates in terms of the derivatives of first order, second order, and third order
of f(x, αc) at x = 0, with respect to the x coordinates. However, this calcula-
tion may be very long in practical cases. For the computation of γ, it is more
practical to first reduce the equation to the form of Eq (5.5.23) using obser-
vation (2) to Proposition 7, p.394, and then to compute γ via Eq. (5.5.25).
(3) A similar criterion holds if the equation has one real eigenvalue λ′(α) van-
ishing at αc while all the others remain with negative real part near αc if
x = (x1,y) and assuming

ẋ1 = λ′(α)x1 +N1(x1,y, α) (5.5.26)

with N1 having a zero of third order at x1 = 0,y = 0, ∀α ∈ I, then a vague-

attractivity criterion is that γ = limx1→0
x1N1(x1,0,αc)

x4
1

< 0.

However, the above normal-form assumption, i.e., the assumption that N
should be of third order, is now restrictive. Sometimes it might be impossible
to find coordinates in which the equation for x1 takes the form of Eq. (5.5.26).

Proof. For simplicity, we suppose that the only non real eigenvalues of L(α)
are λ(α) ≡ λ1(α) = σ(α)+ i µ(α) = λ2(α) for α near αc; we also suppose that
the other eigenvalues are pairwise distinct and µ(α) > 0.

Let ν > 0, α > 0 be such that λ′1(α), . . . , λ′d−2(α) ≤ −ν < 0, µ(α) >
ν, ∀α ∈ (αc− a, αc+ a). We may and shall suppose that the equation takes
the form
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ẋ1 =σ(α)x1 − µ(α)x2 +N1(x1, x2,y, α),

ẋ2 =µ(α)x1 + σ(α)x2 +N2(x1, x2,y, α),

ẏj =λ′j(α)yj + Ñj(x1, x2,y, α),

(5.5.27)

j = 1, . . . , d− 2, with N1, N2 having a third-order zero at x1 = 0, x2 = 0, y =
0, ∀α ∈ (ac− a, ac+ a), while Ni has at least a second-order zero at the same
point, ∀α ∈ (αc − a, αc + a), see Proposition 7 (i), p.393.

By the Lagrange-Taylor theorem, see Appendix B, we can write, for

Nj(x1, x2,y, α) =

2∑

h,k,ℓ=1

N jhkℓ(α)xhxkxℓ

+

2∑

h,k=1

d−2∑

ℓ=1

N
′
jhkℓ(α)xhxkyℓ +

2∑

h

d−2∑

k,ℓ=1

N
′′
jhkℓ(α)xhykyℓ

+

d−2∑

h,k,ℓ=1

N
′′′

jhkℓ(α)yhykyℓ + N̂j(x1, x2,y, α),

(5.5.28)

where N,N
′
, N
′′
, N

′′′

are C∞ functions of α ∈ (αc−a, αc+a) and N̂ is a C∞

function of its arguments, for α ∈ (αc − a, αc + a), and it has a fourth order
zero at the origin in the x1, x2,y variables, ∀α ∈ (αc − a, αc + a).

For all α ∈ (αc − a, αc + a), if x1 + i x2
def
= ̺eiθ, it is

γα(θ) =

2∑

j,h,k,ℓ=1

N jhkℓ(α)
xjxkxhxℓ
(x2

1 + x2
2)

2
. (5.5.29)

To continue, first assume that γα(θ) ≡ gα < 0, ∀α ∈ (αc − a, αc + a), i.e.,
suppose that γα(θ) is θ-independent. This severe restriction will be later re-
moved. Multiply the Eqs. (5.5.27) by x1, x2, yj, respectively, and sum the first

two and, separately, the last d− 2 to find, setting ̺
def
=
√
x2

1 + x2
2,

1

2

d̺2

dt
= σ(α)̺2 + γ̺4 +D4,

1

2

dy2

dt
≤ −νy2 +D3, (5.5.30)

where D3 and D4 are C∞ functions of x1, x2,y and of α ∈ (αc − a, αc + a)
such that ∃C1, C2 > 0 which, for ̺,y near zero, verify

|D4| ≤ C1 (|y| + ̺2) (̺+ |y|)3, |D3| ≤ C2 (̺+ |y|)3. (5.5.31)

Let β, δ0 > 0 be such that β(1 + β)3C1 ≤ 1
2 |γ|, νβ2δ20 >

1
2C2(1 + β)3δ30 , and

let δ0 be so small that for all δ ≤ δ0 Eqs. (5.5.31) hold in
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Γ (δ) = {x1, x2,y | ̺ < δ, |y| < δβ}. (5.5.32)

Then we see that for (x1, x2,y) ∈ ∂Γ (δ), δ ≤ δ0, it is

1

2

d̺2

dt
≤ σ(α)δ2 +

ν

2
δ4, if ̺ = δ,

1

2

dy2

dt
≤ −ν

2
β2δ2, if |y| = βδ.

(5.5.33)

Hence, if α is very close to αc the right-hand sides of both of Eqs. (5.5.33) are
negative. We use this to infer in a standard fashion that there is a function

εδ > 0 such that ∀α ∈ (ac− εδ, α+ εδ), the set Γ (δ) is S
(α)
t -invariant (where,

as usual, the solution flow for our equation is denoted S
(α)
t . In fact, let εδ be

a monotonically decreasing function of δ ∈ (0, δ0] such that σ(α) < 1
4 |γ|δ2 for

α ∈ (αc − εδ, αc + εδ). For such values of αc the right-hand sides of both of
Eqs. (5.5.33) are negative.

Then let x = (x1, x2,y) ∈ Γ (δ) and let t = (first time > 0 such that

S
(α)
t (x) 6∈ Γ (δ) and note that either the first or the second of Eqs. (5.5.33)

(according to which side of ∂Γ (δ) is crossed) implies that S
(α)
t (x) 6∈ Γ (δ) for

some earlier time t < t against the definition of t. So t = +∞ and Γ (δ) is

invariant for S
(α)
t , ∀ t ≥ 0, ∀ ∈ (αc − εδ, αc + εδ), ∀ δ ≤ δ0.

To prove vague attractivity, see Definition 5, and Observation (8), p.391,
it is natural to try to choose U = Γ (δ0). Therefore, ask the following question:

given δ ≤ δ0 and α ∈ (ac−εδ, αc+εδ), can we find tδ > 0 such that S
(α)
t Γ (δ0) ⊂

Γ (δ)?

Let x ∈ Γ (δ0)/Γ (δ) and suppose that for t in some interval [0, T ], S
(α)
t (x) ∈

Γ (δ0)/Γ (δ). If we define δ(t)2
def
= max(̺(t)2,y(t)2/β2), the point S

(α)
t (x) is in

∂Γ (δ(t)) and Eq. (5.5.33), together with the assumption that ∀ t ∈ [0, T ], δ ≤
δ(t) ≤ δ0, imply

δ(t)2 ≤ δ(0)2 + 2T max(
γ

4
δ2,−ν

2
δ2) ≤ δ20 − TMδ (5.5.34)
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with Mδ > 0.11 Hence, if tδ = (δ20 − δ2)/Mδ, it follows that T < tδ. Hence,

S
(α)
t Γ (δ0) ⊂ Γ (δ), ∀α ∈ (αc − εδ, αc + εδ).

It is now clear that x0 = 0 is vaguely attractive. By Definition 5, and
observation (8), p.391, one can take U = Γ (δ0), ̺δ, ∀ δλδ0, εδ, tδ as above for
all δ ≤ δ0 and Eq. (5.5.7) holds for δ ≤ δ0. If δ > δ0, Eq. (5.5.7) follows from
the supposed uniform boundedness of the trajectories,

So the proof of vague attractivity is complete as long as γα(θ) ≡ γα, ∀α ∈
(αc − a, αc + a). We must now remove this restriction.

This will be achieved by studying a coordinate change (x1, x2,y, α) →
(ξ1, ξ2,y

′, α′) with α′ ≡ α, y′ ≡ y, and

ξi =xi +

2∑

j,k=1

aijk(α)xjxk, i = 1, 2

xi =ξi −
2∑

j,k=1

aijk(α)ξjξk +Hi(ξ, α), i = 1, 2,

(5.5.35)

where H, aijk are C∞ functions of their arguments and defined in the neigh-
borhoods of (0, ac) of the form V × I, V ⊂ Rd open; furthermore Hi have a
third order zero at ξ = 0.

We must show that aijk(α) can be so chosen that the two equations

ẋ1 =σ(a)x1 − µ(α)x2 +

2∑

h,k=1

N1hkℓ=1(α)xhxkxℓ,

ẋ2 =µ(a)x1 + σ(α)x2 +
2∑

h,k=1

N1hkℓ=1(α)xhxkxℓ,

(5.5.36)

[see Eqs. (5.5.28) and (5.5.29)] are changed into

11 Here we use a lemma on integration theory: if a, b > 0 are two C∞-functions bounded
below by a positive constant σ > 0 and if d(t) = max(a(t), b(t)) and c(t) = ȧ(t) for
a(t) > b(t), c(t) = ḃ(t) for a(t) < b(t), and c(t) = 1

2
(ȧ(t) + ḃ(t)) if a(t) = b(t), then

d(t) = d(0) +
R t
0 c(τ)dτ ≤ d(0) + t sup0≤τ≤t c(τ).

This can be proved by remarking that

d(t) = lim
N→∞

(a(t)N + b(t)N )
1
N = d(0) + lim

Z t

0

d

dτ
(a(τ)N + b(τ)N )

1
N dτ

=d(0) + lim
N→∞

Z t

0

a(τ)N−1 ȧ(τ) + b(τ)N−1 ḃ(τ)

(a(τ)N + b(τ)N )1−
1
N

dτ

and the function under the integration sign is uniformly bounded in N by the
max0≤τ≤t(|ȧ(τ)|, |ḃ(τ)|) and it is pointwise convergent to c(τ). If a(τ) = b(τ) has only
a finite number of solutions τ , the possibility of taking the limit under the integral
sign is easily proved. If a(τ) = b(τ) has infinitely many roots one can find a sim-
ple approximation argument, recalling that a, b are bounded below by σ > 0, to infer
d(t) ≤ d(0) + t sup0≤τ≤t c(τ). Alternatively, one can apply the dominated convergence
theorem of Lebesgue.
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ξ̇1 =σ(a)ξ1 − µ(α)ξ2 + γαξ1 (ξ21 + ξ22) + 4-th order terms

ξ̇2 =µ(a)ξ1 + σ(α)ξ2 + γαξ2 (ξ21 + ξ22) + 4-th order terms
(5.5.37)

In fact, such a change of variables would manifestly change Eq. (5.5.27) into
an equation of the same normal form but with γα(θ) ≡ γα.

The existence of such a change of coordinates is easier to discuss after

introducing the variables z
def
= x1 + i x2, z = x1 − i x2, λ

def
= σ + i µ, ζ

def
= ξ1 +

i ξ2, ζ = ξ1 − i ξ2 and writing Eq. (5.5.36) as an equation for z, multiplying
the second equation by i and adding it to the first (see [29]):

ż = λ(α)z + a3(α)z3 + a2(α)z2z + a1(α)zz2 + a0(α)z3, (5.5.38)

where a0, . . . , a3 are complex numbers that can be obtained from the N ’s by
suitable linear combinations. Similarly Eq. (5.5.35) in complex form is:

ζ =z +A3(α)z3 +A2(α)ζ2z +A1(α)zz2 +A0(α)z3,

z =ζ −A3(α)ζ3 −A2(α)ζ2z −A1(α)ζζ
2 −A0(α)ζ

3
+H(ζ, ζ, α)

(5.5.39)

with H having a zero of fourth order in |ζ| as ζ → 0, ∀α ∈ (αc − a, αc + a).
Note that Eqs. (5.5.38) and (5.5.39) also imply an expression for γα(θ): if
z = ̺eiθ, then

γα(θ) =̺−4Re (a3(α)zz3 + a2(α)z2z2 + a1(α)zz3 + a0(α)z4)

=Re (a3(α)e2iθ + a2(α) + a1(α)e−2iθ + a0(α)e−4iθ)
(5.5.40)

which follows after some algebra, starting with the observation that (x1N1 +

x2N2) = Re (zN), if N
def
= N1 + iN2 denotes the complex combination of the

nonlinear terms in the right-hand side of Eq. (5.5.36). Hence,

γα =
1

2π

∫ 2π

0

γα(θ)dθ = Re a2(α)

So the goal is to determine A3, A2, A1, A0 in Eq. (5.5.39) so that (5.5.38)
in the ζ variables has a third-order term of the form a2(α)ζ2ζ. A calculation
shows that the equation for ζ is

ζ̇ =ż + 3A3z
3ż + 2A2zzż +A2z

2ż +A1żz
2 + 2A1zż + 3A0z

2ζ̇

=λζ + ζ3(a3 + 2λA3) + ζ2ζ(a2 + (λ+ λ)A2) + ζζ
2
(a1 + 2λA1)

+ ζ
3
(a0 − (λ − 3λ)A0) + 4-th order terms

(5.5.41)
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hence, we take

A3 = − a2

2λ
, a2 = 0, A1 = − a1

2λ
, A0 =

a0

λ− 3λ
(5.5.42)

and, near ac the equation becomes

ζ̇ = λ(α)ζ + a2(α)ζζ2 + 4-th order terms (5.5.43)

whose γα(θ) function is γα(θ) ≡ γα = Re a2(α).
The proof that if γ > 0 the origin is not vaguely attractive is left as a

problem for the reader. mbe

It may be interesting to state explicitly some elementary invariance criteria
for sets, which have been implicitly proved in the course of the above proof of
Proposition 8.

9 Proposition. (i) Let U ⊂ Rd be an open set with regular boundary ∂U .
Then U is invariant for ẋ = f(x), f ∈ C∞(R), if

f(x) · n(x) < 0, ∀ x ∈ ∂U, (5.5.44)

were n(x) is the outer normal to ∂U in x.
(ii) Let V ∈ C1(Rd) and let U(µ) = {x |x ∈ Rd, V (x) < µ}. If ẋ = f(x), f ∈
C∞(Rd), is a differential equation and

∂V

∂x
(x) · f(x) < 0, ∀ x ∈ ∂U(µ), (5.5.45)

then the set U(µ) is invariant. Furthermore, if

sup
V (x)∈(µ1,µ2)

∂V

∂x
(x) · f(x) = −C < 0 (5.5.46)

and if µ′ < µ′′, [µ′, µ′′] ⊂ (µ1, µ2), then

StU(µ′′) ⊂ U(µ′), ∀ t > µ′′ − µ′
C

. (5.5.47)

Observations
(1)This proposition can be extended to the case when V is “piecewise C∞ by

replacing ∂V (x)
∂x with the set of the convex linear combinations of its extreme

values (i.e., by a suitable bundle of vectors “pointing out of U(V (x))” in x).
This is useful because sometimes V may have a square or a cylinder as its level
surface, as was the case for Γ (δ) after Eq. (5.5.33), where V (x) = max(x2

1+x
2
2).
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x

f(x)

x

O

Figure 5.2 Geometric interpretation of a differential equation as a vector field.

(2) The geometric interpretation of a differential equation is the following: at
every w ∈ Rd, draw a vector f(w), i.e., think of f as a “vector field” over Rd.
A solution to ẋ = f(x) is associated with a curve in Rd which at every point
is tangent to the vector field at the same point. This curve is run at a speed
which at every point is equal to the modulus of the field vector at that point
and has the same direction, see Fig. 5.2.
(3) The first statement of Proposition 9 is illustrated in Fig. 5.3.

U

∂U

Figure 5.3: A vector field at the boundary of an invariant set U which implies its invariance.

Observation (1) is illustrated in Fig. 5.4:

U

∂U

Figure 5.4: As in Fig.5.3 for a set U in with singularities on the boundary.

In connection with the above remarks, it is useful to see some pictures of a
vaguely attractive point for an equation ẋ = f(x, α). The “loss of stability” of a
fixed point for a differential equation depending on a parameter α consequence
of the crossing of the imaginary axis of some eigenvalues of the stability matrix
as α varies is called a bifurcation: hence the above vague attractivity analysis
deals with examples of vagueley attractive bifurcations.
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In Figs. 5.5, we draw the vector field for α slightly larger than αc, in a
typical case of a vaguely attractive bifurcation of the origin.

x0
x+

x−

>
> <

<

Figure 5.5 A vector field following a vaguely attractive bifurcation in one real direction:

two attractive fixed points appear x± and the bifurcating point remains as a repulsive fixed

point (x0).

In Fig. 5.6 a vector field following a bifurcation of the rigid with vaguely
attractive loss of stability with two imaginary eigenvalues

x0

γ

<

<

<

Figure 5.6 A vector field following a vaguely attractive bifurcation in one complex direc-

tion: a periodic orbit γ appears (solid line) and trajectories starting close to γ inside or

outside it spiral towards it (dashed lines) and the bifurcating point remains as a repulsive

fixed point (x0).

The reader should try to understand such pictures by trying to draw them
on the basis of the above information and comments on how a vector field
should look near a vaguely attractive point.

Figures 5.5 and 5.6 allow one to see immediately that in the vicinity of a
vaguely attractive fixed point, there should usually appear two fixed points,
Fig. 5.5, or a periodic orbit, Fig. 5.6, depending on whether the stability loss
takes place, as α passes through αc in one real direction or in two complex-
conjugate directions.

In fact, this is the essential content of the Hadamard-Perron theorem and
of the Hopf theorem which we will discuss in the upcoming sections.

We conclude this section by returning to the problem that we have been
using to motivate the analysis of this section: the stability of the stationary
solution ω̂ of Eq. (5.1.19).
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10 Proposition. Consider Eq. (5.1.19). The stationary solution ω̂ is vaguely
attractive near ac = λ1 + λ′′′2 ω̂2

3.

Observation. The following proof shows that one should not blindly begin to
compute mechanically the vague-attractivity constant γαc

. The reader will
note the use of several “tricks” which are not worth being organized in a
sequence of propositions refining the criterion of Proposition 8, but which,
nevertheless, make the computation reasonably short. The reader should use
these tricks in the exercises at the end of this section.

Proof. We apply Proposition 8, p.396. Changing variables to bring the fixed
point to the origin, i.e., (ω1, ω2, ω3)←→(̺1, ω2, r), r = ω3 − ω̂3, Eq. (5.1.19)

becomes, setting λ̃2
def
= (λ′2ω

2
1 + λ′′2ω

2
2 + λ′′′2 r2),

ω̇1 = (α− αc)ω1 − ω̂3ω3 − 2λ′′′2 ω̂3 r ω1 − ω2r − λ̃2ω1,

ω̇2 = ω̂3ω1 + (α− αc)ω2 − 2λ′′′2 ω̂3 r ω2 + ω1r − λ̃2ω2,

ṙ = − (λ1 + 3λ′′′2 ω̂
2
3) r − ω̂3 λ̃2 − λ̃2r.

(5.5.48)

It is convenient to condense Eq. (5.5.48) by introducing

z
def
= ω1 + iω2, λ

def
= (α− αc) + iω̂3,

λ̃
def
= − (λ1 + 3λ′′′2 ω̂

2
3), E

def
= 2λ′′′2 ω̂3 − i,

Q(r, z, z)
def
= λ′2(Re z)2 + λ′′2 (Im z)2 + λ′′′2 r

2

P (r, z, z)
def
= (λ′2(Re z)2 + λ′′2(Im z)2 + 3λ′′′2 r

2)ω̂3

(5.5.49)

Then, multiplying the second of Eqs. (5.5.48) by i and adding it to the first,
we find that Eq. (5.5.48) becomes

ż = (λ− Er −Q)z, ṙ = λ̃r − P − r Q. (5.5.50)

To put the above equation in normal form with respect to λ, λ change variables
(see Proposition 7) as:

ζ = z −Az r, z =
ζ

1−Ar (5.5.51)

Then the first of Eqs. (5.5.49) becomes

ζ̇ =z (λ− Er −Q)−Ar z (λ − Er −Q)−Az (λ̃r − P − r Q)

=ζ
(λ− Er −Q)(1 −Ar)−A (λ̃r − P − r Q)

1−Ar
def
= ζ F (ζ),

(5.5.52)

whose linear and quadratic terms are λζ and −(λAr + Er + λ̃Ar − λAr)ζ ≡
−(Er+λ̃Ar)ζ, respectively . So we chooseA = −E/λ̃ and Eq. (5.5.48) acquires
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normal form in the (ζ, r) variables with respect to the eigenvalues λ, λ. From
Eq. (5.5.52), it is then easy to compute γα(θ): if ζ = ̺eiθ,

γα(θ) = lim
̺→0

[
Re
|ζ|2(F (ζ) − λ)

̺4

]
r−0

= lim
̺→0
Re (λ −Q0 +AP0 − λ)̺−4

(5.5.53)
if Q0, P0 are Q,P with r = 0. Therefore,

γα(θ) =− (λ′2 cos2 θ + λ′′2 sin2 θ) +
2λ

′′′

2 ω̂
2
3(λ
′
2 cos2 θ + λ′′2 sin2 τ)

λ1 + 3λ′′′2 ω̂2
3

=− (λ′2 cos2 θ + λ′′2 sin2 θ)
λ1 + λ′′′2 ω̂2

3

λ1 + 3λ′′′2 ω̂2
3

(5.5.54)

which yields

γα = −λ
′
2 + λ′′2

2

λ1 + λ′′′2 ω̂2
3

λ1 + 3λ′′′2 ω̂2
3

(5.5.55)

and Proposition 10 follows from Proposition 8. mbe

5.5.1 Exercises

1. Study the vague attractivity of the fixed point x = 0 of ẋ = αx + f(x), where f ∈
C∞(R), f(0) = 0, f ′(0) = 0. Show that the origin cannot be vaguely attractive unless
f ′′(0) = 0.

2. Show, by producing some examples, that if the number γαc
, of Proposition 8 vanishes,

then the fixed point may or may not be vaguely attractive. (Hint: Find examples other than

iż = (α + iµ)z ± z3z2, α ∈ R, µ ∈ R, αc = 0, z ∈ C.)

3. Suppose that the origin is vaguely attractive for ẋ = x f(x2, α) near αc. Show that the
equation

ẋ = −µy + x f(x2 + y2, α), ẏ = µx+ y f(x2 + y2, α),

also has the origin as a vague attractor near αc, ∀µ ∈ R.

4. Let a1 ∈ C∞(R). Show that the origin is a vague attractor near αc for ẋ = −x (x2−a1(α))
if a1(αc) = 0.

5. Given a1 ∈ C∞(R) show that the origin is vaguely attractive for ẋ = −x (x2−a1(α))(x2−
a2(α)) near αc if a1(αc) = a2(αc) = 0. (Hint: use Observation (2) to Definition 5, p.391.)

6. Compute the vague-attractivity indicator γ = γαc
for the origin, see Proposition 8, in

the equation

ẋ = −µy − x (x2 + y2 − a1(α)), ẏ = µx− y (x2 + y2 − a1(α)),

assuming µ ∈ R, a1(αc) = 0, a1 ∈ C∞(R).

7. Same as Problem 6 for
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ẋ =− µy − x (x2 + y2 − a1(α))(x2 + y2 − a2(a)),

ẏ =µx− y (x2 + y2 − a1(α))(x2 + y2 − a2(a)),

assuming µ ∈ R, a1, a2 ∈ C∞(R), a1( c) = a2(αc) = 0, study the vague attractivity. (From
[35]).

8. Let z = x1 + ix2, λ = α + iµ, , α, µ ∈ R, and consider the differential equation ż =
λz−αazz− z2z. Apply Proposition 8 to find the vague-attractivity indicator for the origin
near αc = 0. (Answer: γ = −1). What can be said about the vague attractivity of the origin
when µ = 0? (Warning: Note that the equation does not have normal form.)

9. Under the assumptions of the first sentence of Proposition 8, only suppose that the
equation ẋx = f(x, α) has the form

ẋ1 =σ(α)x1 − µ(α)x2 + S1(x1, x2,y, α) +N1(x1, x2,y, α)

ẋ2 =µ(α)x1 − σ(α)x2 + S2(x1, x2,y, α) +N2(x1, x2,y, α)

ẏ =eL(α)y + F(x1, x2,y, α),

where λ1(α) = λ2(α) = σ(α)+i (α), F has second-order zero at the origin x1 = x2 = 0,y =
0, for all α ∈ I, N1 and N2 have a third order zero at the origin for all α ∈ I, and S1, S2

are homogeneous second-order polynomials in x1, x2,y. All the functions are supposed to
be of class C∞ in their arguments (x1, x2,y, α) ∈ Rd × I.
Suppose, furthermore, F(x1, x2,0, α) ≡ 0 and also S1(x1, x2,0, αc) ≡ S2(x1, x2,0, αc) = 0
and define γα(θ) by Eq. (5.5.24) with the present meaning of the symbols. Show that the
origin is vaguely attractive near a point αc ∈ I, where σ(αc) = 0, µ(αc) 6= 0, if γ < 0, in
spite of the presence of the terms S1, S2. (Hint: Show that the above equation can be put
into normal form with respect to λ1, λ1 with a change of variables like

ξj = xj +
2X

h=1

d−2X

k=1

Ajkhxhyk +

d−2X

h,k=1

Bjkhyhyk, k, j = 1, 2,

and this change of variables does not affect the value of γα(θ) because it changes the third-
order terms by a quantity vanishing as y→ 0.) This extends Problem 8.

10. Prove that the same conclusions of Proposition 8 hold, replacing the assumption that
N1 and N2 are of third order with the assumption that x1N1 + x2N2 has a fourth-order
zero at x1 = x2 = 0,y = 0, for all α ∈ I. (Hint: Simply go through the proof of Proposition
8.)

11. Same as Problem 9, replacing the assumption that N1 and N2 are of third order with
the assumption that N1 and N2 is of fourth order.

12. Show that the origin is not a vaguely attractive point near ac = 0 for all the values of
E ∈ C in the equation in R3:

ż = λz + Ezr− zz2, ṙ = −r + zz,

where z = x+ iy, λ = α+ iµ, µ 6= 0, x, y, r ∈ R3.

13. Put into normal form the equation

ω̇1 = −ω1 − ω2 + ω1ω2, ω̇2 = ω1 − ω2 + ω2
1 .

(Hint: Introduce z = ω1 + iω2 and change variables as ζ = z + A2z2 + A1zz +A0z2, etc.)

14. Analyze the vague attractivity of the stationary solution ω1 = ω2 = 0, ω3 = 5α of the
equation
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ω̇1 = −ω1 − ω2ω3, ω̇2 = −1

3
ω2 + ω1ω3, ω3 = −1

5
ω3 + α.

15. Consider the equation (“Lorenz equation”)

ẋ = σ (−x+ y), ẏ = −σx− y − xz, ż = −bz + xy − α

and study the vague attractivity of its fixed points for b = σ = 1. (Hint: For the analysis
of the fixed point z = −α

b
at αc = (1 + σ)b try to use Eqs. (5.5.18) and (5.5.11), with

α = αc, j = 1, to put the first equation (in the appropriate variables) into the normal form
of Eq. (5.5.26); the result will be γ = −σ/b. Warning: The analysis of the other fixed points
is very cumbersome.)

16. Same as Problem 15 for b = 8
3
, σ = 10.

17. Suppose that the equation ẋ = f(x, α) has a stationary solution x(α) for

leαc, depending continuously on α. Let L(α), λ1(α), . . . , λn(α) be the stability matrix and

its eigenvalues. Assume that, for α < αc, it is Re λj(α) < 0 and, for α = ac Reλj0 (αc) = 0

for some j0.

Show that if no eigenvalue actually vanishes at α = αc, (i.e., Imλj(αc) 6= 0, j = 1, . . . , n),

then the solution x(α) can be continuously continued to α ≥ αc, (i.e., there is a continuous

function a → x(a) defined in the vicinity of αc, and f(x(a)) ≡ 0).

Show also that if there is an eigenvalue vanishing at a = ac the solution x(α) will not admit,

in general, a continuation for α > αc. (Hint: Just use the implicit functions theorem for the

equation f(x, α) = 0 near(x(αc), αc); then consider the example f(x) = ax+x2 +α, x(a) =

(−α− (−4α + α2)
1
2 )/2, ac = 0, L(a) ≡ λ(α) ≃ −

√
−4α.)

5.6 Vague-Attractivity Properties. The Attractive
Manifold

Every five years or so, if not more often, someone discovers
the theorem of Hadamard and Perron, proving it by
Hadamard’s method or by Perron’s. (Anosov)

The solution ω̂ of Eq. (5.1.19), thought of as a family of differential equa-
tions parameterized by a parameter α, is, as shown in Proposition 10, p.405,
§5.5, vaguely attractive near αc = λ1 + λ′′′2 ω̂2

3 .

Therefore, the motion t → S
(α)
t (ω), t ≥ 0, with initial datum close to ω̂

continues to remain quite close to ω̂ if α is near αc in spite of the instability of
ω̂ for α > αc. We shall see that ω̂ is not only unstable, but it also cannot be an
attractor. Hence, the motions which develop from a datum in the vicinity of
ω̂, although remaining there, cannot generally have an asymptotic behavior,
as t→ +∞, simply given by St(ω)→ ω̂.

In the linear approximation, when the right-hand side of Eq. (5.1.19) is re-
placed by the function ω → Lα(ω−ω̂), where Lα is the stability matrix (5.5.1)
of Eq. (5.1.19) at ω̂, the motion is very simple and ω3 → ω̂3 exponentially
fast (≃ e−λ1t), while ω2

1 + ω2
2 grows exponentially (roughly as e(α−αc)t).
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The linear approximation is certainly incorrect as soon as ω2
1 +ω2

2 becomes
large, just because ω̂ is vaguely attractive [see Observation (2) to Definition
5, p.391]. However, one can hope that even in the essentially nonlinear mo-
tion governed by Eq. (5.1.19), some memory remains of the fact that ω̂ lost
stability” only in two directions, i.e., only for what concerns the components
of the motion in the plane ω3 = ω̂3 generated by the eigenvectors v(1),v(2)

of the stability matrix of ω̂. We can then think that the motion following
a given initial datum ω close to ω̂ develops essentially on a two-dimensional
surface, i.e., that the third a component ω3(t) asymptotically tends to become
a function ϕ(ω1(t), ω2(t)) of the first two.

More generally, we can imagine to find ourselves in the following situation,
to which the upcoming Proposition 11 will refer.

Let ẋ = f(x, α) be a Rd-valued function in C∞(Rd × R) such that the
differential equations

ẋ = f(x, α), (5.6.1)

parameterized by α, have uniformly bounded trajectories as α varies in I =
(αc−a, αc+a), a ∈ (0, 1), and have the point x = x0 as a stationary solution,
∀α ∈ I,

f(x0, α) = 0, ∀ α ∈ I. (5.6.2)

Let Lα be the stability matrix in x0 and suppose that for α < αc, all its
eigenvalues λ1(α), . . . , λd(α) have a negative real part, while for α ∈ I =
(αc−a, αc+a), only d−r eigenvalues have real parts less or equal to −ν0 < 0,
the others having real parts larger or equal than −ν′0 > −ν0 and vanishing
for α = αc (i.e., Reλj(α) = 0 for j = 1, . . . , r).

For simplicity, also suppose that the eigenvalues of Lα are pairwise dis-
tinct: so we can choose the eigenvalues λ1(α), . . . , λd(α) and the corresponding
eigenvectors v(1), . . . ,v(d) so that they are C∞(I) functions of α and so that
every complex eigenvector appears together with a complex conjugate eigen-
vector. We suppose that the eigenvectors and eigenvalues have been so chosen
and enumerated.

Under the above assumptions, we may assume without further loss of
generality that for α ∈ I, the equation takes the form of Eq. (5.5.10) and that
the first r equations describe the evolution of the coordinates relative to the
real plane generated by the “unstable” directions v(1), . . . ,v(r) corresponding
to the eigenvalues with large real part (> −ν′0). Were this not true, we could
change the coordinates near x0 (see Proposition 8, p.396) to make this true.
Finally, suppose x0 vaguely attractive for Eq. (5.6.1) near αc and denote

U, Γ (δ) (5.6.3)

a system of neighborhoods associated to x0 for α ∈ I, whose existence is
guaranteed by Definition 5, p.390, of vague attractivity.
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From the discussion of the preceding section, it appears that the just de-
scribed situation can be realized for the Eq. (5.1.19), see Proposition 10, p.405,
§5.5, thought of as a family of differential equations parameterized by α: thus
this provides a concrete example to which the following theory can be applied.

We now formulate a proposition giving a positive answer to the conjecture
hinted at above, that given α > αc close enough to αc any motion of Eq. (5.6.1)
starting close enough to x0 remains close to x0 (since x0 is vaguely attractive)
and, furthermore, it can be thought of as developing asymptotically, for t →
+∞ , on an invariant surface σα.

Such a surface will have dimension r and it will be tangent to the “insta-
bility’s hyperplane,” xr+1 = . . . = xd = 0; furthermore, it will be an attractor
for the motions starting in U and its attraction strength will be exponential
and roughly measured, as in the linear case, by the parameter

−ν = max
i=r+1,....d

Reλj

The surface σα will generally be non unique since, as we shall see, it may
contain other smaller attractors: if Λα is a minimal attractor in σα which has
U as its attraction basin, then, clearly, every invariant hypersurface σ′ ⊂ U
containing Λα is an attractor for U ; see the exercises at the end of this section.

Finally, the surface σα will be described inside the neighborhood Γ (x0, δ) =
{cube centered in x0 and side 2δ} by d− r functions on Rr×R of preassigned
regularity C(k), (k = 0, 1, . . .), via the equations

xr+1 = ϕ(r+1)(x1, . . . , xr, α), . . . , xd = ϕ(d)(x1, . . . , xr, α), . . . , (5.6.4)

(where we suppose x0 = 0) provided δ is small and α is close to αc. For α close
to αc this surface will be almost flat: if k ≥ 2, this means that the first deriva-
tives of the functions in Eq. (5.6.4) vanish for (x1, . . . , xr) = (xo1, . . . , x0r).

The interest in the above considerations is that it will become possible to
analyze the asymptotic behavior of some properties of the motions originating
near a vaguely attractive point x0, as t → +∞, reducing the d equations of
Eq. (5.6.1) to the r equations, labeled by j = 1, 2, . . . , r,

ẋj = f (j)(x1, . . . , xr, ϕ
(r+1)(x1, . . . , xr, α), . . . , xd = ϕ(d)(x1, . . . , xr, α), α).

(5.6.5)
When d is large and r is small, this may be a very important simplification.

When r = 1 or r = 2, this will say that the motion near the vaguely
attractive point is a “one-dimensional” or “two-dimensional” problem. Figures
5.5-5.6 already suggest that in such cases it will be possible to obtain deeper
insights into the theory of the asymptotic behavior of the solutions of the
equations starting with initial data close to x0. They even suggest the results
of such a theory (see Figs. 5.5 and 5.6 and §5.7).
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In the case of Eq. (5.1.19), it is r = 2 and, therefore, the three equations
(5.1.19) can be reduced, for α−αc small and for the purposes of the analysis
of some asymptotic properties, to the first two equations with ω3 replaced by

ω3 = ϕ(ω1, ω2, α) + ω̂3 (5.6.6)

where ϕ is a suitable C(k) function (with a preassigned k) having a second-
order zero in ω1, ω2 = 0, i.e., such that there exist ψ1, ψ2, ψ3 ∈ C(k−2) and

ϕ(ω1, ω2, α) = ω2
1ψ1(ω1, ω2, α) +ω2

2ψ2(ω1, ω2, α) +ω1ω3ψ3(ω1, ω2, α) (5.6.7)

expressing the tangency of the surfaces σα to the instability plane in ω̂, (ω3 =
ω̂3 in this case) provided k ≥ 2. For k < 2 the near flatness can be expressed
by Eq.(5.6.11) below (implying Eq.(5.6.7) for k ≥ 2).

A simple consequence of this, as we shall see in §5.7 (see footnote 15
on p.431), will be that for α close to αc, α > αc, there is a periodic orbit
which is a normal and minimal attractor lying on σα with attraction basin
U/C(ω̂), where C(ω̂) is a one-dimensional curve of points ω through ω̂, whose

asymptotic behavior is S
(α)
t (ω)−−−−→t→+∞ ω̂. Hence, it will be possible to draw a

rather complete picture of the motion near ω̂.
A precise statement about the above matters is as follows.

11 Proposition. Under the assumptions described in the above text between
Eqs. (5.6.1) and (5.6.3), consider the symbols introduced there and let, for
notational simplicity, x0 = 0.

Given k ≥ 0, C > 0, there exist positive constants a+, δ, δ0, ν ∈ (0, 1) with
δ0 < δ, a+ < a and d− r functions of class C(k) , denoted ϕ(k+1) . . . , ϕ(d) , of
the r + 1 variables x1, . . . , xr , α defined for

|xi| <
δ

2
, i = 1, . . . , r, α ∈ I ≡ (αc − a+, αc + a+) (5.6.8)

such that the surfaces σα ⊂ Rd described by Eqs. (5.6.4) have for all α ∈ I
the properties:
(i) “local invariance“:

S
(α)
t (σα ∩ Γ (δ0)) ⊂ σα, ∀ t ≥ 0; (5.6.9)

(ii) “local attractivity”: there exist C′ > 0 such that for all w ∈ U it is

d(S
(α)
t (w), σα) ≤ C′ e−ν t, ∀ t ≥ 0 (5.6.10)

(iii) “tangency” and “flatness”: ∀ j = 1, . . . , r,

|ϕ(j)(x1, . . . , xr)| ≤ C (x2
1 + . . .+ x2

r)
3
4 . (5.6.11)
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Observations.
(1) The reader may be surprised by the fact that, for the first time in this
book, an important property is appearing and being considered in class C(k)

rather than in class C∞: the reason is due to the fact that in Proposition 11
one cannot choose k = +∞. In fact using the methods of Problems 3 and 4,
p.428, the reader will check that in the equation ẋ = αx − x3, ż = −z + x2

the surface σα cannot be of class C(k) for k > 1
2α .

(2) The above proposition is an important part of the “Hadamard and Per-
ron theorem”. It is sometimes called the “invariant” or “attractive manifold”
theorem and it has importance in the development of the qualitative theory
of differential equations. It has been intensely studied, undergoing many ex-
tensions and generalizations, often trivial but sometimes significant, [22].
(3) The family of surfaces σα is generally far from being uniquely determined
by Eq. (5.6.1) (see the exercises for §5.6).
(4) The length of the proof and its formulae look quite discouraging. Ac-
tually the proof that follows is quite diluted and detailed (to conform to
the spirit of this book). The subsections 5.6.A-5.6.D below have only a no-
tational and definitorial character. The first technical step is in subsection
5.6.E with an application of the implicit function theorem with the purpose
of stressing some properties of the surfaces σ(πt) approximating, as t→ +∞,
the surfaces that we are looking for. Subsection 5.6.F collects all the pre-
ceding inequalities to obtain further properties of the approximating surfaces
σ(πt) for “very small” t. Furthermore, it contains the two basic ideas of the
proof: (i) the estimates for very short times are possible because the quantity
ν0 = mini=r+1,...,d−Reλi > 0, measuring the attractivity of the stable direc-
tions, is much larger than all the other relevant quantities (i.e., for short times,
the “strong attractivity of the stable directions prevails over the weak repul-
sivity of the unstable ones“); and (ii) the long-time estimates, as t→ +∞, can
be obtained from the ones for short times taking advantage of the autonomy
of the equation.
These two themes occur again in a more or less repetitive way in subsections
5.6.G-5.6.N, all very similar to each other and which have been included here
only for completeness.
The formulae are quite long and they could certainly be simplified and writ-
ten more compactly. However, they are obtained by applying the procedures
suggested in the text and they are left in the form in which they are con-
structed: in this way, the reader may easily recognize their various parts and
their origin and this, perhaps, makes the proof more clear.
The vague attractivity assumption is used at the beginning of the proof to
reduce it to an equivalent problem.
The proof says much more than what is stated in Proposition 11 and some of
its corollaries are described in the problems at the end of the section.
The proof is adapted from that of Lanford.12

12 See [29]
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Proof. We shall discuss the proof of this proposition in the apparently par-
ticular case when d = 2, r = 1, and the equation is

ẋ = αx+ P (x, z), ż = −ν0z +Q(x, z), (5.6.12)

where ν0 > 0 and P,Q are two C∞(R2) functions with a second-order zero
at the origin:

P (x, z) =x2P 1(x, z) + z2P 2(x, z) + xzP 3(x, z)

Q(x, z) =x2Q1(x, z) + z2Q2(x, z) + xzQ3(x, z)
(5.6.13)

and P i, Qi, i = 1, 2, 3, are in C∞(R2), see Appendix B.
The stability matrix of 0 ∈ R2 is

Lα =

(
α 0
0 −ν0

)
, (5.6.14)

and we suppose that x0 = 0 is vaguely attractive near αc = 0.
This case looks quite special; however, its theory forces us to deal with all

the difficulties of the general problem whose analysis is a repetition of that
relative to Eq. (5.6.12). In the following formulae, it will essentially suffice to
think that x and z are vectors with r and d − r components and that α, ν0
are matrices r × r or (d− r)× (d− r), respectively, possibly functions of the
parameter α. The first will be a matrix with eigenvalues all having real part
not less than −ν′0 > −ν0, ∀ ∈ I = (αc − a, αc + a) and vanishing for α = αc
and the second with all the eigenvalues with real part not exceeding −ν0 < 0,
∀α ∈ I. Furthermore, P,Q also will have to be thought of as depending
(smoothly) on α.

Hence, consideration of Eq. (5.6.12) does not diminish the real difficulties
of the problem and treating it avoids puzzling with fictitious (mainly nota-
tional) difficulties the reader in his first approach to a proof which is complex,
although quite natural in its development.

The interested reader will not have difficulties, on a second reading, in
interpreting (mutatis mutandis) the proofs as relative to the general case (see
exercises and problems at the end of this section for hints and suggestions).

To make the analysis of the proof easier, it will be divided it in various
basic steps distinguished by alphabetic characters.

5.6.1 A: Preliminary Considerations and an Equivalent Problem.

Consider Eq. (5.6.12) and let U be the neighborhood introduced in Eq. (5.5.7),
whose existence is guaranteed by the vague-attractivity assumption.

Let Γ (̺) = {square in R2 with side size 2̺, centered at the origin} =
{w |w ∈ R2, |wi| < ̺, i = 1, 2}.

Choose k = 0, first. The case k > 0 will be discussed later. Fix C ∈ (0, 1).
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Let δ, a+, t0 ∈ (0, 1) be small enough so that a+ < 1
2a and the inequalities

in Eqs. (5.6.41), (5.6.42), (5.6.43), footnote 13 in p.418, (5.6.53), (5.6.61),
(5.6.76), (5.6.83), and (5.6.84) that will be met in the following discussion are
satisfied. It is not worth listing them explicitly a priori here. The only fact
that we shall really need is that they can all be simultaneously satisfied by
choosing δ, a+, t0 small enough, once C < 1 is given.

Without loss of generality, we also suppose (see Definition 5, p.390, §5.5)
that for all α ∈ I = (αc − a, αc + a),

Γ (δ) ⊂ U, S
(α)
t U ⊂ Γ (

δ

2
), ∀ t ≥ tδ,

S
(α)
t Γ (δ0) ⊂ Γ (

δ

2
), ∀ t ≥ 0

(5.6.15)

for a suitable choice of tδ > 0 and of δ0 < δ.
Let χδ be a C∞(R2) function which takes values between 0 and 1, and

has value 1 on Γ (1
2δ) and value 0 outside Γ (2

3δ). Let χδ have the form

χδ(x, z) = χ(
x

δ
,
z

δ
), (5.6.16)

where χ ∈ C∞(R2) is 1 on Γ (1
2 ) and 0 outside Γ (2

3 ).
So every motion beginning in U enters Γ (1

2δ), for good, in a finite time tδ,
and every motion beginning in Γ (δ0 never leaves Γ (1

2δ). This is a consequence
of the vague-attractivity assumption.

It will then suffice to prove Proposition 11 for the equations

ẋ = χδ(x, z) (αx + P (x, z))
def
= Xδ(x, z, α), (5.6.17)

ż = −ν0z + χδ(x, z)Q(x, z) = −ν0 + Zδ(x, z, α), (5.6.18)

It is useful to remark, for later use, that for the given values of a+, δ, δ0, C, k,

and since χδ vanishes outside Γ (2
3δ), solutions t→ S

(α,δ)
t (w) of Eqs. (5.6.17),

(5.6.18) with initial datum w ∈ Γ (δ) remain in Γ (δ): just note that

S
(α,δ)
t (x, z) = (x, ze−ν0t) (5.6.19)

as long as χδ(x, ze
−ν0t) = 0.

5.6.2 B: Some Useful Estimates of Derivatives.

Certain properties of solutions of Eqs. (5.6.17) and (5.6.18), thought of as an
equation depending on the parameters α and δ and with datum w ∈ Γ (δ)
will be needed. The properties are summarized as follows. There exists a
constant M > 1 and t0 ∈ (0, 1) such that, ∀ t ∈ [−t0, t0], ∀α ∈ (−a, a), ∀ δ ∈
(0, 1), ∀ j = 1, 2,

∣∣∣∂S
(α,δ)
t (w1, w2)i

∂wj
− e−µitδij

∣∣∣ ≤M |t|(|α|+ δ), (5.6.20)
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∣∣∣∂S
(α,δ)
t (w1, w2)i

∂α

∣∣∣ ≤M(δ|t|δi1 + δ2|t|2δi2), (5.6.21)

∣∣∣∂S
(α,δ)
t (w1, w2)i

∂t
+ µiwi

∣∣∣ ≤M |t|
(
(|α|+ δ)δi1 + δ δi2

)
, (5.6.22)

where µ1 = 0, µ2 = ν0, and where we have set (x, z) = w, w = (w1, w2),

and have denoted the components of S
(α,δ)
t (w) as S

(α,δ)
t (w)i, i = 1, 2. Such

notations will be often used in the following.
The above inequalities follow from an analysis of the regularity theorem

for differential equations, §2.4, and they will be left to the reader, except Eq.
(5.6.20) which is proved, as an example, in Appendix L.

We shall also need the following estimates, consequences of the definitions
in Eqs. (5.6.17),(5.6.18). Let w ∈ Γ (δ), |α| < a+, δ < 1, i = 1, 2; then

∣∣∣∂Xδ(w, α)

∂wi

∣∣∣ ≤M (|α|+ δ),
∣∣∣∂Xδ(w, α)

∂α

∣∣∣ ≤M δ, (5.6.23)

∣∣∣∂Zδ(w, α)

∂wi

∣∣∣ ≤M δ,
∣∣∣∂Zδ(w, α)

∂α

∣∣∣ = 0, and (5.6.24)

|Zδ(w, α) ≤M |w|2, |Xδ(w, α)| ≤M (|α||w1|+ |w|2), (5.6.25)

where M can and will be chosen the same as before, possibly increasing the
latter.

5.6.3 C: Definition of the Approximate Surfaces.

Let π ∈ C∞(R) be such that, ∀x ∈ [−δ, δ], it is |π(x)| ≤ δ. Interpret it as
defining a surface (a curve in this case, actually) σ(π) ⊂ Γ (δ) of parametric
equations

z = π(x), x ∈ [−δ, δ]. Also suppose that (5.6.26)

∣∣∂π
∂x

∣∣ ≤ C
√
δ, x ∈ [−δ, δ] (5.6.27)

(this choice of a bound on ∂π(x)
∂x is quite arbitrary: C

√
δ could equally well be

replaced by Cδβ , 0 < β < 1).

Then by the invariance of Γ (δ), the set S
(α,δ)
t (σ(π)), t ≥ 0, is contained

in Γ (δ) and, as will be seen shortly, it is a surface of the form σ(πt), where πt
is a new function verifying Eq. (5.6.27) and |πt| < δ.

It is then natural to try to define the surface that we are looking for as
the surface σ(π∞), where

π∞ = lim
t→+∞

πt (5.6.28)

if this limit exists. In this case, in fact, the relation S
(α,δ)
t (σ(π∞)) = σ(π∞)

will be formally true.
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5.6.4 D: Proof that the Approximate Surfaces are Well Defined.

First we look for an expression for πt. This function should be defined by

(x, πt) = S
(α,δ)
t (x0, π(x0)), (5.6.29)

where x0 is a suitable point in [−δ, δ] defined, naturally, by Eq. (5.6.29) which
should be thought of as an equation defining πt and x0 in terms of x and π.
Such an equation certainly has a solution since

S
(α,δ)
t (±δ, π(±δ)) = (±δ, π(±δ)e−ν0t) (5.6.30)

and, therefore, by continuity, there exists a “function” A(x, t, α, π) such that

the abscissa of S
(α,δ)
t (A(x, t, α, π), π(A(x, t, α, π))) is just x, i.e.,

x0 = A(x, t, α, π) (5.6.31)

is the solution of the first equation obtained by equations the first compo-
nent of Eq. (5.6.29). Then πt(x) can be defined as the second coordinate of

S
(α,δ)
t (x0, π(x0) with x0 given by Eq. (5.6.31).

By Eq. (5.6.19), one naturally sets A(x, t, α, π) ≡ x for |x| ≥ δ.
It is not immediately clear from the above argument that the functions A

and π are uniquely defined. To this question we devote the next step.

5.6.5 E: Alternative Proof of the Existence of πt: Its Uniqueness
for t Small and Estimates of Its Derivatives for t Small.

As already noted, the argument in subsection 5.6.D does not prove uniqueness
of πt nor does it allow to estimate its x derivative when one tries to check if it
still verifies an inequality of the type of Eq. (5.6.27). In fact, it is a superfluous
argument introduced just to help the reader to visualize what is done below.

It is possible to prove constructively the existence and uniqueness of the
function A and, at the same time, to obtain an estimate of the derivatives of
A with respect to x, t, α by using the implicit function theorem. To study the
function A in this way, write Eq. (5.6.29) as

x = x0 +

∫ t

0

Xδ(S
(α,δ)
t (x0, π(x0)), α)dτ, (5.6.32)

πt(x) = π(x0) +

∫ t

0

e−ν0(t−τ)Zδ(S
(α,δ)
t (x0, π(x0)), α)dτ, (5.6.33)

obtained from Eqs. (5.6.17) and (5.6.18), pretending that Xδ and Zδ are
“known functions” of t and thinking of them as linear equations. We write
Eq. (5.6.32) in the form Gπ(x, x0, α, t) = 0, where

Gπ(x, x0, α, t) = x0 +

∫ t

0

Xδ(S
(α,δ)
t (x0, π(x0)), α)dτ, (5.6.34)
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is a function in C∞(R4) which will be mainly considered for |x| ≤ δ, |α| ≤
2a+, |x0| ≤ δ, |t| ≤ t0.

We regardGπ(x, x0, α, t) = 0 as an equation for x0 parameterized by x, α, t
at fixed π.

Since the point (x, x, α, 0) is a solution point of our equation, ∀x ∈
[−δ, δ], ∀α, |α| < 2a+, we apply the implicit function theorem, see Appendix
G, Eq. (G10), to find a square neighborhood with side ̺(x, α) of (x, α, 0) in
R3 such that if

|x− x|, |α− α|, |t| < ̺(x, α) (5.6.35)

then Gπ(x, x0, α, t) = 0 has a solution x0 ∈ [−δ, δ].
To prove the existence of ̺(x, α), we must study the derivative

∂Gπ
∂x0

(x, x0, α, t). (5.6.36)

From Eq. (5.6.34), using Eqs. (5.6.20), (5.6.23), (5.6.26), (5.6.27), and also
recalling that C < 1, δ < 1 (so that C

√
δ < 1), one finds

∣∣∣∂Gπ
∂x0

(x, x0, α, t)− 1
∣∣∣ =

∣∣∣
∫ t

0

∂Xδ(S
(α,δ)
τ (x0, π(x0)), α)

∂x0
dτ

≤ 8M (|α|+ δ)(1 +M |t|(|α|+ δ)) |t|. Furthermore

(5.6.37)

∂Gπ
∂x

(x, x0, α, t) ≡ 1, (5.6.38)

and, setting ξ(t) ≡ ξ(α, δ, x0, α, t)
def
= S

(α,δ)
t (x0, π(x0)), to simplify notations,

∣∣∣∂Gπ
∂α

(x, x0, α, t)
∣∣∣ =

∣∣∣
∫ t

0

(
(

2∑

i=1

∂Xδ(ξ(τ), α)

∂wi

∂ξ(τ)i
∂α

) +
∂Xδ(ξ(τ), α)

∂α

)
dτ

≤ |t|(|α| + δ)δ|t|M2 + δ2|t|2M2(|α|+ δ +Mδ), and, finally, (5.6.39)
∣∣∣∂Gπ
∂t

(x, x0, α, t)
∣∣∣ = |Xδ(ξ(α, δ, x0, α, τ))| ≤ 2Mδ(δ + |α|). (5.6.40)

The above inequalities for the derivatives are valid for all |t| ≤ 1, |x| ≤
d, |x0| ≤ δ, δ ≤ 1. Assume now a+, δ, t0 so small that ∀ |α| < 2a+, |t| ≤ t0:

∣∣∣∂Gπ
∂x0

(x, x0, α, t)− 1
∣∣∣ < 10M (2a+ + δ)|t| < 1

2
, (5.6.41)

∣∣∣∂Gπ
∂α

(x, x0, α, t)
∣∣∣ ≤ 2M δ |t| < 1

10
, (5.6.42)

∣∣∣∂Gπ
∂t

(x, x0, α, t)
∣∣∣ ≤M δ (δ + 2a+) <

1

10
. (5.6.43)
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Here 1
2 and 1

10 are arbitrary small numbers, convenient for the upcoming
estimates. Then if |α| < a+, |x−x| < 3

4δ, and if ζ = min(a+, t0
1
4δ) the ̺(x, α)

just considered can be taken (see Appendix G, Proposition 1) as

̺(x, α) =
σ

2

min
∣∣∂Gπ

∂x0

∣∣
max

(
|∂Gπ

∂x0

∣∣+ |∂Gπ

∂x

∣∣+ |∂Gπ

∂α

∣∣+ |∂Gπ

∂t

∣∣) ≥
ζ

10
(5.6.44)

having used Eqs. (5.6.41)-(5.6.43) to get the right-hand side inequality and
having considered the maxima and the minima with respect to the parameters
t, α, x, x0 as they vary in [−t0, t0], [−2a+, 2a+], [−δ, δ], [−δ, δ].

This shows the existence of A as a function of x, α, t as they vary in13

|x| ≤ δ, |α| ≤ a+, |t| ≤ t+ def
=

ζ

11
(5.6.45)

and shows, as well, the possibility of estimating the derivatives of A as follows
(see Eqs. (5.6.41)-(5.6.43) right-hand sides and Appendix G, Proposition 1):

∣∣∣∂A(x, t, α, π)

∂x
− 1
∣∣∣ ≡

∣∣∣−
∂Gπ(x,x0,α,t)

∂x
∂Gπ(x,x0,α,t)

∂x0

− 1
∣∣∣ ≤ 20M |t|(2a+ + δ), (5.6.46)

∣∣∣∂A(x, t, α, π)

∂α

∣∣∣ ≡
∣∣∣−

∂Gπ(x,x0,α,t)
∂α

∂Gπ(x,x0,α,t)
∂x0

∣∣∣ ≤ 4M |t| δ, (5.6.47)

∣∣∣∂A(x, t, α, π)

∂t

∣∣∣ ≡
∣∣∣−

∂Gπ(x,x0,α,t)
∂t

∂Gπ(x,x0,α,t)
∂x0

∣∣∣ ≤ 4M δ (2a+ + δ), (5.6.48)

valid for x, α, t in the region of Eq. (5.6.45). It is important to stress that Eqs.
(5.6.46)-(5.6.48) have been obtained independently of the choice of π provided

13 Note that, if 2t0M (a+ + δ)δ < min(a+, t0,
δ
4
) = ζ, for |x| ≥ 2

3
δ the determination of A

is trivial and A(x, t, α, π) ≡ x. Then let x ∈ [− 3
4
δ, 3

4
δ], α ∈ [−a+, a+] and remark that

by Eqs. (5.6.35) and (5.6.44) it is possible to solve uniquely the equation for A ∈ [−ζ, ζ]
in the region |x− x| < ζ

10
, |α−α| < ζ

10
, |t| < ζ

10
. As x, α vary in [− 3

4
δ, 3

4
δ]× [−a+, a+],

this parallelepipedal region covers at least a neighborhood V of [− 2
3
δ, 2

3
δ]× [−a+, a+]×

[− ζ
11
, ζ

11
].

By the uniqueness of A in each parallelepiped, the functions A thus defined coincide at
the points which are common to several parallelepipeds. Furthermore, the functions A
have a value equal to x for |x| > 2

3
δ.

Hence, we have built a continuous piecewise-differentiable solution A of Gπ(x,A, α, t) = 0
in the region of Eq. (5.6.45); and by construction, A is the unique solution, with the
property |A− x| < ζ, in this region.
Actually, A must be C∞ in the region of Eq. (5.6.45), since in each of the parallelepipeds
where A has been constructed, A has this property and we have uniqueness.
Finally A is the only solution with |A| < δ because, as noted above, any such solution
must verify |A− x| < ζ < 1

4
δ and for |x| ≥ 2

3
δ it is A ≡ x.
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|π(x)| ≤ δ, and
∣∣∂π(x)

∂x
≤ C
√
δ, ∀ x ∈ [−δ, δ]. (5.6.49)

The above considerations show that the function πt is well defined at least
for |α| < a+, |t| < t+, via Eqs. (5.6.29) and (5.6.31).

The uniqueness of the A function, coming from its construction (see foot-

note 13, p. 417) allows us to conclude that πt is the S
(α,δ)
t image of σ(π):

S
(α,δ)
t σ(π) = σ(πt). Also note that, by the invariance of Γ (δ), one has

S
(α,δ)
t σ(π) ⊂ Γ (δ).

The invariance of Γ (δ) for the motions generated by Eqs. (5.6.17) and
(5.6.18) also implies that πt, verifies the first of Eqs. (5.6.49) (a property
already encountered during the construction of A).

5.6.6 F: Check of the Validity of Eq. (5.6.49) for πt, 0 ≤ t ≤ t+

This check is of fundamental importance since it will allow us to define πt for
all t ≥ 0.

The relation S
(α,δ)
t σ(π) = σ(πt), t ∈ [0, t+] will guarantee, taking also

into account the group property S
(α,δ)
t S

(α,δ)
t′ = S

(α,δ)
t+t′ , that if t ∈ [0, t+), t′ ∈

[0, t+), t+ t′ ∈ [0, t+] and if πt, πt′ , πt+t′ verify Eq. (5.6.49), then

(πt)t′ = πt+t′ . (5.6.50)

This relation will allow us to define uniquely πt, ∀ t ≥ 0, by dividing the in-
terval [0, t] into intervals with amplitude τ < t+ and, then, recursively setting

πt = (πt−τ )τ = ((πt−2τ )τ )τ . (5.6.51)

The definition will necessarily coincide with the one that could be given by

setting S
(α,δ)
t σ(π) = σ(πt), t ≥ 0.

Therefore let us verify that, if 0 ≤ t ≤ t+, πt fulfills the second of Eqs.
(5.6.49) (as noted above, the first has already been checked).

For this purpose, we use Eq. (5.6.33), where instead of x0, one should
imagine A(x, t, α, π). Differentiating both sides, one finds

∂πt
∂x

=
∂πt(x0)

∂x0

∂A

∂x
e−ν0t +

2∑

i=1

∫ t

0

[
e−ν0(t−τ)

∂Zδ
∂wi

(S(α,δ)
τ (x0, π(x0)), α)

×
{∂S(α,δ)

τ (x0, π(x0))i
∂x0

+
∂S

(α,δ)
τ (x0, π(x0))i

∂π(x0)

∂π(x0)

∂x0

} ∂A(x, τ, α, π)

∂x

]
dτ

(5.6.52)
with slightly symbolic differentiation notations (hopefully self-explanatory).
By Eqs. (5.6.41), (5.6.46), (5.6.49), and (5.6.20), (5.6.24), Eq. (5.6.52) implies,
with some labor, that ∀ t ∈ [0, t+], ∀α ∈ [−a+, a+], ∀x ∈ [−δ, δ],



420 5 Stability Properties for Dissipative and Conservative Systems

∣∣∣∂πt(x)
∂x

∣∣∣ ≤ C
√
δ e−ν0t(1 + 20M (2a+ + δ)t)

+ tMδ
{
(1 +Mt(a+ + δ)) +M t (a+ + δ)C

√
δ +M t (a+ + δ)

}

= C
√
δ (1 +Mt (a+ + δ)) · (1 + 2− M (2a+ + δ)t)

+ C
√
δ
{
e−ν0t(1 + 20M t(2a+ + δ)) + tM C−1

√
δ

×
[
(1 +M t (a+ + δ)) +M t (a+ + δ)C

√
δ +M t (a+ + δ)

+ C
√
δ(1 +M t (a+ + δ))

]
(1 + 20M (2a+ + δ))

× (1 + 20M (2a+ + δ))
}
≤ C
√
δ (1− ν0t

2
)

(5.6.53)

if δ, a+, t0 (recall that t+ ≤ t0) are supposed to have been so chosen that the
last inequality in Eq. (5.6.53) holds, ∀ t ∈ [0, t+].14

The above arguments prove that πt can be defined by S
(α,δ)
t σ(π) = σ(πt)

or, equivalently, by Eq. (5.6.51), for t ≥ 0 and show that πt verifies Eq. (5.6.49)
for all t ≥ 0.

5.6.7 G: Proof of the Existence of the Limit as t → +∞ of πnt for
t ∈ [0, t+].

We shall proceed by recursively evaluating

||πnt − π(n−1)t|| = max
|x|≤δ

|πnt − π(n−1)t(x)| (5.6.54)

and show that the series

∞∑

n=0

||πnt − π(n−1)t|| < +∞ (5.6.55)

converges. This implies that πnt converges uniformly as n→ +∞ to a limit.
To study the series of Eq. (5.6.55), consider two functions π, π′ verify-

ing Eq. (5.6.49) and, through them, construct the functions A(x, t, α, π) and
A(x, t, α, π′) defined on the set given by Eq. (5.6.45), solving the equations
for x0: Gπ(x, x0, t, a) = 0 and Gπ′(x, x0, t, α) = 0 as indicated in subsection
5.6.E.

Shortening A(x, t, α, π) and A(x, t, α, π′) in x0, x
′
0, respectively, and using

Eq. (5.6.33), one then has ∀ t ∈ [0, t+],

14 One sees that C
√
δ could be replaced by Cδγ , γ < 1. The choice γ = 1 could only be

made if ν0 is large enough (or if we decided to allow C > 1 and C to be large enough.)
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|πt(x) − π′t(x)| ≤ e−ν0t|π(x0)− π′(x′0)|+
∫ t

0

dτe−ν0(t−τ)

· |Zδ(S(α,δ)
τ (x0, π(x0)), α)− Zδ(S(α,δ)

τ (x′0, π
′(x′0)), α)|

(5.6.56)

which, by Eqs. (5.6.24), (5.6.49), and (5.6.20), implies

|πt(x)− π′t(x)| ≤ e−ν0t(|π(x0)− π′(x′0)|+ |π′(x0)− π′(x′0)|)

+

∫ t

0

Mδ

2∑

i=1

|S(α,δ)
τ (x0, π(x0))i − S(α,δ)

τ (x′0, π
′(x′0))i| dτ

≤e−ν0t(||π − π′||+ C
√
δ |x0 − x′0|) +

∫ t

0

dτ

2Mδ(1 +Mδ(a+ + δ)τ)(|x0 − x′0|+ |π(x0)− π′(x0)|)
≤ ||π − π′|| (e−ν0t|+ 2Mδt(1 +Mδ(a+ + δ)t))

+ |x0 − x′0|(C
√
δe−ν0t + 2Mδt(1 +Mδ(a+ + δ)t)).

(5.6.57)

We must therefore estimate |x0−x′0|. Remark that (x0, π(x0)) and (x0, π
′(x0))

are the values of S
(α,δ)
τ (x, πt(x)) and S

(α,δ)
τ (x, π′t(x)) hence, as in Eq. (5.6.32),

x0 =x−
∫ t

0

dτ Xδ(S
(α,δ)
−τ (x, πt(x)), α),

x′0 =x−
∫ t

0

dτ Xδ(S
(α,δ)
−τ (x, π′t(x)), α),

(5.6.58)

Then, by Eqs. (5.6.23) and (5.6.20),

|x0 − x′0| ≤
∫ t

0

dτ
∣∣∣Xδ(S

(α,δ)
−τ (x, πt(x)), α) −Xδ(S

(α,δ)
−τ (x, π′t(x)), α)

∣∣∣

≤
∫ t

0

dτ M(a+ + δ)1(1 +Mτ(a+ + δ))|πt(x)− π′t(x)| (5.6.59)

≤ tM(a+ + δ)1(1 +M t(a+ + δ))|πt(x)− π′t(x)|,
Hence Eqs. (5.6.57) and (5.6.59) imply

|πt(x) − π′t(x)| ≤ ||π − π′||(e−ν0t + 2Mδt(1 +Mδ(a+ + δ)t))

+ (C
√
δe−ν0t + 2Mδt(1 +Mδ(a+ + δ)t))

× (2M(a+δ)t(1 +Mt(a+ + δ)))|πt(x)− π′t(x)|.
(5.6.60)

This formula implies a bound on |πt(x) − π′t(x)| if a+, δ, t0 are so small that
for all t, 0 ≤ t ≤ t0 holds the inequality
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e−ν0t + 2Mδt(1 +Mδ(a+ + δ)t)

1− 2M(a+δ)t(1 +Mt(a+ + δ))

×
(
C
√
δe−ν0t + 2Mδt (1 +Mδ(a+ + δ)t)

)
≤ (1 − ν0t

2
).

(5.6.61)

Equations (5.6.61) and (5.6.60) imply |πt(x) − π′t(x)| ≤ (1 − 1
2ν0t)||π − π′||;

hence, ∀α ∈ [−a+, a+], ∀ t ∈ [0, t+],

||πt − π′t|| ≤ (1− νot

2
) ||π − π′||. (5.6.62)

A similar calculation would allow us to show that if π verifies Eq. (5.6.49)
and a+, δ, t0 are sufficiently small,

||πt − πt′ || ≤ γ |t− t′| (5.6.63)

for all α ∈ [−a+, a+], ∀ t, t′ ∈ R+, |t− t′| < t+ provided γ is suitably chosen.
We shall use this inequality without proof here (see Appendix M where a

proof is discussed and an explicit expression for γ is exhibited).
Equation (5.6.62) allows us to estimate recursively Eq. (5.6.54) since it

holds under the sole assumption that π and π′ verify Eq. (5.6.49) and t ∈
[0, t+], α ∈ [−a+, a+]. By subsection 5.6.F, one finds

||πnt − π(n−1)t|| ≤
(
1− ν0t

2

)n−1 ||πt − π|| ≤ 2δ
(
1− ν0t

2

)n−1
(5.6.64)

valid for all π verifying Eq. (5.6.49), ∀n integer and ≥ 1.
Hence, the series of Eq. (5.6.55) is uniformly convergent as π varies in the

class of the functions verifying Eq. (5.6.49), ∀ t ∈ [0, t+], ∀α ∈ [−a+, a+].

5.6.8 H: Independence of the Limit as n → +∞ of πnt from π and
t ∈ [0, t+]

Denote π the continuous function defined on [−δ, δ], ∀ t ∈ [0, t+], in terms of
a π verifying Eq. (5.6.49), by

lim
n→+∞

πnt = π∞,t,π, (5.6.65)

the continuity being insured by the uniformity of the limit of Eq. (5.6.65),
see Eq. (5.6.55). The function π∞,t,π is π independent. In fact, Eq. (5.6.62)
recursively implies

||πnt − π′nt|| ≤ (1− ν0t

2
)n||π − π′|| −−−−−→n→+∞ 0 (5.6.66)

if π, π′ verify Eq. (5.6.49). Hence it will be simply denoted as πt. Now let
t′, t ∈ [0, t+] and t′/t = p/q = rational number, p, q integers, then
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πntp = πnt′q, (5.6.67)

hence, in the limit n→ +∞, Eq. (5.6.67) implies

π∞,t = π∞,t′ (5.6.68)

if t/t′ = {rational number}. Therefore Eq. (5.6.63) implies that Eq. (5.6.68)
holds for all t, t′ ∈ (0, t+] and π∞,t is t independent. Denoting π∞ the function
in Eq. (5.6.68), it is (π∞)t ≡ π∞ and this proves the invariance of σ(π∞);
hence, Eq. (5.6.9).

5.6.9 I: Attractivity of σ(π∞).

Given (x, z) ∈ Γ (δ), let π be a function verifying Eq. (5.6.49) and π(x) = z,
e.g., π(x) = z, x ∈ [−δδ]. Given t > 2t+ , let t ∈ (0, t+) such that t > 1

2 t+
and, furthermore, t/t = N = integer. Then, by Eq. (5.6.66) or Eq. (5.6.62),

||πt − π∞|| ≡ ||πt − (π∞)t||

= ||(π)Nt − (πn)Nt|| ≤ (1 − ν0t

2
)N ||π − πn||

≤ (1− ν0t

2
)N ||π − π∞|| ≤ 2δ (1 − ν0t+

4
)t/t+

(5.6.69)

which proves that σ(πt), hence S
(α,δ)
t (x, z) as well, approaches σ(π∞) with

exponential strength so that the attractivity of σ(π∞) is proved in the case
of the Eqs. (5.6.17) and (5.6.18) and this immediately leads to Eq. (5.6.10).

5.6.10 L: Order of Tangency.

Let us show that if π is chosen so that it verifies Eq. (5.6.49) as well as

|π(x)| ≤ C|x| 32 , ∀ x ∈ [−δ, δ], (5.6.70)

then it is also true that

|πt(x)| ≤ C|x|
3
2 , ∀ x ∈ [−δ, δ], ∀ t ∈ R+. (5.6.71)

Hence, for x ∈ [−δ, δ], |π∞(x)| ≤ C|x| 32 , implying Eq. (5.6.11) for k = 0.

Suppose that π verifies Eqs. (5.6.49) and (5.6.70), e.g., π(x) ≡ 2
3C|x|

3
2 .

From Eqs. (5.6.33), (5.6.25),(5.6.20) and S
(α,δ)
t (0, 0) ≡ (0, 0), it follows

|πt(x)| ≤ e−ν0tC|x0|
3
2 +

∫ t

0

M |S(α,δ)
τ (x0, π(x0))|2dτ

≤ e−ν0tC|x0|
3
2 +Mt(1 + 2Mt(a+ + δ))2(x2

0 + π(x0)
2) (5.6.72)

≤ C|x0|
3
2 (e−ν0tC +Mt(1 + 2Mt(a+ + δ))2(C−1

√
|x0|+ C|x0|

3
2 ))
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for t ∈ [0, t+], α ∈ [−a+, a+].

From Eqs. (5.6.68),(5.6.25),(5.6.20) and S
(α,δ)
f (0, 0) ≡ (0, 0)

|x0| ≤|x|+M

∫ t

0

(a+|S(α,δ)
−τ (x, πt(x))1|+ |S(α,δ)

−τ (x, πt(x))|2) dτ

≤|x|+Mt
{
a+[(1 +Mt(a+ + δ))(|x| + |πt(x))|]

+ [2(1 + 2Mt(a+ + δ))2(|x|2 + |πt(x)|2)]
}

(5.6.73)

≤ |x|
(
1 +Mt

{
a+[(1 +Mt(a+ + δ))] + [2(1 + 2Mt(a+ + δ))2δ]

})

+ |πt(x)|Mt
{
a+[(1 +Mt(a+ + δ))] + [2(1 + 2Mt(a+ + δ))2δ]

}
.

To simplify the notations, rewrite Eqs. (5.6.72) and (5.6.73) by observing that
if a+, δ, t+ < 1 (as supposed since the beginning of the analysis), there exists
M ′ > 0 such that

|πt(x)| ≤ C|x|
3
2

(
1− ν0t

2
+M ′

√
δ t
)

(5.6.72′)

|x0| ≤ |x|
(
(1 +M ′(a+ + δ)t

)
+ |πt(x)|

(
(1 +M ′(a+ + δ)t

)
(5.6.73′)

Then, taking the 2
3 power of Eq. (5.6.72’) and using and (5.6.73’)

|πt(x)|
3
2 ≤ C 2

3

(
1− ν0t

2
+M ′

√
δ t
)(

1 +M ′(a+ + δ)t
)
(|x| + |πt(x)|), (5.6.74)

Since δ < 1, |πt(x)| ≤ δ, using |πt(x)| ≤ |πt(x) 3
2 deduce from Eq. (5.6.74)

|πt(x)|
2
3 ≤ C 2

3 |x| (1−
ν0t
2 +M ′

√
δ t)

2
3 (1 +M ′(a+ + δ)t)

1−M ′(a+ + δ)t(1 − ν0t
2 +M ′

√
δ t)

2
3

(5.6.75)

Hence, let us choose ϕ, a+, t0 to be so small that, ∀ t ∈ [0, t0], the ratio in
Eq. (5.6.75) is bounded by

ratio in Eq. (5.6.75) ≤ 1− ν0t

4
, (5.6.76)

we see that Eqs. (5.6.75) and (5.6.76) imply, ∀x ∈ [−δ, δ], ∀ t ∈ [0, t+],

|πt(x)| ≤ C|x|
3
2 (1− ν0t

4
) ≤ C|x| 32 , (5.6.77)

hence, the inequality between the left-hand and the right-hand sides holds,
∀ t ≥ 0, and this implies Eq. (5.6.11) for k = 0.
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5.6.11 M: Regularity in α.

This is the last property to check. One proceeds almost exactly in the same
way as above. Details will be illustrated because in some sense there is here
a technical idea, new with respect to the ones already met. Actually we shall
prove that π is a Lipshitzian function of α and x for α ∈ [−a+, a+], x ∈ [−δ, δ],
i.e., a somewhat stronger result.

Consider a function (x, α)→ π(x, α) defined for x ∈ [−δ, δ], α ∈ [−a+, a+],
of class C(1) and verifying Eq. (5.6.49) for each α. Define πt(x, α) by thinking
of π as a function of x for each α and proceeding as in subsection 5.6.E. From
Eqs. (5.6.33), (5.6.24), (5.6.21), (5.6.20), (5.6.49) and employing the usual
notations, one finds that

πt(x, α) = e−ν0tπ(x0, α)

∫ t

0

e−ν0(t−τ)Zδ(S
(α,δ)
τ (x0, π(x0, α)), α) dτ, (5.6.78)

hence, recalling that x0 is also α dependent and denoting ∂α
def
= ∂

∂α :

|∂απt(x, α)
∣∣∣ ≤ e−ν0t|∂απ(x0, α) +

∂π(x0, α)

∂x

∂x0

∂α

∣∣∣+
∫ t

0

dτ
[ 2∑

i=1∣∣∣∂Zδ
∂wi

(S(α,δ)
τ (x0, π(x0, α)))

d

dα
{S(α,δ)

τ (x0, π(x0, α))i}
∣∣∣}
]
e−ν0(t−τ)

≤ e−ν0t|∂απ(x0, α)|+ e−ν0tC
√
δ|∂x0

∂α
|

+ 2Mδ

∫ t

0

dτ
{
Mτ(δ + δ2t) + (1 +Mτ(a+ + δ))

×
(
|∂x0

∂α
|+ |∂π(x0, α)

∂x0

∂x0

∂α
|+ |∂π(x0, α)

∂α
|
)}

≤ e−ν0t|∂απ(x0, α)|+ e−ν0tC
√
δ|∂x0

∂α
|+M2δ2(1 + δt)t2

+ 2Mδ(1 +Mτ(a+ + δ))t
(
(1 + C

√
δ)|∂x0

∂α
|+ |∂π(x0, α)

∂α
|
)

≤ e−ν0t2Mδ(1 +Mτ(a+ + δ))t|∂π(x0, α)

∂α
|+Mδ2(1 + δt)t2

+
{
e−ν0tC

√
δ + 2Mδ(1 +Mt(a+ + δ)t(1 + C

√
δ))
}
|∂x0

∂α
|.

(5.6.79)

The ∂αx0 is estimated as in subsection 5.6.G, by Eq. (5.6.58) rewritten as

x0 = x−
∫ t

0

Xδ(S
(α,δ)
−τ (x, πt(x, α), α)dτ, (5.6.80)

hence, proceeding as in the derivation of Eq. (5.6.79) and using Eq. (5.6.23):
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|∂x0

∂α
| ≤
∫ t

0

dτ
{
Mδ + 2M(a+ + δ)

·
[
Mδτ(1 + δτ) + (1 +Mτ(a+ + δ)|∂πt(x, α)

∂α
|)
]}

≤M + 2M2δ
t2

2
(1+)(a+ + δ)

+ t(1 +Mt(a+ + δ))2M(a+ + δ)|∂πt(x, α)

∂α
|.

(5.6.81)

Then Eqs. (5.6.79) and (5.6.81) imply

|∂απt(x, α)| ≤ A+B|∂απ(x0, α)|
1−GS (5.6.82)

with

G
def
= [e−ν0tC

√
δ + 2Mδ(1 +Mt(a+ + δ))t(1 + C

√
δ)],

S
def
= t[1 +Mt(a+d)2M(a+ + δ)],

A
def
= M2δ2(1 + δt)t2 +G[M +M2δt2(1 + δt)(a+ + δ)],

B
def
= e−ν0t + 2Mδ(1 +Mt(a+ + δ))t

and to understand the essential features of Eq. (5.6.82), we note that if δ, a+, t0
to are chosen so small that there is M such that the first term in Eq. (5.6.82)
can be bounded by

A

1−GS ≤Mδ
√
δ t (5.6.83)

for all t ∈ [0, t0], ∀α ∈ [−a+, a+], and the coefficient of |∂απ(x0, α)| in Eq.
(5.6.82) can be bounded as

B

1−GS ≤ 1− νot

2
, (5.6.84)

then Eq. (5.6.82) can be simply rewritten, ∀ t ∈ [0, t+], ∀α ∈ [−a+, a+],

||∂απt|| ≤ max
|x|≤δ

|α|≤a+

|∂απt(x, α)| ≤Mδ
3
2 t+ (1− ν0t

2
)||∂απ|| (5.6.85)

Now fix π to be a function of the variable x only and verifying Eq. (5.6.49).
Apply Eq. (5.6.85) to the functions πnt, π(n−1)t, . . . thought of as functions of
x and α. If t ∈ (0, t+], n = 0, 1, 2, . . .,

||∂απnt|| ≤Mδ
3
2 t+ (1− ν0t

2
)||∂απ(n−1)t||. (5.6.86)
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Then, Eq. (5.6.86) implies, recursively,

||∂απnt|| ≤Mδ
3
2 t(1 + (1− ν0t

2
) + (1− ν0t

2
)2 + . . .) (5.6.87)

because π0 = π is by hypothesis α independent, so that ∂απ0 ≡ 0, i.e.,

||∂απnt|| ≤
Mδ

3
2 t

ν0t/2
≡ 2δ

3
2

ν0
. (5.6.88)

The regularity of π∞ can now be checked:

|π∞(x, α) − π∞(x′, α′)| = lim
n→∞

|πnt(x, α) − πnt(x′, α′)|

≤ lim
n→∞

(|x − x′|+ |α− α′|) max
(
|∂πnt
∂x
|+ |∂πnt

∂α
|
) (5.6.89)

where the maximum is taken on the set [−δ, δ]×[−a+, a+] and, by Eq. (5.6.49)
(considered for πnt) and Eq. (5.6.88), it can be estimated by D =

√
δ (1 +

2Mν−1
0 ). Hence,

|π∞(x, α) − π∞(x′, α′)| ≤ D(|x− x′|+ |α− α′|), (5.6.90)

showing that π∞ is continuous in x and α (i.e., it is in class C(0)) and, actually,
that it is a Lipshitz function in x and α (with a Lipshitz constant D which
can be taken as small as desired by taking δ small enough).

5.6.12 N: General Case.

To show that π∞ is k-times differentiable with respect to x if a+, δ are

chosen sufficiently small, one proceeds to estimate ∂2πt

∂x2 and, successively,
∂3πt

∂x3 , . . . ,
∂k+1πt

∂xk+1 in the same way as in the k = 0 case we studied πt and
∂πt

∂x to show that π∞ was C(0), assuming now that π is in C(k+1)([−δ, δ]) to
start with.

Proceeding with the same technique as in subsections 5.6.F, 5.6.G, and
5.6.L, (1 + k)δ, (1 + k)a+, t0 are chosen sufficiently small so that inequalities
similar to Eqs. (5.6.41), (5.6.42), (5.6.43), and (5.6.53), etc. hold. One finds

||∂
hπt
∂xh
|| ≡ max

|x|≤δ
|!∂

hπt(x)

∂xh
|| ≤ (1 − ν0t

2
)||∂

hπ

∂xh
||+ tRk,δ(

h−1∑

j=1

||∂
jπ

∂xj
||) (5.6.91)

for h = 0, . . . , k+1 and t ∈ [0, t̃+] with t̃+ suitably small provided y → Rk,δ(y)
is a suitable continuous function in the variables δ, y and monotonically in-
creasing in y.

Equation (5.6.91) has the same nature as Eq. (5.6.86), and in the same
manner it allows us to show inductively that the Eq. (5.6.49) as well as

||∂jπ
∂xj || ≤ C, j = 0, . . . , k + 1, imply
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k+1∑

j=0

||∂
jπtn
∂xj

|| ≤ (k + 1)
Rk,δ((k + 1)C)

ν0/2
+ (k + 1)C (5.6.92)

Equation (5.6.92) means that π∞ is k-times continuously differentiable.
Along similar lines, it is possible to prove the C(k) regularity in the variable

α and, jointly, in α and x for |α|, |x| small. By way of estimates of the (k+1)-
th derivative of π, with respect to αc of the k-th derivative of πt with respect

to α, . . . , and of the first derivative with respect to α of ∂kπt

∂xk , this regularity
property is proved following the ideas and the techniques of subsections 5.6.M
and 5.6.N.

The reader who has been determined enough to reach this point shall not
have problems in transforming the above last hints into a proof. We only
stress that from what has been said above, it appears that in order to obtain
C(k) regularity, one must impose restrictions on δ, a+, and t0 which are k
dependent. This means that the above proof cannot be used to prove that
the attractive manifold depends in a C∞ way on x and α: actually, it is an
open problem to find whether such a smoothness property can be enjoyed by
the attractive manifolds under simple extra assumptions (whose necessity is
made clear by the example in Observation (1), p.412.) mbe

5.6.13 Exercises

1. Show vague attractivity of 0 = (0, 0) near αc = 0 for ẋ = αx− x3, ż = −z, (x, z) ∈ R2.

2. In the context of Problem 1, show that the plane z = 0 is an attractive manifold in the
sense of Proposition 11.

3. Consider the equation in Problem 1 and the surface σα built with three pieces with
respective parametric equations

(
z(γ) = z e−γ

x(γ) = x(γ) =
√
α (1 + α−x2

x2 e−2αγ )−
1
2

, γ ∈ [0,+∞)

(
z(γ) = z′ e−γ

x(γ) = x′(γ) = −√α (1 + α−x′2
x′2

e−2αγ)−
1
2
, γ ∈ [0,+∞)


z(γ) = 0,

x(γ) = γ
, γ ∈ [0,+∞)

Show that σα is an attractive manifold ∀x, x′, z, z′ such that
√
α ≤ x,−x′, α > 0, in the

sense of Proposition 11. (Hint: Note that t→ x(t) is a solution of ẋ = αx− x3 with initial
datum x.)

4. Show that the attractive manifolds in Problem 3 are in C(k), at fixed α, if α is small
enough (2αk < 1). Show that the equation in Problem 1 admits infinitely many attractive
manifolds not C∞ in x. Meditate on how general this non uniqueness mechanism is.

5. Consider the equation ẋ = αx, ż = −νz+ x2 and determine all the attractive manifolds
of the origin for 0 < −a < ν. Show that for each α < 0 there are infinitely many such
manifolds but only one, at most, can be of class C∞. Find a value of α < 0 for which no
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attractive manifold is of class C1. (Hint: Note that an attractive manifold must be a union
of trajectories of solutions of the differential equation; see also Problem 1. The critical value
of α is α = −ν/2.)

6. Using the example of Problem 5 show that the assumption Reλj(αc) = 0, j = 1, . . . , r,
is essential in Proposition 11. If this assumption is not verified argue that a proposition like
Proposition 11 could still hold if the order k of smoothness is restricted as k < ν0/ν′0, at
least. See also Problem 7.

7. Prove Proposition 11 for Eq. (5.6.12) when α is near some αc, −ν0 < αc < 0 and k = 0.

(Hint: Write Eq. (5.6.17) as ẋ = αcx + χδ(x, z)
“
(a − αc)x + P (x, z)

”
and proceed as in

the proof in §5.6 with the obvious substitution of Eq. (5.6.32), and of the other equations

similar to it, with x = eαctx0 +
R t
0 e

αc(t−τ)Xδ(S
(α,δ)
τ (x0, π(x0)), α) dτ, etc.)

8. Show the validity of Proposition 11 in the case in which Eq. (5.6.12) is replaced by the
equation (µ > 0)

ẋ1 =αx1 − µx2 + P1(x1, x2, z),

ẋ2 =µx1 + αx2 + P2(x1, x2, z),

ż =− ν0z +Q(x1, x2, z),

(Hint: Write the equation analogous to Eq. (5.6.17) as

ẋ1 =− µx2 + χδ(x1, x2, z)(αx1 + P1(x1, x2, z)),

ẋ2 =µx1 + χδ(x1, x2, z)(αx2 + P2(x1, x2, z)),

ż =− ν0z + χδ(x1, x2, z)Q(x1, x2, z),

with analogous notations. Then proceed exactly as in the proof in §5.6, substituting Eq.
(5.6.32), and the other equations similar to it, with

x = W (t)x0 +

Z t

0
W (t− τ)Xδ(S

(α,δ)
τ (x0, π(x0)), α) dτ,

where W (t) =

„
cos t − sin t

sin t cos t

«
is the Wronskian matrix; see, also, problems for §2.5, etc.)

9. Using the same ideas as in Problems 7 and 8, study Proposition 11 in the general case,
i.e., for an equation of the form of Eq. (5.5.10).

10. If x0 is not supposed to be vaguely attractive, recognize that the proof of Proposition

11 can be interpreted as showing the existence of a surface σα defined as in Eq. (5.6.4),
verifying Eq. (5.6.11) and

(ii’) If w ∈ Γ (δ0) ∩ σα and S
(α)
t w ∈ Γ ( 1

2
δ), ∀ τ ∈ [0, t], then S

(α)
t w ∈ σα (“local invari-

ance”).

(iii’) If Stw ∈ Γ (δ0) ∩ σα, ∀ t ≥ 0, then d(S
(α)
t w, σα)−−−−−→t→+∞ 0 exponentially fast, i.e. the

statements of hold as long as the point stays inside Γ ( 1
2
δ). (Hint: Vague attractivity is used

only to reduce the proof to a theory of (5.6.17), (5.6.18). So just start from them.)

11. Consider the equation ẋ = f(x) and suppose that x0 = 0 is a stationary solution for
it. Let L be the stability matrix of x0 and suppose that L has (d − r) eigenvalues with
negative real parts and r with zero real parts. Without imposing the vague attractivity of
0, interpret the proof of Proposition 11 with α = 0 as showing that given k > 0, C > 0, there
exists δ and δ0, δ > δ0, and a surface σ of dimension r and described by (d − r) functions
(ϕ(r+1), . . . , ϕ(d)) of r variables x1, . . . , xr, with |xi| < 1

2
δ and verifying Eq. (5.6.11) as well
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as the local invariance and attractivity properties of the preceding problem (“theorem of
the central manifold”).

12. Consider the equation ẋ = λx + P (x, z), ż = −νz + Q(x, z) with λ, ν > 0 and P,Q ∈
C∞(R2) with a second order zero at the origin. Show that

St(x, z) = (eλtx+ tD(x, z, t), ze−νt + tE(x, z, t))

with D and E of class C∞ and having a zero of second order at (0, 0) in the variables (x, z).

13. Use Problem 12 to show that, in the same context and for all small δ, if π is a C(1)

function on [−δ, δ] such that

|π(x)| ≤ δ, |dπ(x)

dx
| ≤
√
δ (∗)

and if σ(π) denotes the curve z = π(x), x ∈ [−δ, δ], then Stσ(π) is such that Stσ(π)∩Γ (δ) =
σ(πt). and πt, verifies Eq. (*). (Hint: Use the ideas of the proof of Proposition 11.)

14. In the context of Problems 12 and 13, show that

||π(n+1)t − πnt|| ≤ ξ ||πnt − π(n−1)t||, ||πt − π′
t
|| ≤ ξ ||π − π′||

with ξ < 1 (if || · || denotes the maximum of a function) provided δ0 is small enough.
Deduce the consequent existence in Γ (δ) of a surface locally invariant for St and tangent
to the x axis at the origin and such that S−tw−−−−−→t→+∞ 0 exponentially fast in the sense

−λ = limt→+∞ 1
t

log |S−tw| for all nonzero w on the surface. Denote this surface by σi: it
is called the “unstable manifold” through 0.

15. In the context of Problem 12, show the existence in Γ (δ) of a surface σs locally invariant
for St, tangent to the z axis, and such that ∀w 6= 0, w ∈ σs it is −ν = limt→+∞ 1

t
log |Stw|

(“stable manifold through 0”).

16. Study the generalization of the result of Problems 10-13 to a general equation in Rd,
ẋ = f(x), with f(0) = 0 and a stability matrix L whose eigenvalues are pairwise distinct
and such that none among them has a zero real part, although some of them have a positive
real part and others have a negative real part (“hyperbolic unstable point”) (“existence of
stable and unstable manifolds at a hyperbolic fixed point”).

17. Consider the equation ẋ = x + x2

α
+ z2

β
, ż = −z + x2

γ
+ z2

δ
, α = δ = 1, β = −γ = 2,

and compute the second derivative at the origin of the function π , defining (via z = πs(z))
the stable manifold of 0. (Hint: Write x = Az2 +Bz3 + . . . and insert this expression in the
first equation. One finds A = β−1.)

18. Find some extensions to Problems 14 and 15 to equations in Rd and study them.

19. In the context of Proposition 11, show that if iσα is regarded as an attractor for the

neighborhood U used in the proof [see Eq. (5.6.15)], and if eσα = ∩t>0S
(α)
t σα then the

function in the left-hand side of Eq. (5.3.21), p.380, with A = eσα can be estimated by an

exponentially decreasing function of t as t → +∞, i.e., eσα is a normal attractor for U by

Proposition 5, §5.3, p.379. (Hint: Examine the text of Proposition 11 and the discussion

around Eq. (5.6.15).)
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5.7 An Application: Bifurcations of the Vaguely
Attractive Stationary Points into Periodic Orbits. The
Hopf Theorem

After the considerations of §5.5 Proposition 10, p.405, the theory of §5.3 can
be immediately applied to Eq. (5.1.19). Fixed k, k ≥ 2, there is B > 0 and a
cubic neighborhood Γ (δ) centered at ω̂ with side 2δ, and a family σα of C(k)

surfaces in Γ (δ) with equations

ω3 = ω̂3 + ϕα(ω1, ω2), (5.7.1)

defined for |ω1|, |ω2| ≤ 1
2δ and α close to αc, α ∈ (αc − a+, αc + a+), and

|ϕα(ω1, ω2)| ≤ B (ω2
1 + ω2

2) (5.7.2)

ϕα ∈ C(k)([− 1
2δ,

1
2δ]

2 × (αc − a+, αc + a+)), and for every α close to αc the
surface σα is invariant in the sense of Eq. (5.6.9) and attractive for all the
points of Γ (δ) in the sense of Eq. (5.6.10), with exponential strength.

It will be shown that if (α − αc) > 0 is sufficiently small, there is on σα
a minimal attractor Aα consisting of a periodic orbit with a period approxi-
mately 2π/ω̂3 and attracting the points on σα/{ω̂} with exponential strength.

Essentially, by using Proposition 5, §5.3, it will then follow that, in the
situation of the preceding sentence, Aα ∪ {ω̂} is an attractor for which the
basin Γ (δ) is normal and ∀ω ∈ Γ (δ), ∃π(ω) ∈ Aα ∪ {ω̂} such that

|S(α)
t (ω)− S(α)

t (π(ω))| −−−−→t→+∞ 0 (5.7.3)

exponentially fast. This statement “completes” the analysis of the asymptotic
behavior of the motions of Eq. (5.1.19) with initial datum ω close enough to
ω̂ and with a given α slightly above αc.

15

To see which is the real motion of the gyroscope corresponding to this
asymptotically periodic motion of its angular velocity, it would still be neces-
sary to integrate the “geometric” differential equations connecting the Euler
angles with the angular velocity, see Eqs. (5.2.9)-(5.2.11). We shall not discuss
this last point.

The preceding statements follow, as a special case, from the following
general “Hopf bifurcation theorem” and from the observations to it.

12 Proposition. Consider a differential equation ẋ = f(x, α) in R2, parame-
terized by α ∈ (−a, a) and having the origin 0 as a vaguely attractive station-
ary solution near αc = 0. Suppose that the stability matrix of the origin, de-

noted L(α), has eigenvalues λ(α) = α+iµ(α), λ(α) = α−iµ(α), µ
def
= µ(0) 6= 0.

Also suppose that the equation is already put in normal form with respect to

15 An even more complete picture, distinguishing the points attracted by Aα from those
attracted by bω can be obtained by using the results of Problems 12-19 of §5.6. The
outcome would be the one described just before Proposition 11, p.411.
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λ, λ (see Definition 6, p.392, §5.5; this can always be achieved via a change
of coordinates, by Proposition 7, p.393, §5.5):

ẋ =αx − µ(α)y + P (x, y, α)

ẏ =µ(α)x + αy +Q(x, y, α)
(5.7.4)

with P,Q ∈ C(k)(R2× (−a, a)), k being a large enough integer, and with P,Q
having a third-order zero in x = y = 0, ∀α ∈ (−a, a).
Finally suppose that the origin is vaguely attractive because the vague attrac-
tivity indicator γαc

is negative. Recall that γαc
is defined as the average value

over θ of γα(θ) with

γα(θ) = lim
̺→0

xP (x, y, α) + y Q(x, y, α)

(x2 + y2)2
(5.7.5)

if (̺, θ) are the polar coordinates of (x, y), see (5.5.25).
Then if α > 0 is sufficiently small, there is a periodic solution to Eq. (5.7.4)
which is an attractor attracting all the points in a small neighborhood of 0,
with the exception of 0 itself, with exponential strength.
The period Tα of this motion is such that limα→αc Tα = 2π

µ(0) .

Observations.
(1) The requirement on k to be large enough is imposed to guarantee the
possibility of further reducing the complexity of Eq. (5.7.4) by changing coor-
dinates so that the function γa(θ) in Eq. (5.7.5) becomes θ independent (i.e.
γα(θ) ≡ γα) in the new polar coordinates and, at the same time, so that in
the new coordinates the functions

r(x, y, α) =xP (x, y, α) + y Q(x, y, α)− γα(x2 + y2)2,

s(x, y, α) =xQ(x, y, α)− y P (x, y, α)
(5.7.6)

are infinitesimal of fifth order at x = y = 0, uniformly in α ∈ (−a, a), and
also have gradients in x, y infinitesimal of the fourth order [a property used
below in Eqs. (5.7.17) and (5.7.18)].16 See Observation (8) for more details.
(2) In the application to Eq. (5.1.19), Eq. (5.7.4) is

ω̇1 =(α− αc)ω1 − ω̂3 ω2 + P (ω1, ω2, α),

ω̇2 =ω̂3 ω1 + (α− αc)ω2 +Q(ω1, ω2, α),
(5.7.7)

where P (ω1, ω2, α), Q(ω1, ω2, α) are respectively

− ω1(λ
′
2ω

2
1 + λ′′2ω

2
2 + λ′′′2 2ω̂3ϕα(ω1, ω2) + λ′′′2 ϕα(ω2, ω2)

2)− ω2ϕα(ω1, ω2),

− ω2(λ
′
2ω

2
1 + λ′′2ω

2
2 + λ′′′2 2ω̂3ϕα(ω1, ω2) + λ′′′2 ϕα(ω2, ω2)

2) + ω1ϕα(ω1, ω2),
(5.7.8)

16 k ≥ 5 will suffice, see Observation (8).
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ϕα being the function defining the attractive manifold, and it is of class C(k),
k chosen (once and for all) as large as desired. Hence,

γα(θ) = lim
ω1,ω2→0

−λ
′
2ω

2
1 + λ′′2ω

2
2 + λ′′′2 2ω̂3ϕα(ω1, ω2)

(ω012 + ω2
2)

(5.7.9)

and to evaluate γαc
one does not need to know explicitly ϕα. One can pro-

ceed as in the proof of Proposition 10, p.405, setting r ≡ ϕα; by the same
calculation one finds

γα = − (λ′2 + λ′′′2 ω̂2
3)

2(λi + 3λ
′′′

2 ω̂
2
3)
< 0 (5.7.10)

Hence, Eq. (5.1.19) has a periodic attractive solution for α > αc and (α−αc)
small.
(3) As already noted, the assumption that the equation ẋ = f(x, α) has nor-
mal form with respect to λ(α), λ(α)) is not really restrictive if µ(0) 6= 0, by
Proposition 7, §5.5, p. 393.

The assumption Reλ(α) ≡ α is also not too restrictive: if dReλ(α)
dα 6= 0 we

can rename ±Reλ(α) with the name α and fall within the assumptions of the
theorem. However, pathologies can appear if Reλ(α) has a vanishing deriva-
tive at αc.
(4) The theorem has been formulated in class C(k) rather than in class C∞

because it is usually applied in connection with the attractive manifold theo-
rem, Proposition 11, p.411 [as, for instance, in Observation (2)], in which case
one cannot take k = +∞, in general.
(5) It is important to stress the rather general situation that the above the-
orem can cover, if combined with the attractive manifold theorem of §5.6,
and with the normal-form theorem (Proposition 7, p.393, §5.5) when the loss
of stability takes place in two non real conjugate directions. One just has to

perform the changes of variables (possible if dReλ(α)
dα 6= 0, µ(0) 6= 0) casting

the first two equations, among the d equations of the transformed system,
into normal form with respect to the two eigenvalues λ(α), λ(α) “responsible
for the loss of stability”, as

ẋ1 =αx1 − µ(α)x2 + P̃ (x1, x2,y, α),

ẋ2 =µ(α)x1 + αx2 + Q̃(x1, x2,y, α),
(5.7.11)

where y denotes the remaining (d− 2) unknowns of the differential equation.
Then one considers the differential equation in R2 of the form of Eq.

(5.7.4) with P (x1, x2, α) = P̃ (x1, x2,0, α), Q(x1, x2, α) = Q̃(x1, x2,0, α). If
this equation verifies the assumptions of Proposition 12, we can infer that the
original equation has an attractive periodic orbit for α slightly above αc.
The proof of this simple criterion is obtained by the obvious extension to Rd
of the discussion in Observation (2) (write y = ϕα(x1, x2) and use the fact
that ϕα vanishes to second order.
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(6) The above theorem has a natural analogue in one dimension. Consider the
equation in R:

ẋ = αx+ p(x, α), (5.7.12)

where p ∈ C(k)(R2), k large enough, and p has a third-order zero in x = 0,
∀α ∈ (−a, a), and

c(α) = lim
x→0

x p(x, α)

x4
< 0 (5.7.13)

with c(α) < 0 and continuous near α = 0. If k is large, by the implicit
function theorem, Eq. (5.7.12) has two stationary solutions, for α > 0 and
small (x ≃ ± α

c(α) .

At such points, the stability “matrix” is −2α < 0 and, therefore, the two
points are attractors with exponential strength for the points in their vicinity.

This observation is sometimes useful in treating cases analogous to the
ones discussed in Observation (5), when the stationary solution loses stability
because only one real eigenvalue crosses the imaginary axis, as a grows through
a critical value αc leaving the stationary solution vaguely attractive.

However, it should be stressed that this is a rather rare possibility since it
is generally impossible to put a one-dimensional equation into normal form,
see observation (3), p.397. The existence of normal form can be expected only
in systems with “some symmetry” (like x←→ − x odd symmetry of p(x, α)).

Note also that if Eq. (5.7.12) has the property of Eq. (5.7.13), then a small
perturbation of it, like

ẋ = αx+ p(x, α) + εx2, (5.7.14)

can change the vague-attractivity character of x = 0 for α near 0, no matter
how small ε is (exercise). This phenomenon is not possible in equations in
which the loss of stability takes place in two complex non real directions
(essentially just because of the existence of normal forms).
(7) The mechanism of generation of a periodic orbit out of a fixed point when
a grows through αc described in Proposition 12, is called a “Hopf bifurcation”.
The solution x0 loses stability in two complex directions at α = αc and, if
it stays vaguely attractive in the sense of Eq. (5.7.5), it is surrounded by a
periodic attractive motion taking place on a curve whose diameter, as we shall
see, grows as

√
α− αc for α− αc > 0 and small.

(8) As shown in the proof of Proposition 8, p.396, it is always possible to
change smoothly coordinates so as to put Eq. (5.7.4) into a form such that
γα(θ) is θ independent: γα(θ) ≡ γα, ∀α ∈ (−a, a), i.e.,

ẋ =αx − µ(α)y + γαx(x
2 + y2) + P̃ (x, y, α),

ẏ =µ(α)x + αy + γαy(x
2 + y2) + Q̃(x, y, α),

(5.7.15)
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with γ0 < 0 and with P,Q infinitesimal of fourth order at x = y = 0, uniformly
in α ∈ (−a, a) (possibly reducing the value of α); see the change of variables
of Eq. (5.5.39) changing Eq. (5.5.38) (i.e., essentially, Eq. (5.7.4) written in
complex form) into Eq. (5.5.43) (ie., (5.5.37)). By Eqs. (5.5.42) and (5.5.38),
it one realizes that the needed change of coordinates involves the third-order
Taylor coefficients of P and Q at x = y = 0, α = αc, with respect to the
variables x, y and it turns out to be of class C∞ in the variables x, y near
x = y = 0 and α small (but, in general, only of class C(k−3) in α).
If k > 5, the functions P,Q in Eq. (5.7.15) have fifth-order derivatives with
respect to x, y continuous in x, y, a near (0, 0, 0) and also have a fourth-order
zero in x, y at x = y = 0, ∀α ∈ (−a, a), if a is small.
Furthermore, the functions r, s of Eq. (5.7.6) are now equal to

r(x, y, α) =x P̃ (x, y, α) + y Q̃(x, y, α),

s(x, y, α) =x Q̃(x, y, α)− y P̃ (x, y, α),
(5.7.16)

by Eq. (5.7.15), and their derivatives in x, y are continuous in x, y, α near
(0, 0, 0) and have a fourth-order zero at x = y = 0, ∀α ∈ (−a, a).
Hence, to fix the ideas, we shall suppose that “k large enough” means k > 5.
However, this is not optimal, and one can improve the value of the degree of
regularity in x, y, α necessary for P,Q so that a proposition like Proposition
12 will hold in general. To obtain fine results, one should distinguish the
regularity imposed on the α variable and that on the x, y variables.

Proof. By observation (8), if k > 5, it suffices to treat Eq. (5.7.15) with

P̃ , Q̃, ∂r, ∂s [see Eqs. (5.7.15) and (5.7.16)] being fourth-order infinitesimals
in x, y for x = y = 0, uniformly in α ∈ (−a, a) (here ∂ denotes the gradient
with respect to the x, y variables).

Let γ ≡ −γ0, µ ≡ µ(0). By the infinitesimality properties of P̃ , Q̃, it is
possible to find ̺ > 0, 0 < a < a, such that, for all (x, y) ∈ C(̺)/{0}, with

C(̺)
def
= {x, y | (x, y) ∈ R2,

√
x2 + y2 ≤ ̺}, and for all α ∈ (−a, a)

α− 1

8
γ̺2 < 0,

2

3
µ < µ(α) <

3

2
µ,

− 2γ < γα +
r(x, y, α)

(x2 + y2)2
< −γ

2
,

|s(x, y, α)|
(x2 + y2)2

<
µ

2

(5.7.17)

having supposed, for definiteness, that µ > 0. Call C(̺′, ̺′′)
def
= {annulus with

radii ̺′ < ̺′′ = {x, y | (x, y) ∈ R2, ̺′ <
√
x2 + y2 < ̺′′}

We now check that Eq. (5.7.17) implies that the disk C(̺) is S
(α)
t invariant

and that there is also an invariant annulus C(̺′α, ̺
′′
α) ⊂ C(̺) with 0 < ̺′α, ̺

′′
α <

̺ which is an attractor for the points in C(̺)/{0}, for all α ∈ (−a, a).
In fact, multiply the first of Eqs. (5.7.15) by x, the second by y, and add

the results:
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d

dt

x2 + y2

2
=
(
α+ γα(x2 + y2) +

r(x, y, α)

(x2 + y2)2
)
(x2 + y2)

=

{
< (α− γ x2+y2

2 )(x2 + y2)
> (α− 2γ(x2 + y2))(x2 + y2)

(5.7.18)

which shows [see the first of Eqs. (5.7.17)] that the intermediate term in

Eq. (5.7.18) is negative on ∂C(̺). This means that C(̺) is S
(α)
t invariant,

∀ t ≥ 0, ∀α ∈ (−a, a). Let

̺′α =

√
α

2γ
, ̺′′α =

√
2α

γ
(5.7.19)

and note that the inequalities in Eq. (5.7.18) show that the intermediate term
in Eq. (5.7.18) is positive on ∂C(̺′α) and negative on ∂C(̺′′α); hence, the

annulus C(̺′α, ̺
′′
α) is S

(α)
t invariant, if α is small so that ̺′′α < ̺.

Equations (5.7.17) and (5.7.18) also show that if ̺′α = 1
2̺
′
α, ̺
′′
α = 2̺′′α < ̺

the annulus C(̺′α, ̺
′′
α) is also invariant and enjoys the property that any initial

datum chosen in C(̺)/{0} evolves, entering into C(̺′α, ̺
′′
α) in a finite time (see

Fig. 5.7), ∀α ∈ (−a, a).

x

y

̺

̺′α ̺′′α

Figure 5.7: Initial data in C(̺) enter in a finite time the shaded annulus C(̺′α, ̺
′′
α).

In fact, if ̺ >
√
x2 + y2 > ̺′′α, the first inequality in the right-hand side

of Eq. (5.7.18) shows that the intermediate term of Eq. (5.7.18) is ≤ − 6α2

γ2 ,

so that the “entrance time” in C(̺′α, ̺
′′
α) is finite and can be estimated by

τ =
̺2−̺′′α

2

12α2 .

If 0 < ˜̺=
√
x2 + y2 < ̺′α the intermediate term of Eq. (5.6.18) is not less

than m = min ̺′α ≥ ̺ ≥ ˜̺(α̺2 − 2γ̺4) > 0 by the second inequality in the
right-hand side of Eq. (5.6.18). Hence, the entrance time can now be estimated

by τ = (̺′α
2 − ˜̺2)/2m.

This means that every datum close to the origin moves away from the
origin until it enters the annulus C(̺′α, ̺

′′
α) in a finite time, while every datum

close to ∂C(̺) moves towards the origin until it enters the annulus C(̺′α, ̺
′′
α)

in a finite time. These motions are spiraling motions, as we now show.
To see that the motions starting in C(̺)/{0} are “spiraling motions”, it

suffices to study them in polar coordinates.
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If S
(α)
t (x, y) ≡ (x(t), y(t)) and if (̺(t), θ(t)) are the polar coordinates of

(x(t), y(t)) ∈ C(̺)/{0},

dθ

dt
=
d

dt
arctg

y(t)

x(t)
=
ẏx− ẋy
x2 + y2

,

d̺

dt
=
d

dt

√
x(t)2 + y(t)2 =

ẋx+ ẏy√
x2 + y2

,

(5.7.20)

Note that if ̺(0) > 0, ̺(0) < ̺, then ̺(t) > 0 and ̺(t) < ̺ for all t ≥ 0,
because of the above arguments. Hence, Eq. (5.7.15) and the second and
fourth inequalities in (5.7.17) imply

θ̇ = µ(α) +
s(x, y, α)

(x2 + y2)2
⇒ 1

4
µ < θ̇ < 2µ, (5.7.21)

i.e., θ is monotonic in t and diverges as t → +∞. This just means that the
motion spirals if 0 < ̺(0) < ̺.

We now check that the spirals associated with the initial data external to
C(̺′′α), but in C(̺), become asymptotically confused, as t→ +∞, with those
associated with data internal to C(̺′α), but different from the origin.

If this happens, the two families of spirals are separated by a periodic orbit
which will be an attractor with basin containing C(̺)/{0}.

To discuss the asymptotic identity of the spirals it is convenient to describe
them as geometric objects, thinking of them as parameterized in terms of θ
instead of t, which is possible by Eq. (5.7.21).

Let θ → ̺1(θ) and θ → ̺2(θ) be the equations in polar coordinates of two
spirals on which two motions of Eq. (5.7.15) run, starting with initial data
̺1(0) ≥ ̺′α, θ1(0) = 0 and ̺2(0) ≤ ̺′′α, θ2(0) = 0 and ̺1(0) < ̺2(0).

By the uniqueness theorem for the solutions of the differential equations
and by the autonomy of Eq. (5.7.15), we see that ̺2(θ) − ̺1(θ) > 0, ∀ θ ≥ 0.
We show the existence of R > 0, ε(α) > 0 such that for α small enough,

̺2(θ)̺1(θ) ≤ Re−ε(α)θ (5.7.22)

Then the autonomy of Eq. (5.7.15) and Eqs. (5.7.22) and (5.7.21) plus the
attractivity properties of C(̺′α, ̺

′′
α) will imply that every datum in C(̺)/{0}

evolves exponentially fast in θ (with rate constant > ε(α) > 1
6µ) towards a

periodic trajectory of Eq. (5.7.15) which separates geometrically the “outer”
spirals (i.e., those originating outside C(̺′′α)) from the “inner” spirals (i.e.,
those originating inside C(̺′α)).

To prove Eq. (5.7.22), note that Eqs. (5.7.20), (5.7.19), and (5.7.21) imply

d̺

dt
= ̺

α (x2 + y2) + γα(x2 + y2)2 + r(x, y, α)

µ(α) (x2 + y2) + s(x, y, α)
(5.7.23)

where r, s are infinitesimals of fifth order in x, y at x = y = 0, uniformly
in α ∈ (−a, a), while their gradients with respect to x and y have the same
property to fourth order.
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Equation (5.7.23) will be rewritten as

d log ̺

dt
=
α + γα̺

2 + r(x, y, α)̺−2

µ(α) + s(x, y, α)̺−2
(5.7.24)

We now wish to show that the right-hand side of Eq. (5.7.24) is monotonic
in ̺ for ̺ ∈ [̺′α, ̺

′′
α] at fixed θ and that its ̺ derivative stays away from zero.

To estimate the derivative just compute it. Basically, the possibility of the
bound is due to the fact that to the lowest order in ̺, the right-hand side of
Eq. (5.7.24) is (α+ γα̺

2)/µ(α) whose ̺-derivative is 2γα̺/µ(α).
So we expect that if ̺ is small enough [with a chosen correspondingly

small so that the first of Eqs. (5.7.17) still holds], the ̺ derivative of the right-
hand side of Eq. (5.7.24) can be estimated, ∀ ̺ ∈ [̺′α, ̺

′′
α] (using the orders of

infinitesimality of r, s, ∂r, ∂s neglect the terms in r, s) to be not larger than:

−γ
µ

√
1

2γ

√
α ≡ −χ√α (5.7.25)

A direct calculation of the ̺ derivative of the right-hand side of Eq. (5.7.24)
actually proves the above statement, by Eq. (5.7.25).

Then recalling that ̺2(θ) > ̺1(θ), ∀ θ > 0, and writing Eq. (5.7.24) for ̺2

and ̺1, and subtracting them, we find, applying the bound on the derivative
(5.7.25) (recalling that ̺′α ≤ ̺1(θ)):

d

dθ
log

̺2(θ)

̺1(θ)
≤ −χ√α(̺2(θ) − ̺1(θ)) = −χ√α̺1(θ)

(̺2(θ)

̺1(θ)
− 1
)

≤ −χ√α̺′α
(̺2(θ)

̺1(θ)
− 1
)

= − α

2µ

(̺2(θ)

̺1(θ)
− 1
) (5.7.26)

which interpreted as a differential inequality for ̺2(θ)
̺1(θ) , yields

(
1− ̺1(θ)

̺2(θ)

)
≤
(
1− ̺1(0)

̺2(0)

)
e
− α

2µ
θ

(5.7.27)

by integration, and this completes the proof. mbe

5.7.1 Exercises and Problems

1. The estimate for the coefficient ε(α) in Eq. (5.7.22) is [see Eq. (5.7.27)], ε(α) = α
2µ

. Is it

possible to improve it so that the new estimate eε(α) has the property that eε(α)−−−→α→0 ε > 0?
If not, find a physical interpretation or a motivation of this fact.

2. Consider the differential equation in R2 written in complex form as ż = ξ(α)z+P (z, z),
where z = x + iy, (x, y) ∈ R2, ξ(α) = σ(α) + iµ(α), and let σ(0) = 0, µ(0) 6= 0, σ, µ ∈
C∞(R2); suppose P to be a C∞ function of x, y with a second-order zero at the origin. In the
proof of Proposition 8, p.396, it was shown [see the change of variables in Eq. (5.5.39)] that in
some new coordinates the equation can be given the form ż = ξ(α)z+c2z(α)z|z|2 +O(|z|4),
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where O(|z|4) symbolically denotes a function of x, y, α of class C∞ and with a fourth-order
zero at z = 0 for all α near zero. Show that the equation can be given the form:

ż = ξ(α)z + c2(α)z|z|2 + +O(|z|4)

with the same meaning of the symbols, after a new change of coordinates. (Hint: Again
change coordinates as ζ = z + Γ4(z, z), where Γ4 is a homogeneous polynomial in z, z of
fourth degree, such that the fourth-order terms in the equation cancel, see Eq. (5.5.39)-
(5.5.43).)

3. In the context of Problem 2, develop the same ideas to show that, ∀ k > 0, the equation
can be put, in a suitable coordinate system, in the form

ż = ξ(α)z + c2(α)z|z|2 + c4z|z|4 + . . . c2kz|z|2k + O(|z|2(k+1))

(Hint: Use induction.)

4. Show that in Problems 2 and 3, the assumption σ(0) = 0 is not necessary. Actually, if
σ(0) 6= 0, show that, by the same type of arguments, the equation can be given the form

ż = ξ(α)z + O(|z|k)

for all k > 0. (Hint: Note that the reason why one could not eliminate c2z|z|2 in Problem
2 was that λ(0) + λ(0) = 0.)

5. In Problems 2-4, the parameter α does not play a very essential role. Formulate state-
ments of the same type for α-independent equations. (Hint: Just set α = 0 in Problems 2-4
and determine what can be said.)
For information about the problems related to the iterated composition of coordinate trans-
formations transforming the original equations into a fully linear equation ż = ξz when
Re ξ 6= 0 and Im ξ 6= 0 (by letting k → +∞ in Problem 4), see [34].

6. Discuss the bifurcation pattern, as a grows, for the stationary solutions of the equation

γ̇1 =− γ1 + 4γ2γ3,

γ̇2 =− 9γ2 + 3γ1γ3,

γ̇1 =− 5γ1 − 7γ1γ2 + α,

7. Same as problem 6 for

γ̇1 =− 2γ1 + 4γ2γ3 + 4γ4γ5,

γ̇2 =− 9γ2 + 3γ1γ3,

γ̇3 =− 5γ3 − 7γ1γ2 + α,

γ̇4 =− 5γ4 − γ1γ5,

γ̇5 =− γ5 − 3γ1γ4.

assuming (without checking it) that when a stationary solution loses stability in one real
direction or in two complex ones, it remains vaguely attractive with a negative vague-
attractivity indicator [as defined in Eqs. (5.5.24) and (5.5.25)]. See §5.8 for a more detailed
analysis.

8. Find some improvements on the regularity requirements in the variables x, y, and α in
Proposition 12, possibly requiring a different order of regularity in x, y, or α.
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9. In the context of Proposition 12, suppose that γαc
, as defined there, is positive. Show

that in this case, if αc = 0, there is a repulsive periodic orbit for Eq. (5.7.4) for α < 0 small.

(Hint: Just change t into −t and apply Proposition 12, noting that the change of t into −t
changes the notion of attractivity into that of “repulsivity”.)

5.8 On the Stability Theory for Periodic Orbits and
More Complex Attractors (Introduction)

Nondum matura est.

In this section we devote some attention to what happens, as α increases,
to the periodic solution of Eq. (5.1.19) whose existence has been established
in §5.6 and §5.7. More generally, one can ask how to establish stability cri-
teria for periodic solutions to differential equations, with uniformly bounded
trajectories, of the type:

ẋ = f(x, α) (5.8.1)

with f ∈ C∞(Rd ×R) or f ∈ C(k)(Rd ×R) with k large enough.
Before examining the evolution of the stability of a periodic orbit of Eq.

(5.8.1) when α varies, it is necessary to investigate the notions of stability of
a periodic motion of the equation in Rd:

ẋ = f(x) (5.8.2)

with f ∈ C∞(Rd) or C(k)(Rd) with k large enough and such that Eq. (5.8.2)
has bounded trajectories.

Let t → x(t), t > 0, be a periodic solution of Eq. (5.8.2) with minimal
period T > 0. The stability and the attractivity of this solution is conveniently
described in terms of the “Poincaré transformation”.

7 Definition. Let t→ x(t) be a periodic solution of Eq. (5.8.2) with minimal
period T > 0.
Let ξ0 be a point on this trajectory, say ξ0 = x(0) ∈ Rd, and let σ be a (d−1)-
dimensional flat surface element cutting the orbit at the point to so that the
orbit is not tangent to σ in ξ0 (“transversal surface element”).
It is then possible to define a C∞ transformation [or a C(k) transformation,
if the right-hand side of Eq. (5.8.2) is only of class C(k)], on a neighborhood
of ξ0 relative to σ and with values on σ itself, by considering a neighborhood
U of ξ0 on σ so small that the motion, according to Eq. (5.8.2), of the initial
datum ξ ∈ U comes back to intersect σ for the first time after a time Tξ ≃ T
at a point Φσ(ξ) ∈ σ.
The map of σ ∩ U into σ associating with ξ ∈ σ ∩ U the point Φσ(ξ) ∈ σ
is called the “Poincaré transformation” relative to the given periodic orbit, to
the given surface element, and to the given vicinity U .
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It is then possible to formulate the following sufficient stability and attrac-
tivity criterion (and instability criterion as well) for a periodic orbit. It is the
best illustration of the meaning and of the interest of the Poincaré maps.

13 Proposition. Let t → x(t), t ≥ 0, be a periodic motion for Eq. (5.8.2)
with minimal period T > 0.
Let σ be a transversal surface element to the trajectory in ξ0 = x(O) and
introduce on a Cartesian coordinates η = (η1, . . . , ηd−1) with origin in ξ0.

Denote by η′ = Φ̂σ(η) the Poincaré map defined in a suitable neighborhood of

ξ0 on σ. By definition it is Φ̂σ(0) = 0.
Define the “stability” or “Lyapunov” matrix of the periodic orbit, relative to
σ and to the given system of coordinates on it, as

(Lσ)ij =
∂Φ̂

(i)
σ

∂ηj
(0), i, j = 1, . . . , d− 1 (5.8.3)

Then the periodic orbit is stable and is an attractor, with exponential strength,
for the points close enough to it if all the eigenvalues of the matrix Lσ have
modulus less than 1.
If at least one among the eigenvalues of Le has modulus larger than 1, the
orbit is unstable.

Observations.
(1) This proposition is analogous to Proposition 6, p.382, §5.4, formulated for
maps rather than for differential equations (which can, however, be thought
of as “infinitesimal maps”). Its proof is left to the reader as an interesting
problem [see also Observation (2) below]. To study it, one should first un-

derstand the case when Φ̂σ is a linear map near ξ0. Proposition 13 bears the
name “stability criterion of Lyapunov” for maps.
(2) Proposition 13 is a special case of a slightly different proposition which
could be formulated on the stability of stationary points with respect to the
action of repeated applications of a map of Rd into itself.
The fact that Φ̂σ is a Poincaré map plays little role in the proof which is, in
fact, split into two parts:
(i) show that the origin is an exponentially attracting (or, alternatively, un-

stable) point for the iterates of Φ̂σ;

(ii) remark that since Φ̂σ is a Poincaré map relative to a periodic orbit for Eq.
(5.8.2), (i) implies that the periodic orbit exponentially attracts the points
close enough to it (or is, alternatively, unstable).
And (ii) follows trivially from (i), which could be phrased without reference
to the Poincaré map but simply for an arbitrary map of a surface into itself
(with a fixed point).

Now consider Eq. (5.8.1) and assume that, ∀α ∈ (α′, α′′)
def
= J , this equa-

tion admits among its solutions a periodic motion t → xα(t), t ≥ 0, with
minimal period Tα > 0 and such that the function (α, t) → xα(t) is a C(k)
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function on J × [0,+∞), if C(k) is the regularity class in the right-hand side
of Eq. (5.8.1).

It will then be possible to consider, ∀α ∈ (α′, α′′), the stability matrix
Lσ(α), see Eq. (5.8.3), relative to a surface element σ which, if J = (α′, α′′)
is a small enough interval, can be supposed to be α independent.

We can choose the Cartesian coordinate system on σ for each α, with
the origin at the point ξα at the intersection of σ and the trajectory, and
smoothly varying with α so that the Poincaré maps Φ̂σ,α(η) are defined for

η ∈ U , where U is a small enough neighborhood of the origin, and Φ̂σ,α(η) is
of class C(k) on U × (α′, α′′) in the variables (η, α) and

Φ̂σ,α(0) = 0, ∀ α ∈ J. (5.8.4)

We can and shall suppose that Φ̂σ,α is extended arbitrarily to a map of
Rd−1 into itself, having the same regularity class C(k) (to define this extension
it might be first necessary to reduce slightly the size of U).

In analogy with the definitions of stability, attractivity, etc. relative to
the solution flows associated with differential equations, we can introduce
analogous notions for a single transformation Φ of Rd, or of an open subset of
Rd, into itself. What was formerly the family (St)t≥0 of maps associated with
the solution of the differential equation now becomes the family (Φn)n∈Z+ of
the iterations of Φ, i.e., one can think of Φ as an “evolution” on Rd observed
at integer times.

We do not repeat the obvious process of setting up the notions of stability,
attractivity, vague attractivity, etc. for the iterations of a map Φ, and we just
mention that once such definitions are posed in an obvious manner (taking into
account the analogous definitions associated with the differential equations),
the following proposition on the existence of an attractive manifold and on
the Hopf bifurcations holds.

14 Proposition. (i) Consider Eq. (5.8.1) with f ∈ C(k+1), k ≥ 1, and sup-
pose that the equation admits a family of periodic orbits verifying the properties
illustrated in the above text, following the observations to Proposition 13.

Suppose that for α ∈ J def= (α′, α′′), the stability matrix Lσ(α) has the eigen-
values λs+1(α), . . . , λd−1(α) with modulus less or equal to ν < 1 and that,
for some ν′ ∈ (ν, 1), the other eigenvalues λ1(α), . . . , λs(α) have modulus
larger or equal to ν′. Also suppose that the plane generated by the eigenvec-
tors of Lσ(α) associated with the eigenvalues λ1(α), . . . , λs(α) coincides with
the plane ηs+1 = . . . = ηd−1 = 0.

If the origin is vaguely attractive for the maps Φ̂σ,α near αc ∈ J , and if
λj(αc)| = 1, j = 1, . . . , s, there exist ε > 0, δ, δ0 > 0, δ0 < δ and d−1−s func-
tions ϕ(s+1), . . . , ϕ(d−1) defined in the neighborhood17 Γs(

δ
2 )× (αc− ε, αc + ε)

and there of class C(k) such that the equations

17 As usual, Γs(δ) = {x|x ∈ Rs, |xi| < δ, i = 1, . . . , s.



5.8 Stability of Orbits 443

ηs+j = ϕ(s+j)(η1, . . . , ηd−1, α), j = 1, . . . d− 1 (5.8.5)

define inΓd−1(
1
2δ) a family of surfaces σα parameterized by α ∈ (αc−ε, αc+ε)

which are locally invariant, locally attractive, and tangent to the plane ηs+1 =
. . . = ηd−1 = 0 in a sense analogous to Eqs. (5.6.9)-(5.6.11). The tangency
can be measured as in Eq. (5.6.11) in terms of an a priori given constant
C > 0.
(ii) Now assume that s = 2 and that λ1(α) = λ2(α) is the eigenvalue of Lα .
with largest modulus for all α ∈ J and that for α = αc ∈ J it is |λ1(αc)| = 1,
( d
dα |λ1(α)|)α=αc > 0, Imλ1(αc) 6= 0 and λ1(αc)

h 6= 1 for h = 1, 2, 3, 4, 5.
Suppose that the vague attractivity of 0 near αc takes place because a condition
analogous to Eq. (5.5.25), γαc

< 0 holds. Finally, assume that k is large
enough and α−αc is small enough. Then there is a set on σ, which we denote
τα, invariant with respect the to action of Φ̂σ,α and homeomorphic to a circle
for α > αc. Such a set is the intersection between σ and a torus which is
invariant for the solutions of Eq. (5.8.1) and attracts, exponentially fast, all
the motions starting close enough to it.

Observations.
(1) Hence, in a similar way, as the vaguely attractive stationary points may
bifurcate, in some circumstances, growing into periodic orbits, the periodic
orbits may bifurcate growing into two-dimensional tori.
(2) The proof of the above proposition is parallel to that of Propositions 11,
§5.6 and 12, §5.7, and will not be discussed in detail (see problems at the end
of this section).
We only mention that the assumptions on the eigenvalues, at α = αc, are
needed to be able to put the transformation into a normal form analogous to
Eqs. (5.7.4) and (5.7.15), thus allowing us to formulate a vague attractivity
condition like Eq. (5.5.25).
(3) Proposition 14, together with Propositions 7-13 and the problems at the
end of the §5.4-§5.8, provide a quite general theory of the stability of the
vaguely attractive stationary points and periodic orbits and of their bifurca-
tions, when the regularity class of the differential equation is high enough.
It then becomes natural to ask if it is possible to discuss in a similar fashion
the theory of stability and bifurcations (following the loss of stability as a
parameter a grows) of attractors or of more complex invariant sets.
“Unfortunately”, such a question is very difficult, and it seems unsuited to be
considered in too general a context. Only within classes of special cases, such
a problem can be treated in some detail (e.g., in the case of the theory of the
attractors “verifying the axiom A”).18 This is a theme of great interest, which
seems to be connected with the theory of many phenomena more general than
the ones of a purely mechanical nature, like the theory of turbulence which
greatly stimulates research on this subject.
(4) As a comment on the generality of the theory of this and the preceding

18 For a definition, see [45] and, also, [42] and [7] for detailed discussions of some problems
(References).
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sections, we must stress that the vague attractivity of a point or of an orbit
near a critical value αc is an interesting hypothesis, mainly for its elegant
implications, but is far from being realized always (or even often). It often
happens that simple systems of differential equations have stationary points
or periodic orbits which are not vaguely attractive near a critical value αc
where they lose stability. In such cases, there is no general theory guiding the
theoretical analysis of the attractors, and various phenomena are possible, like
the “sudden” (i.e., for α just above αc) transition to an asymptotic regime
governed by attractors of a nature more complex than a stationary point or
a periodic orbit or a two-dimensional torus. Such attractors may be located
far from the attractor that lost stability.

In general attractors other than points, periodic orbits or tori run quasi-
periodically are called “strange”: this qualifies the impossibility of describing
these attractors as simple objects, rather than qualifying a well-defined math-
ematical property.

To illustrate Observations (3), (4) and to get some feeling for how com-
plicated the pattern of the bifurcations may be even for relatively simple
differential equations (with quadratic nonlinearities “only”), we give a series
of examples.

Some of the results quoted below may be obtained via the theory of the pre-
ceding section (like those relative to the stability of the stationary solutions,
see §5.4 and §5.5 and the associated problems), possibly using a computer to
estimate the eigenvalues of various stability matrices. However, most of the
following results can only at present be obtained via the use of numerical
experiments (usually fascinating). They should not be considered as mathe-
matical statements but as empirical observations which may reveal themselves
only as first rough approximations to the phenomena that the same nonlinear
differential equations may show if studied more carefully.

We leave to the reader, as interesting practical work, the task of checking
the following statements analytically (when possible) or numerically (if he has
access to a computer: for the purpose the software in Appendix U can be used
in a first approach).

5.8.1 A. Example 1: The “Lorenz Model”.

Analytically, this is a system of equations that the reader can interpret as equations of
motion of a gyroscope subject to suitable forces (following a scheme like the one in §5.1).
The equations are

ẋ = −σx+ σy, ẏ = −σx− y − xz, ż = −bz + yx− α (5.8.6)

α = 10, b = 8
3
. This system admits a “symmetry” group, i.e. a group of maps transforming

solutions into solutions: namely the two elements group consisting in the maps x′ = σx, y′ =
σy, z′ = z, σ = ±1. The following items describe the structure of the attractors.

(1) For 0 ≤ α < α1
c = −b (σ − 1), there is just one stationary point that can be shown

to be globally attractive for a small enough. It is locally stable and the eigenvalues of the
Lyapunov matrix have a negative real part, ∀α ∈ (0, α1

c), and, numerically, it appears to
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be globally attractive all the way up to α1
c . The stationary point is stationary for all αc but

is unstable for α > α1
c . It is

x = y = 0, z = −α
b

(5.8.7)

and the symmetry maps leave it invariant.
(2) For α1

c < α < α2
c = 2σ b 1+σ

σ−1−b = 1760
19
≃ 92.63, the preceding point undergoes a

bifurcation, losing stability in one real direction but remaining vaguely attractive and it
bifurcates in two locally stable stationary solutions which are mapped into each other by
the symmetry maps. Such solutions exist for all α > α1

c , but lose stability for α > α2
c .

From a numerical point of view, a randomly chosen initial datum is attracted by one of the
above two stationary solutions. The solutions are

x = y = ±
p
α− b(σ + 1), z = σ − 1. (5.8.8)

One should not think, however, that the possible asymptotically different motions consist
of the three points of Eqs. (5.8.7) and (5.8.8). For instance, for α < α2

c and close to it, there
are some unstable periodic orbits, as can be rigorously shown.19

The reason why such asymptotic motions cannot be seen by sampling randomly the initial
data space is that they form a set of zero Lebesgue measure.
(3) For α > α2

c the points of Eq. (5.8.8) lose stability. Such loss of stability takes place
in two complex-conjugate directions because two complex-conjugate non real eigenvalues

(± i
√
α2
c ) of the stability matrix cross the imaginary axis from left to right.

However, although the fixed points in Eqs. (5.8.8) still exist for all α > α1
c , they are not

vaguely attractive for α near α2
c . Hence, one cannot apply the Hopf bifurcation theorem to

infer the existence of a bifurcation into periodic orbits of each of the points of Eq. (5.8.8).
In fact, a strange attractor shows up here, see Fig. 5.8.
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Figure 5.8 Projection on the plane z = 0 of the fixed points of Eq. (5.8.8) and of a motion
corresponding to a given initial datum randomly chosen; α = 200. The motion is not
periodic. The marks are the projections of the (unstable) fixed points.

It exists up to α ≃ 230, disappearing occasionally only for some small intervals of α when
it is replaced by some stable periodic orbits: see Fig. 5.9, 5.10

19 Applying Problem 16, §5.5, p.408, to either of the Eqs. (5.8.8) near α2
c , one computes

the vague-attractivity indicator of Proposition 12, Eq. (5.7.5) and shows that it has the
“wrong sign”, γ.0, and then one applies Problem 9, §5.7.1, p. 440.
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Figure 5.9 x, y projection of a periodic orbit relative to the case α = 340. The other
periodic orbits that can be experimentally found turn out to be related to the above by the
transformation x→ −x, y → −y, z → z which is a symmetry of the equation.
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Figure 5.10 y, z projection of the orbit in Fig. 5.9.

(4) For large α the strange attractor disappears and is replaced by attractors consisting

of periodic orbits, as it appears from numerical experiments. The existence of some stable

periodic orbits can be proven rigorously for a large (see [41]).

5.8.2 B. Example 2: Navier-Stokes equations on a two-dimensional
torus with a five mode truncation.

This is an example in which there are nice Hopf bifurcations. It is, however, more compli-
cated than Example 1. It could also be interpreted mechanically as a system of two coupled
rigid bodies with a rather strange looking coupling. However, this mechanical interpretation
does not seem to be particularly useful, and we do not discuss it. The physical origin of the
model has to be searched for in the theory of fluids. The equations are
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γ̇1 =− 2γ1 + 4γ2γ3 + 4γ4γ5,

γ̇2 =− 9γ2 + 3γ1γ3,

γ̇3 =− 5γ3 − 7γ1γ2 + α,

γ̇4 =− 5γ4 − γ1γ5,

γ̇5 =− γ5 − 3γ1γ4.

(5.8.9)

The equations are symmetric under a four elements symmetry group, namely γ1 →
εγ1, γ2 → εγ2, γ3 → γ3, γ4 → σγ4, γ5 → εσγ5 with ε, σ = ±1.

(1) For α small, the obvious stationary solution, existing ∀α > 0,

γ1 = γ2 = γ4 = γ5 = 0, γ3 =
α

5
(5.8.10)

is stable and globally attractive [this could be proved along the lines of the proof of Eq.
(5.2.12) in Proposition 4, §5.2, p.371]. By the Lyapunov criterion, it remains stable up to

α1
c = 5

q
3
2
. Up to this value it appears, numerically, that it is a global attractor.

(2) Near α1
c , Eq. (5.8.10) is vaguely attractive and loses stability in one real direc-

tion, generating two stable attractive solutions (5.8.11), mapped into each other by the
symmetries

γ1 =ε

s√
6

7

q
(α− α1

c), γ3 =

r
3

2

γ2 =ε

s
1

7
√

6

q
(α− α1

c), γ4 = γ5 = 0, ε = ±1.

(5.8.11)

Such solutions exist for all α > a1c and, numerically, they seem to be globally attractive as
long as they are locally stable: this means that randomly chosen initial data are attracted
by either of them, see the comment to the point (2) of the Example 1 above.

They lose stability for α = α2
c :

α2
c =

80

9

r
3

2
(5.8.12)

The stability loss takes place in just one real direction again and, again, each of them
bifurcates into two new stable solutions which are locally attractive for α ∈ (α2

c , α
3
c), but

persist for all α > α2
c . If ε, σ = ±1

γ1 =ε

r
5

3
, γ2 = εα

3

80

r
5

3
,

9

80
α,

γ3 =
σ

3

r
(

9

80
α)2 − 3

2
, γ5 = −σ

r
(

9

80
α)2 − 3

2

r
5

3
,

(5.8.13)

and α3
c = 22.8537 . . .. The four points are mapped into each other by the symmetry group

elements.
At α = α3

c , Eqs. (5.8.13) lose stability in two complex directions and, apparently, they
remain vaguely attractive. In fact, one can easily find, numerically, that in their vicinity
there is a stable periodic orbit, as if a Hopf bifurcation had taken place (in principle,
one could even check rigorously whether the vague-attractivity indicator γ is negative, as it
probably is). The symmetry implies that the periodic orbits will be several: each bifurcating
at α = α3

c from one of the four fixed points that become unstable. One of them is drawn in
Fig. 5.11.



448 5 Stability Properties for Dissipative and Conservative Systems

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

"n" using 4:1
"fix" using 4:1

Figure 5.11 γ4−γ1 projection of the fixed points and periodic orbits after the bifurcation in
which the points of Eq. (5.8.13) lose stability (α = 28). Eq. (5.8.9) has a fourfold symmetry
(ε, ε = ±1) which can be used to generate three other orbits and fixed points symmetric to
the one in the picture by applying the symmetry transformations mentioned in the text.

The structure of the motions for α > α3
c is quite fascinating. At various values α4,1

c , α4,2
c ,

α4,3
c , . . . there appear new periodic orbits bifurcating from the preceding ones because the

latter lose stability in one real direction, with the stability matrix of the Poincare transfor-
mation showing the largest eigenvalue crossing the unit circle through −1.
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Figure 5.12 γ1−γ4 projection of one of the (four) orbits which arise by a doubling bifurcation

from one of the orbits of Fig. 5.11 for α = α4.1
c (α = 28.60). the other three doubled periodic

orbits are obtained from this one by the symmetry operations.

Such cases, although not contemplated in Proposition 14, can nevertheless be theoreti-
cally treated under suitable vague-attractivity assumptions, and their theory predicts that
the periodic orbit “doubles”, doubling also its period,20 see also Problems 10-13 for §5.8.

20 This can easily be understood intuitively by arguing as in the Observation (6) to Propo-
sition 12, p.431. Write the Poincaré map as bΦσ,α(x) = (−1 − (α − αc))x + p(x, α),
assuming that xp(x, α)/x4 −−−→x→0 γ < 0. One easily finds that there are two points

x+,α, x−,α ≃ ±
p
−γ−1(α− αc) mapped into each other by bΦ. This means that the

orbit “doubles”.
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Figure 5.13 Further doubling of the orbit of Fig. 5.12; α = 28.650 . . ..

The sequence of such bifurcations seems to be infinite and has been observed un-
til the period has reached approximately 25 times the initial value. The accumulation
point limn→∞ α4,n

c , as experimentally measured by a computer, seems to be α4,∞
c =

28.6681 . . . .
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Figure 5.14 Further doubling; ̺a = 28.666.

For α = α50
c = 28.663 . . . , there appears a new fourfold family of periodic orbits

(symmetric of each other under the symmetry group) that in the narrow interval α ∈
[α5,0
c , α4,∞

c ] coexists with the preceding ones, although they are also stable. A randomly
chosen initial datum is attracted by one of the stable orbits of the two families, i.e. by one
of the eight stable periodic orbits.

One of the new orbits (quite different in structure and location in phase space) is drawn
in Fig. 5.15.
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Figure 5.15 One of the four new orbits of the family that is born at α = α5,0 = 28.663
for α = 28.663. The other four orbits are obtained from this by transforming it with the
symmetries of the equation.

As a grows beyond α5,0
c these new orbits also undergo the same fate, doubling after

losing stability into a double orbit at α = α5,1
c which, in turn, doubles into a double orbit

at α5,2
c , etc. “indefinitely” with an accumulation point at α = α5,∞

c = 28.7201 . . .. An
example of the bifurcation is drawn in Fig. 5.16.
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Figure 5.16 Figure 5.16. Doubling of the orbit in Fig. 5.15 for α > α5,1
c ; α = 28.710.

For α > a5,∞
c , it seems that the motion is asymptotically described by a strange

attractor up to αc ≃ 34 with the exception of at least one small interval of values of α,
very small, where asymptotic behavior is again ruled by some periodic orbits which, as a
grows, lose stability “again through −1” doubling in period infinitely many times. See the
γ3, γ1 projection of the attractor for α = 31.
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Figure 5.17 Projection of an orbit with an asymptotic motion governed, apparently, by a
strange attractor; α = 31.

After αc, the motion seems to be governed by periodic and globally attractive orbits
whose period and shape vary regularly with α (as before, here global “numerical” attrac-
tivity means that if the initial datum is randomly chosen, it converges to one of the above
periodic motions). An example is drawn in Fig. 5.18
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Figure 5.18 α = 34; an attractive periodic orbit, γ1, γ3-projection.

We stress that the adjective “numerical”, referred to some properties of the solutions,
means that such properties come out of a computer-assisted study and that they are not
mathematically rigorous.

Another exceptionally interesting and marvelous property of the above sequences of
bifurcations is that, numerically, the sequences

α4,n+1
c − α4,n

c

α4,n
c − α4,n−1

c

,
α5,n+1
c − α5,n

c

α5,n
c − α5,n−1

c

seem to converge to a limit ̺−1 which is ̺−1 ≃ 4.67. This is a numerical value which is
conjectured, “Feigenbaum conjecture”, to be “universal”, i.e., independent of the particular
differential equations giving rise to stable periodic orbits which successively grow out of
doubling bifurcations when one of them, stable at a given value of α, loses stability as a
grows, giving rise to a stable doubled orbit, [15].
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However, it is an open problem to formalize in satisfactory generality and to give man-
ageable sufficient conditions for a proof of the validity of this fascinating conjecture which
seems to be verified in several cases studied numerically (and different from the above-
considered ones). Recently, considerable progress in this direction has been achieved (see
[9], and [8], and [30]).

The structure of the just discussed bifurcations is illustrated by Figs. 5.11-5.18, repre-

senting projections on several planes of trajectories of Eq. (5.8.11).

5.8.3 C. Example 3: Navier-Stokes equations on a two-dimensional
torus with seven modes.

A system exhibiting periodic orbits bifurcating into two-dimensional tori along the scheme
suggested by Proposition 14 is the following:

γ̇1 =− 2γ1 + 4
√

5γ2γ3 + 4
√

5γ4γ5,

γ̇2 =− 9γ2 + 3
√

5γ1γ3,

γ̇3 =− 5γ3 − 7
√

5γ1γ2 + 9γ1γ7 + α,

γ̇4 =− 5γ4 −
√

5γ1γ5,

γ̇5 =− γ5 − 3
√

5γ1γ4 − 5γ1γ6,

γ̇6 =− γ6 + 5γ1γ5,

γ̇7 =− 5γ7 − 9γ1γ3,

(5.8.14)

which can be discussed in a similar way as that of Example 2.
The structure of the bifurcations and attractors is considerably more complicated and

interesting. We do not discuss it in detail, feeling that Figs. 5.19-5.23 will, by themselves,
excite the reader’s curiosity and will stimulate him to read some original papers on the
profound theory of Feigenbaum, [15], and on Example 3 as well as on Examples 1 and 2
(see [15], [18], [19], [17],[47]).
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Figure 5.19 A periodic orbit for Eq. (5.8.14) at α = 71.
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Figure 5.20 α = 71.60; the preceding orbit has originated a stable torus (two dimensional)
run quasi-periodically by the motions of Eq. (5.8.14), one of which is shown here.
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Figure 5.21 α = 190; another stable periodic orbit.
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Figure 5.22α = 190; another stable periodic orbit which coexists with that of Fig. 5.21. A
randomly chosen initial datum, at this value of α is attracted either by the periodic motions
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of Figs. 5.21 and 5.22 [or some of their images by the symmetries of Eq. (5.8.14)] or by the
quasi-periodic motion which takes place on the torus of Fig. 5.23.
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Figure 5.23 α = 195: a stable two-dimensional torus run quasi-periodically by the motions of

Eq. (5.8.14). This torus is an attractor apparently bifurcating from one of the periodic orbits

in Fig. 5.21. Tori of dimension 2 can be quite easily identified by plotting a 2-dimensional

section and checking that if can be fitted by a smooth closed curve: this can be done for

instance for the torus in this figure.

All the equations of the above examples, as noted in Examples 1 and 2, can
be interpreted as equations governing some strange systems of coupled rigid
bodies, but they have been considered in the literature as equations approx-
imating the differential equations describing the motion of simple fluids (like
the “Euler” or the “Navier-Stokes” equations or the “thermo-fluidodynamics”
equations). Their connection with the mechanics of rigid bodies is not surpris-
ing, however, if one notes that the classical fluid equations (Euler or Navier-
Stokes equations) can be considered as equations describing infinitely many
coupled rigid bodies (with very strange and, perhaps, mechanically unnatural
coupling); this remark becomes clearer if one recalls that the equations of mo-
tion of the fluid bodies are usually derived by thinking of them as consisting of
many small rigid bodies and applying to each of them the cardinal equations
of mechanics.

We shall not further pursue the discussion of the models of dissipative
systems and of their stability theory. This is a subject under current intense
investigations, and the contents of §5.1-§5.8 provide some introduction to the
literature.

5.8.4 Problems and Complements

1. Let Φ0 ∈ C∞(Rd) be a map of Rd into itself with the origin as a fixed point. Write
x′ = Φ(x) as

x′ = Lx + F(x).
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where L is a d × d matrix and F has a second-order zero at the origin. Suppose that the
eigenvalues of L are pairwise distinct. Show that there is a linear change of coordinates that
allows us to put the above map into the form

x
(j)′

1 =(Re λj)x
(j)
1 − (Imλj)x

(j)
2 + F

(j)
1 (x)

x
(j)′

2 =(Imλj)x
(j)
1 − (Re j)x

(j)
2 + F

(j)
1 (x)

x
(j)′

1 =λh + F (h)(x)

with j = 1, . . . , s, h = 2s+1, . . . , d, where λ1, . . . , λs are the s complex non real eigenvalues

of L and λ2s+1, . . . , λd are the (d − 2s) real eigenvalues of L; F
(j)
1 , F

(j)
2 , . . . F (h) have a

second-order zero at the origin 0. (Hint: Proceed as in the proof of Proposition 7, p.393,
§5.5.)
2. In the context of Problem 1, suppose that d = 2, λ = λ1 = {complex non real}. Let

z = x
(1)
1 + ix

(1)
2 . Show that the map can be written as a map of C into itself:

z′ = λz + F (z, z),

where F has a second-order zero at z = 0.

3. Show that if λ2 6= 1, λ 6= 0, the map in Problem 2 can be written in a new coordinate
system as

ζ′ = λζ +N(ζ, ζ),

where N has a third-order zero at the origin ζ = 0. (Hint: Proceed as in the proof of
Proposition 8, p.396, §5.5, i.e., write F (z, z) = a2z2 +a1zz+a0z2 + eN(z, z) with eN having
a third-order zero at z = 0. Change variables near z = 0 as ζ = z + A2z2 + A1zz + A0z2

and choose the A’s in order to eliminate the second-order terms from the map in the new
coordinates.)

4. Show that if λ4 6= 1, λ 6= 0 the map in Problem 3, of C into itself,

ζ′ = λζ +N(ζ, ζ),

with N having a third-order zero atζ = 0, can be put into the form

z′ = λz + b z|z|2 +Q(z, z)

with Q having a fourth-order zero at z = 0, using a change of variables (near the origin) of

the form: z = ζ +A3ζ3 +A2ζ2ζ + A1ζζ
2

+A0ζ
3
.

5. In the context of Problem 4, show that the map can also be written as

z′ = λz eb|z|
2+eQ(̺,θ)

near z = 0, where z = ̺ ei θ and Q is a C∞ function of (̺, θ) ∈ ̺ × T 1 with a third-order
zero at the origin of the ̺ variable.

6. Consider the map defined as follows: let z = ̺eiθ and

z′ = λ(α) z eb(α)|z|2+ eQ(̺,θ,α) ≡ Φα(z)

where eQ ∈ C∞([0, p)×T 1×(−a, a)), λ, b ∈ C∞((−a, a)), |λ(0)| = 1, and eQ has a third-order
zero at ̺ = 0, for all θ ∈ T 1, for all α ∈ (−a, a). Show that the origin is vaguely attractive
near zero if Re b(0) < 0. (Hint: If Re b(0) < 0 the origin is attractive for α = 0 . . ..)
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7.* Let λ(α) = eα+ib(α) and, in the context of Problem 6, let Re b(0) < 0. Show that

the maps Φα have an attractive invariant set of approximate equation |z| =
q

α
−Re b(α)

for α > 0 small. (Hint: Proceed as in the analysis of the Hopf theorem, performing the
analogous steps and estimates.) Actually (but this is more difficult than the above problem),
the invariant set is a curve homeomorphic to a circle. The proof of this could be achieved
by writing the equation of the unknown curve as

z(θ) =

s
−α
Re b(α)

(1 + ε(θ))eiθ

and trying to determine ε(θ) by writing the condition that the above curve is Φα invariant,
i.e.,

θ′ =θ + β(α) − αIm b(α)

Re b(α)
(1 + ε(θ))2 + (

√
α)3Q(1 + ε(θ), θ, α),

1 + ε(θ′) =(1 + ε(θ))e−α[(1+ε(θ))1−1] + (
√
α)3Q1(1 + ε(θ), θ, α),

where Q,Q1 are smooth functions of their three arguments. The equation can be solved
recursively. The proof, however, is not really straightforward (see [29]).

8. Prove the first part of Proposition 14 for d = 2, s = 1. (Hint: Proceed as in the proof
of Proposition 11, §5.6, p.411. Here the transformation in Problem 6 plays the role played
there by the equation in normal form.)

9. Prove the second part of Proposition 14 for d = 2, assuming that the invariant set of
Problem 7 is actually homeomorphic to a circle and making use of Problems 2-7 for the
reduction to normal form.

10. Consider the C∞ map Φ of R1 into itself:

x′ = Φ(x) = λx+ g(x)

with g ∈ C∞(R) having a second-order zero at the origin. Show that if λ 6= 0, 1, there is a
change of variables transforming the above map into a new one having the form

ξ′ = λξ + ξ3γ(ξ)

with γ in C∞(R), for ξ near 0. (Hint: Let g(x) = gx2 + eg(x) with eg having a third-order
zero at the origin. Set ξ = x+Gx2 and find a suitable G.)

11. In the context of Problem 10, show that if

x′ = −(1 + α)x + x3γ(x, α)
def
= Φα(x)

is a family of maps of class C∞ parameterized by α with γ ∈ C∞(R2), γ(0, 0) > 0 then
there exist two points x+(α), x−(α), for α > 0 small, such that

Φα(x+(α)) = x−(α), Φα(x−(α)) = x+(α),

i.e., constituting a period 2 orbit (“doubling bifurcation”). Furthermore, show that by the
Lyapunov criterion, such an orbit is stable and attractive. (Hint: Use the implicit function
theorem to find x+(α), say, as a root of Φ2

α(x) = x. Prove the stability by applying the
criterion of Lyapunov, Proposition 13, §5.8, p.441, to x+(α) and to the map Φ2

α.)

12. Consider a map x′ = Φ(x, α) of Rd into itself, parameterized by α ∈ R. Let Φ ∈
C∞(Rd×R), let the origin be a fixed point of the map, for all α near zero, and let L(α) be
its stability matrix. Suppose that for α ∈ (−a, a), all the eigenvalues of L(α) are pairwise
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distinct and such that |λ1(0)| = 1 > ν > |λ2(0)|, . . . , |λd(0)|, with ν < 1.
Using the attractive manifold theorem described in the first part of Proposition 14, p.442,
and Problem 11, show that if λ(α) = −1− α then the origin undergoes a “period doubling
bifurcation” as α grows through zero (in the sense of Problem 11). (Hint: Use the attractive
manifold theorem to reduce the problem to a one dimensional problem and then apply
Problems 10 and 11.)

13. Prove that Problem 12 implies that if Φ(x, α) is (an arbitrary extension of) the Poincaré
map for a periodic orbit of a one-parameter family of differential equations in Rd+1, then
the periodic orbit bifurcates to a stable (exponentially attractive) periodic orbit, as α grows
through 0, with roughly a double period.

14. Study the map x′ = 4αx(1 − x), x ∈ R, and show that [0, 1] is an invariant set if
α ∈ [0, 1]. Find the first bifurcation of the fixed points x = 0 and x = xα > 0, xα = 1− 1

4α

(consider the latter only for α > 1
4
). Show that in some sense xα grows out of a bifurcation

of x = 0; while when xα loses stability, it undergoes a doubling bifurcation in the sense of
Problem 11.

15. Consider the map Φ in Problem 14 for α = 1, restricted to [0, 1]. Show that the change
of variables y = 2

π
arcsin

√
x transforms this map into the mapΨ :

Ψ : y →
(

2y if 0 < y < 1
2
,

2(1 − y) if 1
2
< y < 1.

Draw (roughly) the graph of Ψn and show that Ψn has (by inspection of the graph) 2n fixed
points which correspond to 2n periodic points for Ψ . Deduce that Φ also has 2n periodic
points of period n (here the period is not necessarily minimal).

16. Using Problem 15, show that Ψ and Φ have a dense set of periodic points. (Hint: Look
at the graph of Ψn.)

17. Study the stability of the fixed points of the map of R2 → R2 parameterized by α, b
(“Henon’s map”):

H(x, y) = (y − αx2 + 1, bx)

with b real and find whether one of its fixed points undergoes, for some fixed value of b, a
doubling bifurcation as α grows using Problems 11 and 12.

18. Let x → Φ(x) be a C∞ map of the plane into itself which is invertible and area
preserving (i.e., areaE = areaΦ−1(E) for all measurable sets E). Which relation between
the eigenvalues of the Lyapunov stability matrix of a fixed point follows as a consequence
of the conservation of the area?

19. Same as Problem 18 for a volume-preserving map of Rd into itself.

20. In the context of Proposition 13, p.441, show that the eigenvalues of the stability matrix

of a periodic orbit depend neither on the particular system of coordinates introduced on

σ nor on the point ξ0 chosen on the orbit. They are “characteristic numbers” of the orbit

itself. (Hint: This is a problem analogous to Problem 15, p.388, §5.4. The first statement

is proven in exactly the same way. To prove the second, use the trajectories to “transfer”

a system of coordinates on σ (through ξ0) into a system of coordinates on σ′ (through ξ′0,

etc).)
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5.9 Stability in Conservative Systems: Introduction

. . . desinas ineptire
et quod perisse vides perditum ducas

Stability of Hamiltonian motions is a natural problem arising, perhaps for the
first time, in the theory of the solar system, where it is still unsolved.

In nature there are many interesting systems which are “quasi-integrable”
in the sense that their equations of motion differ, up to “quasi negligible”
terms, from equations of motion of an integrable system.

A nice example is provided by the solar system which we consider via a
model in which the solar mass M is +∞, i.e., the Sun is a fixed point mass
attracting the planets with a central force with potential energy inversely
proportional to a planet distance and directly proportional to its mass. In
the approximation in which the reciprocal attraction among the planets is
neglected, it is clear that the solar system is described by as many Hamiltonian
integrable systems as the number of planets (i.e., nine), one for each planet.
In Chapter 4, §4.9.1 and §4.10.1, we saw that such Hamiltonian systems are
integrable in the sense of Definitions 10 and 11, §4.8.1.

It is then attractive to think that the actual motion of the solar system is
“close” to this idealized motion followed by nine independent planets.

Keeping for simplicity, the approximation that the Sun is a point mass
fixed with respect to the fixed stars, we must compare the solutions of the
following two systems of equations: i = 1, . . . , 9,

miẍ
(i) = − Kmi

|x(i)|2
x(i)

|x(i)| (5.9.1)

miẍ
(i) = − Kmi

|x(i)|2
x(i)

|x(i)| − ε
∑

i6=j

mimj

(x(i) − x(j))2
(x(i) − x(j))

|x(i) − x(j)| , (5.9.2)

at least for initial data which, put into Eq. (5.9.1), give rise to trajectories
on which |x(i) − x(j)|, i 6= j, remains so large as to make the second term in
the right-hand side of Eq. (5.9.2) small compared to the first. The constant
ε is the universal gravitation constant, m1, . . . ,m9 are the masses of the nine
main planets, K = εMS, where MS is the Sun real mass; satellites, comets,
asteroids, rings, etc. have been disregarded.

Choosing as time origin the flying away instant, the situation in which the
solar system is initially found is, as is well known, such that the term in ε in
Eq. (5.9.2) has a modulus quite a bit smaller than the term representing the
Sun attraction. The first question, preliminary to the comparison between
the solutions of Eqs. (5.9.1) and (5.9.2), is whether this situation remains
unchanged as time goes by.

This property can be easily verified through the explicit solution of the
various Kepler problems in the case of Eq. (5.9.1). Hence, this question is
intimately related to the comparison between Eqs. (5.9.1) and (5.9.2).
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From the general results of the theory of ordinary differential equations, it
is evident that “close equations yield close solutions”; however, this closeness is
not uniform over time. It does not, indeed, follow from the regularity theorems
and the initial data and parameters dependence that close equations with
close initial data produce solutions which stay close forever or solutions whose
trajectories, as sets, remain close. The first possibility is almost always false.

One then asks if the corrections to the equations of motion (5.9.1) due to
the presence of the term in ε in Eq. (5.9.2), though small, may lead to changes
in the motions which, in the long run, result in a motion very different from
the one foreseen in Eq. (5.9.1).

A priori, one could even consider “unthinkable” or undesirable catastrophic
events, like interplanetary collisions or capture of a planet by the burning Sun.

Of course, one wishes to have analytic instruments for the solutions of Eq.
(5.9.2) and of comparison with those of Eq. (5.9.1). The analysis should allow
not only the exclusion of such catastrophes, but even to show that it is true,
or essentially true, that the planets movements are described by Eq. (5.9.1).
And furthermore that, if needed, one can compute or estimate the deviations
between the motions of Eq. (5.9.1) and those of Eq. (5.9.2) with equal initial
data at least for long times, i.e., of astronomical magnitude, long compared
with the revolution periods of the various planets.

In other words, one wishes to use Eq. (5.9.1) for “rough” astronomical
predictions and to have algorithms to compute the corrections at least for
times of the order of magnitude of several thousand years.

That this is a delicate problem can be deduced from the fact that rough
estimates, too pessimistic, of the errors lead to the conclusion that the re-
ciprocal influence between the planets may become important within a few
years.

For instance, the time necessary for a collision between two heavenly bodies
of the size of Venus and Earth, assuming that at time zero they are standing
still (relative to the fixed stars) at a distance d(T, V ), equal to the actual
Earth-Venus maximal observed distance, could be estimated not longer than
Tcoll such that (accelerated motion estimate)

ε

2

mT +mV

d(T, V )2
T 2
coll = d(T, V ) ⇒ Tcoll ≃ 370 years. (5.9.3)

Hence, we see that even to establish some accurate predictions for times
of a few centuries, a remarkable precision is needed, i.e., it is necessary to
take into account the fact that the planets motion at the initial time is very
far from a situation bound to a collision and that, obviously, the corrections
to the motion described by Eq. (5.9.1), originated by the additional terms
in ε in Eq. (5.9.2), are not always favorable to collisions (or escapes, etc.).
Think of the two-body problem where the systematic attraction results only
in providing a curvature to the trajectory. On the average, the effects favorable
to catastrophic events may be much smaller or even totally absent with respect
to the above pessimistic calculation.
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This and similar problems, which may obviously be formulated for systems
very different from the solar system (like harmonic oscillators with conserva-
tive anharmonic additional perturbing forces or, more generally, for systems
“close” to integrable systems), are typical stability problems for conservative
systems.

To the above problems, one adds analogous problems of stability of in-
tegrable systems perturbed by the addition, among the active forces, of ex-
ternal forces varying with simple time laws (“non autonomous Hamiltonian
systems”).

All of the above problems are much more difficult than one might imagine,
perhaps naively. Only recently have some techniques apt to provide some
answers been developed (and are being developed), although we are still quite
far from a “satisfactory” theory even for very small perturbations.

The main result on this theme is the following theorem (“Kolmogorov-
Arnold-Moser theorem”) which we shall analyze in some particularly interest-
ing cases in the §5.12. The reader who wishes to obtain deeper insights can
consult [33, 34].

15 Proposition. Consider a mechanical system in Rd with ℓ degrees of
freedom, subject to conservative forces with potential energy Φ0 ∈ C∞(Rd)
bounded from below and subject to ideal constraints.
Suppose that the system is canonically integrable on some open set W of the
phase space (see Definition 11, p.289, §4.8) and call H0 its Hamiltonian.
If I : W←→V × T ℓ is the integrating transformation and if we set (A,ϕ) =
I(p,q), the motion in (A,ϕ) coordinates is, by definition,

Ŝt(A,ϕ) = I(St(I
−1(A,ϕ))) = (A,ϕ+ ω(A)t), (5.9.4)

where ω = (ω1(A), . . . , ωℓ(A)) are ℓ pulsations corresponding to the ℓ prime
integrals A = (A1, . . . ,Aℓ), and ω(A) = ∂Ah0(A) if h0(A) = H0(I

−1(A,ϕ))
[ϕ independent because of the integrating character of I, see Observation (1),
p.289]. Assume V to be bounded, and that the matrix

Jij =
∂ωi
∂Aj

(5.9.5)

has non vanishing determinant on all of V (“non isochrony” of the system).
Then, if Ψ ∈ C∞(Rd) is a uniformly bounded potential energy, the mechanical
system with the same constraints but with an active force with potential energy

Φ0 + εΨ (5.9.6)

has various remarkable properties which will be described calling S
(ε)
t and

Ŝ
(ε)
t , t ∈ R, the transformations generating the motions, corresponding to

Eq. (5.9.6) and to the given constraints, in the coordinates (p,q) and (A,ϕ),
respectively. If (A,ϕ) = I(p,q), then
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Ŝ
(ε)
t (A,ϕ) = I(S(ε)(p,q)) (5.9.7)

(and Ŝ
(ε)
t (A,ϕ) is only defined for those pairs (A,ϕ) for which Eq. (5.9.7)

makes sense).

(i) There is a subset W (ε) ⊂W invariant for the transformations S
(ε)
t and a

map F(ε)| :W (ε)←→V (ε) × T ℓ, V (ε) ⊂ V , invertible and continuous, denoted

F(ε)(A,ϕ) = (a(A,ϕ, ε),Ψ (A,ϕ, ε)). (5.9.8)

Furthermore, there is a continuous function Ω(ε) : W (ε) →Rℓ such that

F(ε)(Ŝt(A,ϕ)) = (a(A,ϕ, ε), Ψ (A,ϕ, ε) +Ω(ε)(A,ϕ) t ). (5.9.9)

Therefore, the motions with initial datum in W (ε) can be thought of as rota-
tions of an ℓ-dimensional torus.
(ii) The set W (ε) ⊂ W is generally only measurable in the sense of Lebesgue
and not necessarily in the sense of Riemann, and its measure is such that

volumeW (ε)

volumeW
−−−→ε→0 1. (5.9.10)

(iii) The functions (ε,A,ϕ) → F(ε)(A,ϕ) can be extended to C(k) functions
with arbitrary preassigned k on (−1, 1) × V × T 1 and the same can be said
of the functions (A,ϕ)→ Ω(ε)(A,ϕ). Furthermore, such extensions have the
property

F(0)(A,ϕ) ≡ (A,ϕ), Ω(ε)(A,ϕ) ≡ ∂h0(A)

∂A
, (5.9.11)

(iv) If the original system is an analytic analytically integrable system and *
is also analytic, then one can take k = +∞ in (iii).

Observations.
(1) This theorem tells us the sense in which perturbing an integrable sys-
tem with proper pulsations “really” variable, see Eq. (5.9.5), i.e., “non
isochronous”, one obtains a system that can still be thought of as a system
moving essentially in the same way as the unperturbed one, see Eq. (5.9.11).
(2) W (ε) can be thought of as foliated into invariant ℓ-dimensional tori with
equations

(A,ϕ) = (F(ε))−1(a,ψ), ψ ∈ T ℓ (5.9.12)

parameterized by ℓ parameters a ∈ V (ε). By Eq. (5.9.11), each of such tori is a
slight deformation of the torus described by {a}×T ℓ in the original variables.
(3) Observation (2) is interpreted as saying that the foliation of the phase space
into invariant tori (characteristic of the integrable systems) is, at least in the
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canonically integrable anisochronous cases, preserved under small perturba-
tions, provided one disregards a subset of phase space with small measure.
(4) The fact that V (ε) can only be shown to be Lebesgue measurable (and it
probably cannot be chosen Riemann measurable) is quite unpleasant because
it means that W (ε), although containing many points (for ε small) cannot
be approximated by “nice sets” and, therefore, it becomes difficult to decide
constructively whether a given point is or is not in W (ε). However, a little
thought shows that (iii) partially solves this problem from a practical point
of view.
(5) Note that a ℓ-dimensional torus in a 2ℓ-dimensional space21 does not
split the space R2ℓ into “interior” and “exterior” parts, unless ℓ = 1. This
is perhaps what makes clearer the incompleteness of the result (iii). In fact,
a point beginning its motion in W/W (ε), i.e., outside the invariant tori, may
“sneak” through the tori of the foliations very far from the vicinity of the
unperturbed torus on which it would move if ε = 0. This phenomenon, called
“Arnold diffusion”, is not well understood, [36].

It would be nice to understand criteria sufficient for the existence of a
Riemann-measurable set of initial data (possibly with positive measure) which
does not undergo the Arnold diffusion. I.e., implying that, although only a
Lebesgue measurable set of points in phase space moves essentially as if the
perturbation were not present (i.e., quasi-periodically, on tori close to the un-
perturbed ones), there is a Riemann measurable set of points moving (perhaps
not quasi periodically) close to the unperturbed tori located near the initial
data.

In fact, this is what the numerical experiments sometimes seem to suggest.
It can be rigorously proved for some non autonomous 1-degree of freedom
systems (once the above theorem is extended, as can be done, to the non
autonomous system with external periodic forces of Hamiltonian type) or for
2-degrees-of-freedom autonomous systems.

In such cases, however, the entire problem disappears as the motion takes
place on a three-dimensional set (because, in the first case, the “phase space”
is three dimensional (p, q, t) and in the second, although the phase space is
four dimensional, the motion takes place on the three-dimensional surface of
constant energy), and in R3 a two-dimensional torus has an interior and an
exterior.
(6) The above theorem cannot be applied to perturbations of harmonic oscil-
lators since the non isochrony condition of Eq. (5.9.5) is manifestly violated.

Nevertheless, if the ℓ pulsations ω0 = (ω1, . . . , ωℓ) of the harmonic oscil-
lator verify a “non resonance” or “Diophantine” condition: ∃C < ∞, α < ∞
and

|ω · ν|−1 ≤ C|ν|α, ∀ ν 6= 0 (5.9.13)

21 or R2ℓ−1, if energy is taken into account, unless ℓ ≤ 2.
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where ν = (ν1, . . . , νℓ) ∈ Zℓ is an “integer vector”, then Eq. (5.9.5) can be
replaced by a condition on Ψ . Namely, if f(A,ϕ) is the function Ψ in the
(A,ϕ) variables, f(A,ϕ) = Ψ(I−1(A,ϕ)), (A,ϕ) ∈ V × T ℓ, and if we define

f0(A) =
1

(2π)ℓ

∫
−T ℓf(A,ϕ) dϕ, (5.9.14)

and if the matrix ∂2(A)
∂Ai∂Aj

, i, j = 1, . . . , ℓ, has non vanishing determinant ∀A ∈
V , the theorem’s results (i), (ii), (iii), and (iv) hold without change.
(7) Even worse is the situation of the solar system, i.e., if one tries to apply
the above theorem to Eq. (5.9.2) as a perturbation to Eq. (5.9.1).

The problem lies not so much in the unboundedness of the potentials in the
Kepler motions. In fact, in a vicinity W of the Kepler motions of the actual
planets, there are no collisions, so the perturbation is bounded there (W has
to be thought of as a subset in the nine planets phase space R27 ×R27).

The difficulty lies in the fact that for the unperturbed system described
by Eq. (5.9.1), Kepler’s laws hold and say that each planet moves periodically
with pulsation ωi; and, therefore, the system moves quasi-periodically with
nine independent pulsations instead of the 27 that should be present if the
system were really anisochronous and the condition (5.9.5) cannot hold (since
two of the three pulsations of each planet i have to be integer multiples of ωi).

Nevertheless, it is possible to find a version of Proposition 15 covering
this problem at least in some nontrivial cases of N gravitating point masses
attracted by a fixed center and attracting each other (see also p.493).

Without quoting the exact results, we mention one of their consequences:
there exist quasi periodic motions of the planets (i.e., solutions of Eq. (5.9.2)]
which take place on almost circular, almost closed, and almost coplanar orbits
of distinct radii, provided the masses are very small; hence, there are motions
of Eq. (5.9.2) quasi-periodic and without collisions or escapes.

The last statement and result solves a problem which for centuries fasci-
nated physicists, mathematicians, and astronomers. Newton’s universal gravi-
tation law is not incompatible, by itself, with the stability of the solar system,
a fact empirically observed since millennia and hoped for by everybody. Nev-
ertheless, it remains an open question whether or not our own solar system,
modeled by Eq. (5.9.2), is actually stable: the initial data on the positions and
velocities of the planets and their masses seem too far from values to which
the above-mentioned extensions of Proposition 15 can be applied.
(8) The proof of Proposition 15 gives much more information than its text
expresses. It might even be possible to extract from it, and from its extensions
mentioned in Observation (6), some astronomically interesting results. How-
ever, much work has to be done, since the results of Proposition 15 and its
extensions are seldom obtained in “optimal” form. Actually, to my knowledge,
careful estimates based on the proof of the theorem and taking full advantage
of the peculiarities of a given equation of interest have begun to appear only
relatively recently in the simplest cases.
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(9) The ideas for the proof of the above theorem arise from perturbation
theory for classical Hamiltonian systems: to it the next section is devoted.
In §5.11 and §5.12 it will be shown how the ideas of perturbation theory
may be applied to prove Proposition 15 in the simplest case of a canonically
analytically integrable system, analytically perturbed.

It is a shame that the old classical perturbation theory, which gave rise to
analytical mechanics and to the Hamilton-Jacobi method, is nowadays almost
forgotten since many people seem to know or care only for the quantum-
mechanical perturbation theory. This fact is largely responsible for the aura
of mystery which still seems to surround the above theorem.

5.10 Formal Theory of Perturbations. Hamilton–Jacobi
Method

Or ti riman, lettor, sovra ’l tuo banco,
Dietro pensando a cio che si preliba,
S’esser vuoi lieto assai prima che stanco.
Messo t’ho innanzi: omai per te ti ciba;
Che a se torce tutta la mia cura
Quella materia ond’io son fatto scriba.22

Consider an ℓ-degree-of-freedom system with a Hamiltonian function H
on an open set W in phase space. Denote (p,q) the points in W and denote

(p,q)→ H(p,q), (p,q) ∈ W (5.10.1)

the Hamiltonian function H .
We shall suppose that this system is canonically analytically integrable via

an analytic canonical transformation I integrating it by transforming W into
V × T ℓ with V ⊂ Rℓ, open and bounded.23

The transformation I transforms the Hamiltonian H into a function of the
first ℓ variables of (A,ϕ) = I(p,q): h(A) = H(I−1(A,ϕ)), ∀ (A,ϕ) ∈ V ×T ℓ.

We recall that the variables A are called “action variables”, while the ϕ
variables are called “angle variables”.

Let F be an analytic function on W and consider the Hamiltonian system
described on W by the Hamiltonian function

22 In basic English:
Now stay, o reader, on your bench,
thinking about what is foreshadowed
if you wish to be happy before being tired.
I did initiate you: now proceed by yourself;
as my whole thoughts are absorbed
by the matter about which I am scribe.

(Dante, Paradiso, Canto X)
23 See Definition 11, p.289, §4.8.
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H(p,q) + εF (p,q) (5.10.2)

or, in the action-angle variables, (A,ϕ) ∈ V × T ℓ, by

h(A) + εf(A,ϕ) with (5.10.3)

h(A) = H(I−1(A,ϕ)), f(A,ϕ) = F (I−1(A,ϕ)) (5.10.4)

Perturbation theory proposes to compare, for ε small, the motions of the
system with Hamiltonian h and those of the system with Hamiltonian h+ εf ,
usually with the same initial data.

As stated in §5.9 the comparison methods for solutions of a differential
equation depending on a parameter (Lyapunov criterion, attractive manifold
theorem, Hopf theorem, etc.) often reveal themselves to be inadequate in
the analysis of the problems and difficulties connected with the stability of
conservative systems. Such problems appear quite different from those arising
in the theory of dissipative systems, at least at the beginning (although the
advanced theory ultimately may conceptually coincide).

However, the special form of the Hamiltonian equations permits the use
of a simple algorithm, of great interest for applications, for the analysis of the
motions of quasi-integrable systems.

The idea is to change variables via a completely canonical transformation
(A,ϕ) → (A′,ϕ′), arranging things so that the “old” Hamiltonian (5.10.3)
takes the form

h(n)
ε (A′) + εn+1f (n)

ε (A′,ϕ′) (5.10.5)

in the new variables, where (A′,ϕ′) denote the new variables and h
(n)
ε , f

(n)
ε

are analytic functions of ε near 0, of ϕ′ ∈ T ℓ and of A′ in a suitable open set.
Hence, for ε small, the error that would be made supposing that in the

variables (A′,ϕ′) the system is integrable and described by the Hamiltonian

h
(n)
ε is very much smaller than the one that would be made assuming the

system as integrable in the original variables (A,ϕ) simply setting ε = 0 in
Eq. (5.10.3): provided, as we suppose as an extra essential requirement of
construction, the canonical transformation itself is not singular at ε = 0.

Intuitively, neglecting in Eq. (5.10.5), or, better, in the Hamiltonian equa-
tions associated with Eq. (5.10.5), the ϕ′-dependent term produces an error of
the order εn+1T in the equations solutions, if they are observed up to a time
T . Hence, given an approximation η, it will be possible to retain it, although
neglecting the influence of fn+1

ε on the motions of Eq. (5.10.5), for a time of
the order Tη,ε ∝ ηε−(n+1).

For ε small this may give substantially better result for n > 0 than the one
corresponding to the simple, but often too rough, analogous approximation
with n = 0 (i.e., ε = 0 in Eq. (5.10.3).

The reader will realize that the method that will be used for the “reduction
to higher order” of the perturbation via a canonical transformation is nothing
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more than a method for constructing successive approximations to the time
independent solutions of the Hamilton-Jacobi equation Eq. (3.11.6), p.213.

There are two remarkable cases which can actually be treated along the
above lines, building a completely canonical transformation changing Eq.
(5.10.3) into Eq. (5.10.5) at least for (A,ϕ) in a neighborhood of the form
S̺(A0)×T ℓ ⊂ V ×T ℓ, where S̺(A0) is a sphere with radius ̺ in Rℓ around
a preassigned point A0, and for some n > 0 and ε small.

The first case arises when

h(A) = ω0 · (A−A0) (5.10.6)

with ω0 ∈ Rℓ such that there are C,α > 0, for which

C = sup
ν∈Zℓ,ν 6=0

|ω · ν|−1

|ν|α < +∞ (5.10.7)

The second case arises when the Fourier coefficients of the development of f :

f(A,ϕ) =
∑

ν∈Zℓ

fνe
iν·ϕ, fν =

1

(2π)ℓ

∫

T ℓ

f(A,ϕ)e−iν·ϕ dϕ (5.10.8)

vanish for |ν| > N and, setting

ω(A) =
∂h

∂A
, one has (5.10.9)

|ω(A0) · ν| > 0, ∀ ν ∈ Zℓ, 0 < |ν| ≤ N. (5.10.10)

In the first case, it is even possible to put the Hamiltonian into the form of
Eq. (5.10.5), ∀n = 0, 1, . . . , provided ε is small enough (depending, however,
on the choice of n).

The above statements are illustrated in the following classical propositions.

16 Proposition. Consider the Hamiltonian (5.10.3) on V × T ℓ with

f(A,ϕ) =
∑

ν∈Zℓ

|ν|≤N

fνe
iν·ϕ (5.10.11)

analytic on V × T ℓ, with N > 0, and suppose that, ∀A0 ∈ V , the function h
is such that

|ω(A0) · ν| > 0, ∀ ν ∈ Zℓ, 0 < |ν| ≤ N. (5.10.12)

Then there exist ̺1 > 0, ε1 > 0 and, ∀ ε ∈ (−ε1, ε1), a completely canonical
transformation (A,ϕ)←→(A′,ϕ′) defined for (A,ϕ) ∈ Wε, with V × T ℓ ⊃
Wε ⊃ S 1

2̺1
(A0)×T ℓ and with values onto S̺1(A0)×T ℓ, smoothly depending

on ε and transforming the Hamiltonian (5.10.3) into
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h(1)
ε (A′) + ε2f (1)

ε (A′,ϕ), (5.10.13)

where h
(1)
ε , f

(1)
ε are analytic in ε,A′,ϕ′. Furthermore h

(1)
ε can be given a sim-

ple expression; see Eq. (5.10.25) below.

Observation. As mentioned above, the reader should interpret the proof that
follows as a “perturbative solution to order ε” of the Hamilton-Jacobi equation
in the time-independent case, i.e., when H in Eq. (3.11.68), p.226, does not
explicitly depend on t. Actually, the above proposition is the basic example
of how the method of Hamilton-Jacobi concretely works. Most applications of
the Hamilton-Jacobi’s method are based on this proposition.

Proof. The canonical transformation will be determined by looking for a
generating function Φ, see §3.11 and §3.12 from p.222 on.

Such a transformation is expected to be close to the identity up to in-
finitesimals O(ε), thus the unknown generating function will be written as

A′ ·ϕ+ Φ(A′,ϕ), (5.10.14)

where (A′,ϕ)→ A′ · ϕ is the generating function of the identity map and Φ
is infinitesimal in ε . The function Φ will be determined by requiring that the
Hamiltonian in the new variables (A′,ϕ′) defined by the formal map

A =A′ +
∂Φ

∂ϕ
(A′,ϕ),

ϕ′ =ϕ+
∂Φ

∂A′
(A′,ϕ),

(5.10.15)

i.e., the function

h
(
A′ +

∂Φ

∂ϕ
(A′,ϕ)

)
+ εf

(
A′ +

∂Φ

∂ϕ
(A′,ϕ),ϕ

)
(5.10.16)

is ϕ independent up to terms infinitesimal of higher order in ε.
Since, as already said, we expect that Φ ≃ O(ε), we can heuristically find,

by developing Eq. (5.10.16) in series with respect to ∂Φ
∂A′ , that the equation

for Φ (the “Hamilton-Jacobi equation to first order in ε”) is

∂h

∂A′
(A′) · ∂Φ

∂ϕ
(A′,ϕ) + εf(A′,ϕ) = {ϕ− independent function} (5.10.17)

which, written in terms of the Fourier components of Φ, means that if

i (ω(A′) · ν)Φν(A
′) + ε fν(A

′) = 0, ∀ν ∈ Zℓ, |ν| > 0 (5.10.18)

This equation is really a soluble equation if |A′ −A0| ≤ ̺1, with ̺1, so small
that the closure of S̺1(A0) is a subset of V and therefore
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ω(A′) · ν 6= 0, ∀ ν ∈ Zℓ, 0 < |ν| ≤ N. (5.10.19)

see Eq. (5.10.12). Then we can define in S̺1(A0)× T ℓ the analytic function

Φ(A′,ϕ) = ε
∑

0<|ν|≤N

fν(A
′)eiν·ϕ

−iω(A′) · ν . (5.10.20)

It follows from the implicit function theorem, see Appendix G, Corollaries 3
and 4, that the second of Eqs. (5.10.15) can be uniquely inverted with respect
to ϕ and the first of Eqs. (5.10.15) can be inverted with respect to A′ in the
respective forms

ϕ =ϕ′ +∆(A′,ϕ′), ∆ ∈ C∞(S̺1(A0)× T ℓ)
A′ =A +Ξ ′(A,ϕ), Ξ ∈ C∞(S̺1 (A0)× T ℓ)

(5.10.21)

if ε is small enough,24 i.e., if |ε| < ε̃1, with ε̃1, suitably chosen; and also there
is B > 0 such that

|∂Φ
∂ϕ

(A′,ϕ)| = |Ξ ′(A,ϕ)| < B |ε|, (5.10.22)

so that, if B|ε| < 1
8̺1, the maps (A′,ϕ′)→ C(A′,ϕ′) = (A,ϕ):

A =A′ +
∂Φ

∂ϕ
(A′,ϕ′ +∆(A′,ϕ′)),

ϕ =ϕ′ +∆(A′,ϕ′)

(5.10.23)

and (A,ϕ)→ C′(A,ϕ) = (A′,ϕ′):

A′ =A +Ξ ′(A,ϕ),

ϕ′ =ϕ+
∂Φ

∂A′
(A +Ξ ′(A,ϕ),ϕ)

(5.10.24)

are well defined on S 1
2̺1

(A0)×T ℓ and take values in S̺1(A0)×T ℓ. Further-

more, C and C′ map S 1
4̺1

(A0) × T ℓ into S 1
2̺1

(A0) × T ℓ and CC′ = C′C = {
identity map} on S 1

4̺1
(A0)×T ℓ by construction (and by the uniqueness part

of the implicit function theorem).
Therefore, the Jacobian determinants of C or C′’ on S 1

4̺1
(A0)×T ℓ cannot

vanish and, hence, by Proposition 21, §3.11, p.220, C is a completely canonical
map of S 1

4̺1
(A0) × T ℓ onto its image Wε ⊃ S 1

8̺1
(A0) × T ℓ. So we take

ε1 = min(ε̃1,
1
8̺1).

By the construction of Φ [see Eq. (5.10.17)] the Hamiltonian function in the
(A′,ϕ′) variables has the form of Eq. (5.10.13). By substituting Eq. (5.10.20)
into Eq. (5.10.17), one, in fact, also obtains

24
Ξ′ and ∆ are C∞ also in ε, jointly with (A,ϕ) or (A′,ϕ′), by the implicit functions
theorems in Appendix G.
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h(1)
ε (A′) = h(A′) + εf0(A′), (5.10.25)

where f0 is the 0-th Fourier coefficient of f , see Eq. (5.10.8).
The analyticity of the canonical maps C and C′ will not be discussed here.

It follows if Eqs. (5.10.21) are obtained via the application of analytic implicit
function theorems that will be discussed in the next section; see Propositions
18-20. mbe

The above discussion is the basis for the most common algorithms in the
calculations of the perturbed Hamiltonian motions; it leads to the natural
idea of iterating the procedure by reducing the perturbation from O(ε2) to
O(ε4) , etc.

The difficulty lies in the fact that, in general, the new Hamiltonian
(5.10.16) which, to first order in ε reduces to Eq. (5.10.25), no longer has
the form necessary for applicability of Proposition 16. In fact, the pertur-
bation of order ε2 will be a function of (A′,ϕ′) which has all, or at least
infinitely many, harmonic components in ϕ′ non vanishing, disregarding ex-
ceptional cases. One can convince oneself of this with some thought, noting
that ∂Φ

∂ϕ (A′,ϕ′+∆(A′,ϕ′)) contains terms like ei∆(A′,ϕ′)·ν and, unless some
“miraculous” cancellations take place, will no longer be trigonometric poly-
nomials in ϕ′.

The following proposition, valid in the other case considered in the in-
troduction to Proposition 16, is quite interesting because it shows that with
a slight modification of the method of the above proof but under different
assumptions, one can “remove” the perturbation to an arbitrary order in ε.

17 Proposition. Consider the Hamiltonian function given by Eq. (5.10.3)
on V × T ℓ with h verifying Eqs. (5.10.6) and (5.10.7) and f analytic. There
is ̺ > 0 such that:
(1) For each n = 0, 1 . . . . there exists εn > 0 and, ∀ |ε| < εn, functions Φε,n
defined on S̺(A0)×T ℓ and analytic in ε and in the other arguments (A,ϕ),
generating completely canonical transformation (A,ϕ)←→(A′,ϕ′) such that

A =A′ +
∂Φε,n
∂ϕ

(A′,ϕ),

ϕ′ =ϕ+
∂Φε,n
∂A′

(A′,ϕ),

(5.10.26)

mapping a subset Wε,n, S 1
2̺

(A0)× T ℓ ⊂Wε,n ⊂ V × T ℓ, onto S̺(A0)× T ℓ.
(2) The map of Eq. (5.10.26) transforms the Hamiltonian into the form
(“Birkhoff normal form”)

hε,n(A
′) + εn+1f (n)

ε (A′,ϕ′) (5.10.27)

where hε,n(A
′) is analytic in ε,A′ and f

(n)
ε is also analytic in ε,A′,ϕ′. An

explicit expression for hε,n(A
′) is Eq. (5.10.41).
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Observation. The construction described in the proof of this proposition is
often referred to as the “Birkhoff transformation”.

Proof. Define heuristically:

Φε,n(A
′,ϕ) =

n∑

k=1

εkΦ(k)(A′,ϕ) (5.10.28)

and consider the Hamiltonian in the new variables (A′,ϕ), Eq. (5.10.26):

h
(
A′ +

∂Φε,n
∂ϕ

(A′,ϕ)
)

+ εf
(
A′ +

∂Φε,n
∂ϕ

(A′,ϕ),ϕ
)
. (5.10.29)

Developing this expression in powers of ε using the analyticity of f and h (the
latter is actually linear) in A, impose that the resulting series in ε,

∞∑

k=1

ψ(k)(A′,ϕ) εk, (5.10.30)

has all the coefficients ψ(k), k = 0, 1, . . . , n, ϕ-independent.
This condition allows one to determine recursively Φ(1), . . . , Φ(n) [and it

appears that εΦ(1) is given by Eq. (5.10.20), of course].
Then, once the expressions for Φ(1), . . . , Φ(n) are found, one shall write

Eq. (5.10.26), and by taking ε small, proceeding exactly as in the proof of
Proposition 16, the implicit function theorem will be used to guarantee that
Eq. (5.10.26) actually defines a canonical transformation between S̺(A0)×T ℓ
and some Wε,n ⊂ V × T ℓ and Wε,n ⊃ S 1

2̺
(A0) × T ℓ . The invertibility

conditions will depend on n. By construction, Eq. (5.10.27) will then follow,

with hε,n, f
(n)
ε of class C∞ in ε,A′,ϕ′. They are actually analytic and this

point can be commented as at the end of the proof of Proposition 16, see
p.469.

Hence, the whole problem is to show that one can find Φ(1), . . . , Φ(n) so
that the formal series of Eq. (5.10.30) has the first (n + 1) coefficients with
harmonics in ϕ of order ν 6= 0 vanishing. This is a purely algebraic problem.

As amply exploited in the following section, where the question will be
more systematically treated, the analyticity assumption on f implies that it
can be developed in the Taylor series about A0 and in the Fourier series in ϕ
in the form

f(A,ϕ) =
∑

aZℓ
+
,ν∈Zℓ

f (a)
ν (A−A0)

aei ν·ϕ =
∑

a∈Zℓ
+

f (a)(A0,ϕ)(A−A0)
a

(5.10.31)
where, see Definition 13, p.336, a = (α1, . . . , aℓ) ∈ Zℓ+ and ν = (ν1, . . . , νℓ) ∈
Zℓ and
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(A−A0)
a =

ℓ∏

i=1

(Ai −A0i)
ai , ν ·ϕ =

ℓ∑

i=1

νiϕi (5.10.32)

and, furthermore, there are R > 0, ̺0 > 0, ξ0 > 0, such that

|f (a)
ν | ≤ R̺−|a|0 e−ξ0|ν|, ∀ a ∈ Zℓ+, ∀ ν ∈ Zℓ, (5.10.33)

if |a| def= ∑ℓ
i=1 ai, |ν|

def
=
∑ℓ
i=1 |νi|.

This inequality is not immediately obvious and it will be discussed in §5.11;
for the time being, we suppose and use Eq. (5.10.33) without discussion.

Developing Eq. (5.10.29) in powers of ε and collecting the terms of equal

order in ε and setting f (a)(A′,ϕ) = 1
a!
∂|a|f(A′,ϕ)

(∂A′)a with a!
def
=
∏ℓ
i=1 ai! (it is

the a-th coefficient of the Taylor expansion of f around A′ at fixed ϕ), one
finds [using Eq. (5.10.31)]

ψ(k)(A′,ϕ) =
{ ∑

a∈Zℓ
+

f (a)(A′,ϕ)

∗∑

n1
a1
,...,nℓ

aℓ

ℓ∏

j=1

( aj∏

s=1

∂Φ(nj
s)(A′,ϕ)

∂ϕj

)}

+ω0 ·
∂Φ(k)

∂ϕ
(A′,ϕ)

def
= {N (k)(A′,ϕ)}+ ω0 ·

∂Φ(k)

∂ϕ
(A′,ϕ) (5.10.34)

for k = 1, 2, . . ., and the ∗ means that the sum is performed subject to the
constraint

∑ℓ
j=1

∑aj

s=1 n
j
s = k − 1. Furthermore, we set

ψ(0)(A′,ϕ) = h(A′) (5.10.35)

The condition that ψ(1) is ϕ-independent (hence, ϕ′ independent) becomes,
by Eq. (5.10.34),

f(A′,ϕ) + ω0 ·
∂Φ(1)(A′,ϕ)

∂ϕ
= {ϕ− independent function} (5.10.36)

and it determines Φ(1), up to a function of A′ alone, as:

Φ(1)(A′,ϕ) =
∑

a∈Zℓ
+

f
(a)
ν (A′)ei ν·ϕ

−iω0 · ν
, (5.10.37)

where fν(A
′) is the ν-th Fourier coefficient of f(A′,ϕ) at A′ fixed:

fν(A
′) =

∑

a∈Zℓ
+

f (a)(A0)(A
′ −A0)

a. (5.10.38)

Replacing fν(A
′) in Eq. (5.10.37) by Eq. (5.10.38) and using Eqs. (5.10.33)

and (5.10.7), one sees that the series in Eq. (5.10.37) converges and defines a
C∞ function of (A′,ϕ) ∈ S̺0(A0)× T ℓ (actually such a function is analytic,
as could be shown).
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Then, from Eq. (5.10.34), it follows that

N (2)(A′,ϕ) =

ℓ∑

j=1

f (ej)(A′,ϕ)
∂Φ(1)(A′,ϕ)

∂ϕj
(5.10.39)

with e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0) . . ..
From what has been said above, it follows that N (2) is a C∞(S̺0 (A0) ×

T ℓ) function (actually analytic), and if N
(2)
ν (A′) denotes its ν-th Fourier

coefficient, the condition that ψ(2) in Eq. (5.10.34) is ϕ-independent yields

Φ(2)(A′,ϕ) =
∑

0 6=ν∈Zℓ

N (2)(A′)eiν·ϕ

−iω0 · ν
, (5.10.40)

which, again from Eq. (5.10.33) and from Eqs. (5.10.31), (5.10.37), and
(5.10.38), turns out to be a C∞ function on S̺0(A0)×T ℓ (actually analytic),
etc., inductively. Hence

hε,n(A
′) = h0(A

′) +

n∑

k=1

εkN
(k)
0 (A′). (5.10.41)

mbe

Observations.
(1) Equations (5.10.37) and (5.10.40) and their generalizations to higher k
show that N (k)(A′,ϕ) can be chosen to be n independent. It becomes natural
to consider the limit as n→∞. In this limit, the perturbation would disappear
and the Hamiltonian would be transformed into

hε(A
′) = h(A′) +

∞∑

k=1

εkN
(k)
0 (A′).

and it would therefore be integrable. However, the estimates on εn that can
be derived by applying the scheme suggested in the above proof appear to be
such that εn−−−−−→n→+∞ 0, save some exceptional cases. Therefore, nothing can
be concluded about the limit n→ +∞.
It is known that it cannot happen, in general, that both series (“Birkhoff’s
formal series”).

∞∑

k=1

εkN
(k)
0 (A′),

∞∑

k=1

εk Φ(k)(A′,ϕ) (5.10.42)

converge, defining analytic functions of (A′,ϕ, ε) in (A′,ϕ) ∈ S̺0(A0) × T ℓ
and in ε near zero and, at the same time, εn+1∂f

(n)
ε −−−−−→n→+∞ 0 uniformly in

the same region of (A′,ϕ, ε).
This would, in fact, imply the existence of ℓ prime integrals analytic in ε,A,ϕ
for ε close to 0, A close to A0 and ϕ ∈ T ℓ: namely, (A′1, . . . , A

′
ℓ), and via such
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integrals (“uniform integrals”), the system would be analytically integrable,
with a canonical transformation with such integrals as the new action vari-
ables. This property has been shown to be impossible in a number of inter-
esting cases.
A simple example in which the series (5.10.42) can be explicitly computed is
in Problem 16 at the end of this section: in the example the second of (5.10.42)
does not converge. However if N (k)(A) depend on A via ω ·A only, then the
series converge: this is a nice criterion (see [44]).
(2) Various algorithms used in practice to study perturbations of integrable
motions are based on the two propositions illustrated above. The simplest is
the following.

First, develop f in a Fourier series. This usually causes great problems.
In fact, it is often possible to compute only a few Fourier coefficients for f .
However, on the other hand, such coefficients often decrease, as ν →∞ , very
quickly. Then, if f is written as

f = f [≤N ] + f [>N ], (5.10.43)

where, for f given by Eq. (5.10.31), we set [see Eq. (5.10.38)]

f [≤N ](A,ϕ) =
∑

a∈Zℓ
+

,ν∈Zℓ

|ν|≤N

f (a)
ν (A−A0)

aeiν·ϕ ≡
∑

ν∈Zℓ

|ν|≤N

fν(A)ei ν·ϕ (5.10.44)

one has that εf [>N ] is very small even for N not too large and its contribution
to the Hamiltonian equation produces an error, in a fixed given time, much
smaller than O(ε), say O(εη) with η ≪ 1.
It is then possible to apply Proposition 16 to the system with Hamiltonian h+
εf [>N ] and remove the perturbation to O(ε2). In the new variables, neglecting
the perturbation of O(ε2) will cause an error, over a fixed time, of order
O(ε2 +εη) on the solutions of the original equations. This is often a very good
approximation if ω(A) ·ν 6= 0, ∀ 0 < |ν| ≤ N, ∀A ∈ {set of interesting initial
actions}.
(3) A special case of great importance to which, however, the above algorithm
cannot be applied directly is that of the perturbations of the motion of the
Kepler system when, in defining the unperturbed system, one neglects the
reciprocal attractions between the planets [i.e., one takes Eq. (5.9.2) as a
perturbation of Eq. (5.9.1)].

As we saw, the Kepler motions are rigorously periodic, and to every planet
a single pulsation is associated rather than three: the other two vanish (or are
integer multiples of the first, depending on which variables are chosen to inte-
grate the motion) as a consequence of the conservation of angular momentum
and of the wonderful nature of the Newtonian force which singles it out among
the central forces as the most impressive, see §4.9 and §4.10.

It is therefore certainly impossible to satisfy Eq. (5.10.10) with reasonable
N . Hence, the above approximation scheme cannot be applied.



474 5 Stability Properties for Dissipative and Conservative Systems

Nevertheless, a similar scheme can be applied. Consider the motions in
action-angle coordinates (A,ϕ), where A = (A(1), . . . ,A(n)), ϕ = (ϕ(1), . . . ,
ϕ(n)), where (A(j),ϕ(j)) are the natural variables, for the systems Sun-i-th
planet, in terms of which the Hamiltonian takes the form (if Ms = Sun mass),

mi = i-th planet mass, εij =
√
mimj

Ms
, see p.458:

h0(A)−
∑

i<j

εmimj

|xi − xj |
≡ h0(A)−

∑

i<j

εij
K
√
mimj

|xi − xj |
, (5.10.45)

h0(A) =
n∑

i=1

h0(A
(i)
1 ), (5.10.46)

having denoted A
(j)
1 the first component of A(j) = (A

(j)
1 , A

(j)
2 , A

(j)
3 ), and we

recall that A(j) can be chosen as follows (see problems for §4.10):

A
(j)
1 =mjωja

2
j =

(εMs)
3
2mj

(−2Ej)
1
2

def
= Lj ,

A
(j)
2 =mjA(j)

def
= Gj ,

A
(j)
3 =miA(j) cos i(j)

def
= Θj ,

(5.10.47)

where 1
2A(j) is the areal velocity of the j-th planet, Ej its energy, aj is the

major semiaxis of its orbit, and i(j) is the inclination of the jth orbit on
the ecliptic plane (the ecliptic plane is traditionally the plane of the Earth
orbit or more precisely a reference plane fixed with the stars and parallel to
a conventional average plane of the Earth orbit).

The angle variables associated with such action variables are ϕ
(j)
1 =

ℓ(j), ϕ
(j)
2 = g(j), ϕ

(j)
3 = h(j) known in astronomy as the “average anomaly”,

the “major semiaxis longitude” and the “node-line longitude” with respect to
the fixed axes established on the ecliptic plane (i.e., on the xy plane of the
chosen inertial frame); see Problems 11 and following to §4.10, p.303, for a
discussion of these variables.

Equation (5.10.46) shows that in the unperturbed motions, g(j), h(j) are

constants (i.e., ω
(j)
2 = ω

(j)
3 = 0) since h0 only depends on the variables Lj, j =

1, . . . , n.
One can then proceed to write the perturbation in Eq. (5.10.45) in terms of

the (A,ϕ) coordinates (a nontrivial task, in practice; see Problem 15, p.305,
§4.10 for the similar question in the case of the planar problem), and after-
wards one can try to apply the scheme seen in the proof of Proposition 16
to build a canonical map (A,ϕ) → (A′,ϕ′) transforming Eq. (5.10.45) into

a function independent on the ϕ
(j)
1 variables, j = 1, . . . , n, to first order in

ε = max εij . One shall proceed as prescribed in the proof of Proposition 16,

considering ϕ
(j)
2 , ϕ

(j)
3 as parameters.
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If we call f(A,ϕ) the perturbation term of Eq. (5.10.45), when expressed
in the action-angle variables apt to describe the unperturbed system, we
introduce the new canonical variables (A′,ϕ′) via the generating function
A′ ·ϕ+ Φ(A′,ϕ) with

Φ(A′,ϕ) =
∑

ν∈Zn

0<|ν|≤N

fν(A
′)eiν·ϕ

−i∑n
j=1 ν

(j)
1 ωj(A

′(1)
j )

, (5.10.48)

where N is a “large number” which we imagine here to have chosen such that
for some a priori given purposes, neglecting f [>N ] in Eq. (5.10.45), produces
a negligible error. In this way we obtain a Hamiltonian having the form

h(A
′(1)
1 , . . . , ϕ

′(1)
1 , . . .) = h0(A

′)

+ εh1(A
′(1)
1 , . . . , A

′(n)
3 ;ϕ

′(2)
2 , . . . ϕ

′(3)
n ) +O(ε2),

(5.10.49)

and the equations of motion will become, j = 1, . . . , n,

Ȧ
(j)
1 =0, j = 1, . . . , n

ϕ̇
′(j)
σ =ε

∂h1

∂A
(j)
σ

(A
′(1)
1 , . . . , A

′(n)
3 ;ϕ

′(2)
2 , . . . ϕ

′(3)
n ), σ = 2, 3

Ȧ(j)
σ =− ε ∂h1

∂ϕ
′(j)
σ

(A
′(1)
1 , . . . , A

′(n)
3 ;ϕ

′(2)
2 , . . . ϕ

′(3)
n ), σ = 2, 3

ϕ̇
′(j) =

∂h0

∂A
′(j)
1

(A
′(1)
1 , . . . , A

′(n)
1 )

+ ε
∂h1

∂A
′(j)
1

(A
′(1)
1 , . . . , A

′(n)
3 ;ϕ

′(2)
2 , . . . ϕ

′(3)
n ),

(5.10.50)

up to O(ε2).

Since h1 is ϕ
′(j)
1 independent, the equations in curly brackets form a system

of Hamiltonian equations parameterized by the initial data of A
′(j)
1 and with

2n degrees of freedom. Once they are “solved”, the last of Eqs. (5.10.50) is an

ordinary differential equation expressing ϕ̇
′(j)
1 in terms of a known function of

t and, therefore, it is “trivial”.
In celestial mechanics, it sometimes happens that inside the neighborhood

W = V × T ℓ, of interesting initial data h1 itself can be written as h1 + µh̃1

where h1, is an integrable Hamiltonian and µ is a “small” parameter.
It will then be possible to apply again perturbation theory, Proposition

16, to study the motion of the Hamiltonian system in Eqs. (5.10.50) described
by the second and third line equations, as a perturbation of a simple motion,
(see problem 2 at the end of this section where a similar but simpler situation
occurs).
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A very interesting case when this happens is the case when the unperturbed
motion of the planets that one considers is a motion in which the planets wan-
der around orbits with small eccentricity and small inclination. The resulting
parameter µ is of an order of magnitude related to the maximum eccentricity
and to the maximum inclination.
(4) The representation of the planetary motion thus obtained is very sugges-
tive: the planet keeps moving with roughly the same revolution period on the
same elliptic orbit [in Eqs. (5.10.50), the first and the last equations say that
the average anomalies rotate with about the same unperturbed pulsations up
to O(ε); but the node lines and the major semiaxis longitude have a move-
ment developing on a very slow time scale of O(ε−1) because of the factor
ε in the curly bracket equations in Eqs. (5.10.50)] called “precession” which
is quasi-periodic with the periods characteristic of the Hamiltonian h1.

25 In
the same quasi-periodic way vary the inclinations of the orbits and the areal
velocities. The main motion obtained by neglecting O(ε) in Eqs. (5.10.50)
should be called a “deferent motion”, while the O(ε) corrections expressed
by the σ = 2, 3 differential equations in Eqs. (5.10.50) should be called the
“epicyclical” motions, to do some justice to the Greek astronomers and to
Ptolemy, in particular.

The above “Ptolemaic” description is accurate only to O(ε2 + εµ)T if T
is the time for which one wishes to make astronomical predictions.

The reader should consult books on celestial mechanics to see concrete
applications of the procedures and approximation schemes to some astronom-
ical problems (among which the simplest is the theoretical calculation of the
precession of the perihelion of Mercury).

5.10.1 Exercises and Problems

1. Apply the idea of the proof of Proposition 17 to study the Hamiltonian system

ω0 ·A + ε g(ϕ), (A,ϕ) ∈ Rℓ × T ℓ

with ω0 verifying Eq. (5.10.7). Deduce that the system is integrable for small ε (for an
alternative solution to this problem, see Problem 1, p. 290, §4.8).
2. Apply the scheme suggested in Observation (3), p.473, to discuss to higher order the
motion associated with the system in Rℓ+1 × T ℓ+1:

A+ ε (B ·ω0 + µ g(A,B, ϕ,ψ))

if (A,B, ϕ,ψ) are canonical action-angle variables A ∈ R,B ∈ Rℓ, ϕ ∈ T 1,ψ ∈ T ℓ (note
that for ε = 0, this system has only 1 frequency rather than ℓ+ 1). Explicitly calculate the
“daily” and “secular” components of the motions to O(ε2 + εµ) after finding the secular
Hamiltonian h1, see Observation (3), p.473, and assuming a “non resonance” condition on
ω0 like Eq. (5.10.7).

25 It is called a “secular motion” since in some simple cases this time scale is of the order
of centuries.
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3. Same as Problem 2 for the system in R2: 1
2
(p21 + q21) + 1

2
(p22 + q22) + ε (2q1 + q2)4. (Hint:

Find the action-angle variables (A1, A2, ϕ1, ϕ2) when ε = 0 (just polar coordinates) for
the two oscillators; then completely canonically change variables A = 1

2
(A1 + A2), B =

1
2
(A1 − A2), ϕ = ϕ1 − ϕ2, ψ = ϕ1 + ϕ2 and then apply the method of Observation (3),

p.473.)

4. Same as Problem 2 for the system in R2:
p21
2

+
p22
2
− 1q

q21+q22

+ ε(q1 − q2).

5. Consider the “restricted three-body problem” in R2:

H(p1,p2,q1,q2) =
p2

1

2m1
+

p2
2

2m2
− km1

|q1|
− km2

|q2|
− ε m1m2

|q1 − q2|
,

(p,q) ∈ R2. Using the results of Problem 15, p.305, §4.10, write (with patience) up to
second order in the eccentricities of the two bodies the Hamiltonian in the action-angle
variables corresponding to ε = 0); see Problem 11, p.303, §4.10. Show that if the eccen-
tricities are neglected, together with quantities of order O(ε2), the secular motion [in the
language of Observation (3), p.473] is described by the Hamiltonian

h0 + εh1 = −m
3
1k

2

2L
′2
1

− m3
2k

2

2L
′2
2

−
Z 2π

0

dα

2π

εm1m2q
a
′2
1 + a

′2
2 − 2a′1a

′
2 cosα

(where L = m
√
k a, a = {major semiaxis}; see Problem 11, p.303, §4.10) (“0-th order in

the eccentricity”).

6. Show that in the context of Problem 5, the secular Hamiltonian h1, of the Hamiltonian
in Problem 5 is eccentricity independent even to first order in the eccentricity.
Does this mean that, to first order in the eccentricities, the Kepler ellipses remain fixed
in space? (Answer: no.) Show that they move quasi-periodically “without full precession”
(i.e., g1, g2 vary continuously with a small amplitude of oscillation, i.e., < 2π) to first order
in the eccentricities.

7. Show that to second order in the eccentricities, the secular Hamiltonian of Problems 5
and 6 depends both on the L’s and on the e’s (i.e., on the G’s) and has the form (without

explicitly computing fij ,) h1 = h
(0)
1 (L′

1, L
′
2)+e

′2
1 f11(L′

1.L
′
2, g

′
2−g′1)+2e

′

1e
′

2f12(L′
1.L

′
2, g

′
2−

g′1)+e
′2
2 f22(L′

1.L
′
2, g

′
2−g′1). Show that the above secular Hamiltonian is integrable and that

it says that, if h are nontrivial, the relative position of the perihelions precesses to O(e2).
(Hint: Use Problem 15, p.305, §4.10. Canonically change variables as

γ = g1 + 22, G =
G1 +G2

2
, eγ = g2 − g1, eG =

G1 −G2

2

and note that the Hamiltonian “effectively” takes the form of a Hamiltonian for a one-
dimensional system (integrable by quadratures or by the Hamilton-Jacobi method).)

8. In the context of Problem 7, attempt a concrete computation of fij and of the angular
velocity of the precession, assuming that the unperturbed motions take place on ellipses of
small eccentricity and with semiaxes a1, a2 such that a2 −a1 is “of the order” of a1 and a2
(i.e., with quite different semiaxes).

9. (i) Let Γ (L) ⊂ Rℓ be a cube centered at the origin and with side 2L. Let ν ∈ Zℓ, |ν| > 0

and let Γε(L) be the set of the points ω ∈ Γ (L) such that |ω·ν|
|ν| < ε. Show that the measure

of Γε(L) does not exceed ε
√
ℓ(2L
√
ℓ)ℓ−1. (Hint: Just look at the geometrical meaning of

the inequality |ω·ν|
|ν| < ε, the

√
ℓ arises from |ν| = Pℓ

i=1 |νi| ≤
√
ℓ(
Pℓ
i=1 |νi|2)

1
2 .)



478 5 Stability Properties for Dissipative and Conservative Systems

(ii) Deduce that the measure of the set ΓC of the points ω ∈ Γ (L) such that |ω · ν|−1 ≤
C|ν|ℓ, ∀ν 6= 0, has a complement with Lebesgue measure not exceeding

2C−1(2L
√
ℓ)ℓ−1

√
ℓ
X

|ν|>0

1

|ν|ℓ−1

(see, also, Problem 11).

10. Using Problem 9 show that ∪CΓC = eΓ ⊂ Γ (L) has the same Lebesgue measure of
Γ (L), i.e., (2L)ℓ, although its complement is dense.

11. Without using the Lebesgue-measure theory, infer from the inequalities of Problem 9
above that eΓ , in Problem 10, is a dense set in Γ (L).

12. Consider a time-dependent Hamiltonian with one degree of freedom: h0(A)+εf0(A, ϕ, t),
where (A, ϕ) ∈ R1 × T 1 and t ∈∈ T 1 is interpreted as the time appearing in a 2π-periodic
time-dependent perturbation to the system with Hamiltonian h0.
Develop a formal perturbation theory for the above system proving propositions analogous
to Propositions 16 and 17 of this section. (Hint: Use a time-dependent canonical transfor-
mation with generating function A′ϕ + Φ0(A′, ϕ, t) and proceed, as in this section, using
the Hamilton-Jacobi method.)

13. Consider the time-dependent system on R1 × T 1, A2

2
+ ε (cosϕ + cos(ϕ − t)), and

applying the results of Problem 12, remove the perturbation to O(ε2) near the points with
A = ω0 = 1

2
(1+
√

5) (see exercises and problems to §2.20 for the theory of the number ω0).

14. Same as in Problem 13, but to O(ε4). (Warning: The calculations are quite long.)

15. Let h(A) be a C∞ function defined on a sphere S̺(A0) ⊂ Rℓ with gradient ω(A) =
∂h(A)
∂A

bounded by |ω(A)| < E and such that the matrix Mij = ∂2h
∂Ai∂Aj

is invertible

for all A ∈ S̺(A0) and
Pℓ
i,j=1 |(M−1)ij | ≤ η < +∞. Suppose that the correspondence

A→ ω(A) is one to one between S̺(A0) and ω(S̺(A0)). Denote, for C > 0:

S̺(A0, C) = {A |A ∈ S̺(A0), |ω(A) · ν|−1 < C|ν|ℓ, ∀ |ν| > 0}

Show that there is B > 0, depending only on ℓ, such that

1 ≥ volS̺(A0, C)

volS̺(A0)
≥ 1− B (Eη̺−1)ℓ

EC

(Hint: Use the change of variable formula:

Z

S̺(A0,C)
dA ≡

Z

S̺(A0)
dA −

Z

S̺(A0)/S̺(A0,C)
dA

= vol (S̺(A0))−
Z

ω(S̺(A0))/S̺(A0,C)
|det

∂A

∂ω
| δω

≥ vol (S̺(A0))− ηℓ
Z

ω(S̺(A0)/S̺(A0,C))
dω

≥ vol (S̺(A0))− εℓ
X

ν 6=0

Z
|ω|<E

|ω·ν|/|ν|<C−1|ν|−ℓ−1

dω

≥ vol (S̺(A0))− ηℓC−1(2E
√
ℓ)ℓ−1

√
ℓ
X

|ν|>0

1

|ν|ℓ+1

and then recall that volS̺(A0) = const̺ℓ.)
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16. Let ω = (ω, 1) ∈ R2 be such that |ων1 + ν2| ≤ C (|ν1| + |ν2|)α for some α,C > 0.
Let f be a function on T 1 with Fourier coefficients fν 6= 0, ∀ ν 6= 0, e.g., f(ϕ) =
2
P∞
n=1 e

−ξn cosnϕ, ξ > 0. Consider the Hamiltonian system on R2 × T 2: Hε =
(ω1A1 + A2) + (ε2 + f(ϕ1)f(ϕ2)). Show that the Birkhoff formal series (5.10.42) are

hε(A
′) =(ωA1 + A2) + ε (A2 + f(ϕ1)f(ϕ2)), and

Φε(A
′,ϕ) =

∞X

k=1

εk
„ X

ν∈Z2,ν 6=0

e−ξ|ν|eiν·ϕ

−i (ων1 + ν2)

“ −ν2
ων1 + ν2

”k−1
«
,

and prove that the series for Φε does not converge. (Hint: Using the explicit solubility of
the equations for Hε, see Problem 1, §4.8, p.290, one sees that the passage to action-angle
variables for Hε must be singular for a dense set of values of ε: the singularities arise in
correspondence of the values of ε for which the formal sum of the Φε-series makes no sense
(to sum formally the series permute them).)

17. In the context of Problem 16, show that the function Φε, obtained by permuting
P
k andP

ν and summing the geometric series, makes sense and is analytic in A, ϕ for many values

of ε and, whenever this happens, Hε is indeed integrable by the canonical map generated

by Φε. (Hint: Use Problem 9 above to identify the values of ε which allow bounds of the

type |ων1 + (1 + ε)ν2|−1 ≤ C |ν|α, C, α > 0, |ν| > 0.)

5.11 Some Simple Properties of Holomorphic Functions.
Analytic Theorems for the Implicit Functions

In §5.10, we mentioned, without discussion, some properties of the analytic
functions. Such properties can be derived in the more general context of the
theory of holomorphic functions.

Such functions are basically defined as analytic functions of complex vari-
ables, i.e., a Cp-valued function f defined on an open subset W ⊂ Cℓ is holo-
morphic if it can be developed in an absolutely convergent power series around
each point of W .

For a more detailed discussion of some perturbation theory problems, it
is convenient to state the following definition which is general enough for our
purposes. It is a definition that is provided more with the aim of fixing some
notations rather than with the objective of developing the part of the holo-
morphic functions theory that we need. In this and in the following sections,
we suppose that the reader is familiar with the basic properties of holomorphic
functions, i.e., the Cauchy integral formula the theory of the Taylor-Laurent
expansions in power series, and the identity principle. Such properties will be
repeatedly used in §5.11 and §5.12.

Let ℓ, p, q be positive integers.

8 Definition. (i) We introduce the following notations: ∀a = (a1, . . . , αℓ) ∈
Zℓ+, ν = (ν1, . . . , νell) ∈ Zℓ,
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|a| =
ℓ∑

i=1

|ai|, |ν| =
p∑

i=1

|νi|. (5.11.1)

while if w = (w1, . . . , wℓ) ∈ Cℓ

|w| = max
1≤i≤q

|wi|, ||w|| =
q∑

i=1

|wi|. (5.11.2)

(ii) For A0 ∈ Cℓ, ̺ > 0, ξ > 0 and j = 1, . . . , p we set

Ŝ̺(A0) = {A |A ∈ Cℓ, |A−A0| < ̺ }
C(ξ) = { z | z ∈ Cp, e−ξ < |zj | < eξ },

C(̺, ξ;A0) = Ŝ̺(A0)× C(ξ).

(5.11.3)

The first two such sets will be called, respectively, the “complex multisphere”
with center A0 and radius ̺, and the “complex multiannulus”, with inner
radius e−ξ and outer radius eξ. If A0 is real, we define

S̺(A0) = {A |A ∈ Rℓ, |Ai −A0i| < ̺ } (5.11.4)

calling it the “real multisphere” with center A0 and radius ̺.
The set S̺(A0)× T ℓ will be identified to a subset of C(̺, ξ;A0) via the map

(A,ϕ) → (A, z), zj = ei ϕj (5.11.5)

(iii) If W ⊂ Cq is open and if F is a Cp-valued function, we say that F has
a convergent power series expansion around w0 ∈ W if there is a family of
Cp-vectors {F (a)(w0)}a∈Zq

+
such that for some ˜̺> 0:

F (w) =
∑

a∈Zq
+

F (a)(w0)(w −w0)
a, ∀ |w −w0| < ˜̺, (5.11.6)

having set

(w −w0)
a =

q∏

j=1

(wj − w0j)
aj , for a = (a1, . . . , aq), and (5.11.7)

∑

a∈Zq
+

|F (a)(w0)| ̺|a|(w0), ∀ ∀ ̺ < ˜̺ (5.11.8)

(iv) A function F is holomorphic in the open subset W ⊂ Cq if it has a
convergent power series around every point w ∈ W . In this case, one defines
the derivatives of F as

∂|a|F (w0)

∂wa
= a!F (a)(w0), ∀ w0 ∈W (5.11.9)
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if a!
def
=
∏q
j=1 aj !.

Observation. One calls Eq. (5.11.6) the Taylor series of F at w0, because of
Eq. (5.11.9).

9 Definition. Let ℓ, p, q be positive integers and A0 ∈ Rℓ and use the nota-
tions of Definition 8 above.
(i) Let f, g, h be three functions defined, respectively, on S̺(A0),S̺(A0) ×
T p, T p with values in Rq. We shall say that they are holomorphic in Ŝ̺(A0),
C(̺, ξ;A0), C(ξ) respectively if, identifying S̺(A0),S̺(A0)× T p, T p as sub-

sets of Ŝ̺(A0), C(̺, ξ;A0), C(ξ), as explained in Definition 8 (ii) above,
they can be extended to holomorphic functions f, g, h on the larger sets
Ŝ̺(A0), C(̺, ξ;A0), C(ξ).

The functions of the type f, g, h will be called “holomorphic” in Ŝ̺(A0),
C(̺, ξ;A0), C(ξ), respectively, and “real” on S̺(A0),S̺(A0) × T p, T p, re-
spectively. Sometimes the extensions f, g, h will still be called f, g, h, dropping
the bar.
(ii) If F is holomorphic on C(̺, ξ;AO) or on C(ξ), we define its “ϕ-
derivatives” by setting ∂

∂ϕk
= izk

∂
∂zk

, k = 1, . . . , p.

Observations.
(1) It is easy to deduce from the definition of an analytic function on V ×T ℓ
(see Definitions 13 and 14, p.336 and p.337, §4.13) that if f, g and h are an-
alytic on V or on V × T p, T p, respectively, then given A0 ∈ V , there exist
̺, ξ > 0 such that f is holomorphic in Ŝ̺(A0), g in C(̺, ξ;AO), and h in
C(ξ). In general, however, ̺p and ξ may be very small even if V is large.
(2) This definition is particularly useful because it provides a simple descrip-
tion of an important class of functions on T p or on S̺(A0)× T p, thinking of
T p as a subset of C(ξ) via the natural correspondence

ϕ = (ϕ1, . . . , ϕp) ∈ T p←→ z = (eiϕ1 , . . . , eiϕq) (5.11.10)

already pointed out several times.

The classical theorems on the theory of the holomorphic functions (Taylor
and Laurent expansions, Cauchy’s formula, identity principle, etc.) imply the
following proposition which we do not prove since it can be found, with other
symbols, in any elementary textbook on holomorphic functions.

18 Proposition. Let f, g, h be holomorphic functions on Ŝ̺(A0), C(̺, ξ;A0),
C(ξ), respectively, respectively, see Eq. (5.11.4), with values in Cq. Using the
notation of Definitions 8 and 9 and setting

z =

p∏

j=1

zνj , for ν ∈ Zp, z ∈ C(ξ) (5.11.11)
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(i) Sequences of vectors in Cq {f (a)}a∈Zℓ
+
, {g(a)

ν }a∈Zℓ
+
,ν∈Zp, {hν}ν∈Zp exist

such that

f(A) =
∑

a∈Zℓ
+

f (a) (A−A0)
a,

g(A, z) =
∑

a∈Zℓ
+
,ν∈Zp

g(a)
ν (A−A0)

azν ,

h(z) =
∑

ν∈Zp

hν zν .

(5.11.12)

(ii) Identifying g(A,ϕ) as g(A, z), and h(ϕ) with h(z) for all z = (eiϕ1 , . . .,
eiϕp), ϕ ∈ T p, then

f (a) =
1

a!

∂|a|f

∂Aa
(A0),

g(a)
ν =

1

a!

∫

T p

∂|a|g

∂Aa
(A0,ϕ)e−iν·ϕ

dϕ

(2π)p
,

hν =

∫

T p

h(ϕ)e−iν·ϕ
dϕ

(2π)p
.

(5.11.13)

(iii) Setting

|f |̺ = sup |f(A)|, |g|̺,ξ = sup |g(A, z)|, |h|ξ = sup |h(z)|, (5.11.14)

where the suprema are taken over the functions respective domains of defini-
tion [and Eq. (5.11.2) is used for || · ||], it is

|f (a)| ≤ |f |̺̺−|a|, |g(a)
ν | ≤ |g|̺,ξ̺−|a|e−ξ|ν|, |hν | ≤ e−ξ|ν|. (5.11.15)

(iv) If the coefficients of the series in Eq. (5.11.12) can be bounded by a
constant times, respectively, ̺−|a|, or ̺−|a|, or e−ξ|ν|, then the sums of the
series of Eq. (5.11.12) define holomorphic functions on Ŝ̺(A0), C(̺, ξ;A0),
C(ξ), respectively.
(v) The second of Eqs. (5.11.12) can also be written

g(A, z) =
∑

ν∈Zp

gν(A) zν (5.11.16)

with gν(A) holomorphic inŜ̺(A0) and such that its Taylor series around A0

is obtained by inspecting the second of Eqs. (5.11.12) and considering the sum
over a only. (vi) If f, g, h are real on S̺(A0), S̺(A0)×T p, T p for A0 ∈ Rℓ,
the f (a) coefficients are also real, while g

(a)
ν and hν complex conjugates to g

(a)
−ν

and h−ν respectively, and vice versa.
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Observations.
(1) Note that the convergence of the series of Eq. (5.11.12) stated in (i) follows
from Eq. (5.11.15) only if |f |̺, |g|̺,ξ, and |h|ξ are finite. This is, however, not
necessarily true in general so that (iii) and (iv) are not reciprocal statements.

(2) If F is holomorphic in a region W ⊂ Cq and w̃ ∈ W, Ŝ̺(w̃) ⊂ W , and

if we wish to estimate the derivatives ∂F (w̃)
∂wk

, we can use Eqs. (5.11.15) and

(5.11.13) as follows.
Here and below, we regard a matrix-valued function with values on the matri-
ces ℓ× q as a Cℓq-valued function,26 and consider F as a holomorphic function
on Ŝ̺(w̃). To bound the ℓ × q matrix ∂F

∂w (assuming that F is Cℓ-valued),
consider the first of Eqs. (5.11.13) and (5.11.15) with |a| = 1. It gives

|∂F
∂w

(w̃)| ≤
(

sup
w∈Ŝ̺(w̃)

|F (w)|
)
̺−1 ≤ sup |F (w)|

̺
, (5.11.17)

where the second supremum is over W . From this remark, it follows that

| ∂f
∂A
|̺′ ≤

|f |̺
̺− ̺′ , | ∂g

∂A
|̺′,ξ ≤

|g|̺,ξ
̺− ̺′ ,

|∂g
∂z
|̺,ξ′ ≤

|g|̺,ξ
e−ξ′ − e−ξ ≤ |g|̺,ξ

eξ

δ
,

| ∂g
∂ϕk
|̺,ξ′ ≡|izk

∂g

∂zk
|̺,ξ′ ≤ |g|̺,ξ

e2ξ

δ

(5.11.18)

for ̺′ < ̺, ξ′ < ξ, if δ = ξ − ξ′. Analogous inequalities hold for the higher

order derivatives, e.g., | ∂2f
∂A∂A |̺′ ≤ 2

|f |̺
(̺−̺′)2 [see Eq. (5.11.9)].

These simple estimates will be called “dimensional estimates”. In physics,
one says that a “dimensional estimate” is any estimate of the derivative of
a function F at a given point in terms of the function maximum in a region
divided by the distance of the point to the region boundary (“characteristic
magnitude of F” divided by a “characteristic length”). Recall that physicists
rightly believe that all functions (with, possibly, some exceptions) are analytic.

We now possess the terminology necessary to formulate the analytic im-
plicit function theorem. This theorem is a particularly simple and strong ver-
sion of the ordinary implicit function theorem valid when the defining function
is analytic. It will play a key role in the proof of Proposition 22 which, in turn,
is the heart of the proof of Proposition 15, p.460, (the KAM theorem) in the
analytic case.

The proof of the propositions that follow uses elementary aspects of the
theory of holomorphic functions and it will be discussed in Appendix N.
Propositions 19-21 are “analytic implicit function theorems”.

26 so that |M(w)| = supij |Mij(w)|, ||M(w)|| = Pij |Mij |.
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19 Proposition. Let ℓ > 0 be an integer, A0 ∈ Rℓ, and f be a Cℓ-valued
function holomorphic in the complex multisphere Ŝ̺(A0) and real on S̺(A0).
Consider the equation for A:

A−A0 + f(A) = 0. (5.11.19)

There exists a constant γ (one can take, e.g., γ = 28) such that if

γ |f |̺ < 1, (5.11.20)

Eq. (5.11.19) admits a unique solution A1 ∈ S̺(A0), i.e. A1 ∈ Rℓ and

|A1 −A0| < ̺. (5.11.21)

A corresponding proposition can be formulated for equations in T ℓ.
20 Proposition. Let p, ℓ > 0 be integers, let A0 ∈ Rℓ, and ̺, ξ, δ > 0. Let g
be an Rp-valued analytic function on S̺(A0)×T p holomorphic in C(̺, ξ;AO).
Consider the equation

ϕ′ = ϕ+ g(A,ϕ) (5.11.22)

thought of as an equation on T p parameterized by ϕ′ ∈ T p and A ∈ S̺(A0).
Then there exists a constant γ (e.g., γ = 28) such that:
(i) Equation (5.11.22) is soluble if

γ |g|̺,ξ e2ξδ−1 < 1 (5.11.23)

and admits a solution of the form

ϕ = ϕ′ +∆(A,ϕ′) (5.11.24)

with ∆ being an Rp-valued analytic function on S̺(A0)×T p holomorphic in
C(̺, ξ,A0).
(ii) The function ∆ can be bounded as

|∆|̺,ξ−δ| ≤ |g|̺,ξ. (5.11.25)

(iii) The only function inverting Eq. (5.11.22) and enjoying the properties (i)
and (ii) above is ∆.

Observations.
(1) The reader should note that the above two implicit function theorems
have “dimensional nature”, i.e., they just say what can be naively guessed.

In fact, in order to invert an implicit equation “close to the identity” like
Eq. (5.11.22), one expects to have to impose that the derivatives of g are small
compared to the derivatives of the identity map (i.e., small compared to 1).
This is precisely the meaning of Eq. (5.11.23): if we wish to invert inside the
annulus with external radius eξ+δ and internal radius eξ−δ, we estimate the
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gradient of g in the region by |g|̺,ξδ−1eξ, see Eq. (5.11.18). For ξ ≫ 1, this
is still not the same as Eq. (5.11.23) (while it is such for ξ ≤ 1). However, if ξ
is large, we are asking for the inversion of Eq. (5.11.16) in a very large region
and extra conditions stem out of the requirement of global invertibility27 (see
the proof).
(2) Proposition 19 is an infinite-dimensional version of the implicit function
theorem, since one can consider all the Taylor coefficients of f at A0 as pa-
rameters in Eq. (5.11.19). Also, Eq. (5.11.22) is susceptible to such an inter-
pretation.
(3) Note that the constant γ in Propositions 19 and 20 is ℓ and p-independent.
It is also the same in Propositions 19 and 20: but (this has been arranged so
as to avoid introducing too many (constants). The numerical value of γ is not
optimal.
(4) Proposition 20 is remarkable because it is a “global inversion” theorem.
The equation is posed on all of T p and not just locally.

A proposition analogous to Proposition 20 holds for the equation

w′ = w + G(w, z), (5.11.26)

where G is a Cℓ-valued function holomorphic on C(̺, ξ;A0) and real on
S̺(A0)× T p ⊂ C(̺, ξ;A0):

21 Proposition. Let ℓ, p > 0 be integers, A0 ∈ Rℓ and ̺, ξ, τ > 0, τ < 1.
Let G be an Rℓ-valued analytic function on S̺(A0) × T p holomorphic on
C(̺, ξ;A0).
Consider Eq. (5.11.26) as an equation for w parameterized by w′, z.
(i) There is a constant γ (e.g., again, γ = 28) such that if

γ |G|̺,ξ̺−1τ−1 < 1, (5.11.27)

Eq. (5.11.26) is soluble, ∀w′ ∈ Ŝ̺(A0) and admits a solution of the form

w = w′ + D(w′, z) (5.11.28)

with D holomorphic on C(̺e−τ , ξ;A0) real on S̺(A0)× T p.
(ii) The following bound can be put on D:

|D|̺e−τ ,ξ ≤ |G|̺,ξ. (5.11.29)

(iii) D is the only function inverting Eq. (5.11.26) and enjoying the properties
(i) and (ii) above.
(iv) Fixing w ∈ C(̺e−τ , ξ;A0), Eq. (5.11.28) yields the only w ∈ C(̺, ξ;A0)
verifying Eq. (5.11.26).

Observations.
(1) The above proposition makes sense, and is true, in a natural way if p = 0

27 Also, it makes a difference to bound ∂/∂ϕ rather than ∂/∂z for ξ large.
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(just drop everywhere z and the index ξ). Likewise, Proposition 20 makes
sense in a natural way if ℓ = 0 (just drop A and the index ̺ everywhere).
(2) Setting w′ = 0 in Eq. (5.11.26) as well as p = 0,A0 = 0 and applying
Proposition 21, one deduces Proposition 19 with A0 = 0. Since A0 = 0 is
clearly not restrictive, Proposition 19 is a corollary of Proposition 21.
(3) This proposition is clearly analogous to Proposition 20 and has, also, a
“dimensional nature”, see observation (1), p.484; more generally, the com-
ments made on Proposition 20 can be repeated with obvious modifications
for Proposition 21. An analogue of item (iv) in Proposition 21 could also be
formulated for Proposition 20, but it will not be needed.

5.11.1 Problems and Exercises

1. After studying the proof in Appendix N of Proposition 20, find a better value for the
constant γ.

2. Same as Problem 1 for Proposition 21 and for its corollary, Proposition 19.

3. Apply Proposition 20 to invert the equation ℓ = ξ− ε sin ξ, ξ ∈ T 1, ℓ ∈ T 1, appearing in
the theory of the two-body problem, see Problem 13, p.304, §4.10. Here ε is a parameter,
0 < ε < 1 (“eccentricity”). Find for which values of ε ∈ R the above equation can be
globally inverted if the estimates in the theorem are applied.

4. Same as Problem 3 with the new γ computed in Problem 1.

5. Show that the equation in Problem 3 can be inverted for all ε ∈ [0, 1) in the sense that
there is a function g analytic on T 1 such that ξ = ℓ− g(ℓ), for each given ε ∈ [0, 1). (Hint:

Do not use Proposition 20 directly.)

6.* (Levi-Civita) Check that g(ℓ) is holomorphic in the unit disk |η| < 1 if

η
def
=

ε e
√

1−ε2

1 +
√

1− ε2

(from Vol. 2, p. 321 in [24]). Draw with the help of a computer the curve in the complex

plane of the ε’s such that |η| = 1 and check that its point closest to the origin is imaginary

and at a distance εL ∼ 0.662... It is the radius of convergence in ε of g(ℓ). (“Laplace limit”,

p.304). (Hint: Given ε ∈ C the Jacobian of the map is 1 − ε cos ξ and is 0 for cos ξ = 1
ε
.

This means that the equation ζ = ze−ε sin ξ, with ζ = eiℓ, z = eiξ, has a solution with ℓ

real if | cos ξ + i sin ξ|e−iε sin ξ > 1. Since cos ξ = 1
ε

sin ξ = ±1
ε

√
ε2 − 1 this is implied by

η = ε e

√
1−ε2

1+
√

1−ε2
< 1. Check that the singularity of g in ε closest to the region occurs for

ε = i̺ and ̺

1+
√

1+̺2
e
√

1+̺2 = 1, which defines the radius of convergence εL of g in powers

of ε, i.e. the Laplace limit.)
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5.12 Perturbations of Trajectories. Small Denominators
Theorem

Another perturbative problem that could be studied is the following. Let
(A,ϕ) → h0(A) be an analytic Hamiltonian on V × T ℓ which we suppose
such that the matrix

M0(A)ij =
∂2h0

∂Ai∂Aj
(A) (5.12.1)

has determinant 6= 0 on V × T ℓ (“integrable non isochronous system”).
Given A0 ∈ V , the torus {A0} × T ℓ is an ℓ-dimensional torus invariant

for the motion associated with the Hamiltonian h0. The Hamiltonian flow
on the phase space V × T ℓ induces on the torus a quasi-periodic flow ϕ →
ϕ+ ω0 t, t ≥ 0, with pulsations

ω0 =
∂h0

∂A
( A0)

def
= ω(A0). (5.12.2)

If f0 is an analytic function on V ×T ℓ, it is natural to ask whether the motions
on V × T ℓ associated with the perturbed Hamiltonian,

H0(A,ϕ) = h0(A) + f0(A,ϕ), (5.12.3)

leave a torus invariant, inducing on it a quasi-periodic flow with pulsations
ω(A0), i.e., “with the same spectrum” as before. One could call this problem
“the spectrum-conservation problem”.

Intuitively, one could expect that a torus on which a quasi-periodic mo-
tion with pulsations ω(A0) takes place will continue to exist but it will be
“deformed” inside V × T ℓ if compared to the one relative to the f0 = 0 case,
at least if M0(A0) is invertible28 and f0 is small.

This perturbation problem differs from the one of the preceding sections;
the latter was in fact concerned with the study of the perturbations of motions
with given initial datum. A whole family of motions is now considered, which
enjoy a certain common property, namely, quasi-periodicity with pulsations
ω(A0), and we ask whether a family of motions with the same property still
exists after perturbation. Proposition 15 of §5.9 provides an answer, in some
sense affirmative.

A proposition will now be formulated which, as it appears from the obser-
vations that follow it, also proves important parts of Proposition 15 and gives
all the ingredients necessary for its full proof in the analytic case.

The proof of Proposition 22 that follows is taken from Arnold and is specif-
ically fit for the analytic case under examination. The analogous proposition

28 In the case ω(A) ≡ ω0, ∀A ∈ V and, hence, M0(A) ≡ 0 it is easy to give a coun-
terexample. Let ℓ = 1, h0(A) = A so that ω(A) ≡ 1 and M0 ≡ 0. Let f(A, ϕ) ≡ εA.
Then the unperturbed motions have pulsation 1, while the perturbed ones have pulsation
(1 + ε) 6= 1, if ε 6= 0.
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in the C(k)-differentiable case (with k large enough) is due to Moser, [33], and
is based on a technically different method.

Before stating Proposition 22, which will be called “small denominators
theorem” for reasons manifest from its proof (or “Arnold’s theorem”, [2]),
some notations are needed, see also Eqs. (5.11.1)-(5.11.3), (5.11.14).

10 Definition. (i) If a ∈ Zℓ+, ν ∈ Zℓ, let |a| = ∑ℓ
i=1 |ai|, |ν| =

∑p
i=1 |νi|.

(ii) If w ∈ Cq, we set |w| = max1≤i≤q |wi|, ||w|| = ∑q
i=1 |wi|.

A ℓ × ℓ matrix M will be regarded as an element of Cq with q = ℓ2 so that it
will make sense to write |M |, ||M ||.
(iii) If f, h are holomorphic in C(̺, ξ;A0), Ŝ̺(A0) respectively29 and take val-
ues in Cq let [see Eqs. (5.11.11) and (5.11.3)]

|f |̺,ξ =sup(A, z)|, ||f(A, z)||,
|h|̺ =sup |h(A)|, ||h||̺ = sup ||h(A)||

where the suprema are taken over the domains of the various functions.

The small-denominators theorem can then be formulated as follows.

22 Proposition. Let h0, f0 be two real analytic functions S̺(A0)× T ℓ holo-
morphic in C(̺0, ξ0;A0), ξ0 < 1. Assume that h0 depends only on the action
variables A in (A,ϕ) ∈ S̺(A0)× T ℓ and that the matrix M0 of Eq. (5.12.1)
is nonsingular. Suppose that ω0 = ∂h0

∂A (A0) has the “non resonance” property:

|ω0 · ν|−1 ≤ C|ν|ℓ, ∀ ν ∈ Zℓ, |ν| > 0 (5.12.4)

for some C > 0 (“resonance parameter”). Let E0, η0, ε0 be such that

E0 >
∣∣∂h0

∂A

∣∣
̺0,ξ0

, η0 > ||M−1
0 ||̺0 , ε0 >

∣∣∂f0
∂A

∣∣
̺0,ξ0

+
1

̺0

∣∣∂f0
∂ϕ

∣∣
̺0,ξ0

(5.12.5)

Then there exist constants B, a, b, c > 0, only depending upon the number ℓ of
degrees of freedom,30 such that if

q
def
= BC ε0 (CE0)

a (η0E0̺
−1
0 )bξ−c0 < 1 (5.12.6)

one can find in S̺(A0)× T ℓ a torus T (ω0) with parametric equations

A =A0 +α(ϕ′),

ϕ =ϕ′ + β(ϕ′),
ϕ′ ∈ T ℓ (5.12.7)

and such that:
(i) T (ω0) is invariant for the evolution in S̺(A0) × T ℓ associated with the
Hamiltonian (5.12.3). On T (ω0) the evolution is described by the map

29 See (5.11.3) for the meaning of the symbols.
30 e.g., a rather rough, though not “totally absurd”, estimate says that one can take a =
b = 14, c = 2(10ℓ+ 6), B = (12ℓ)!1040ℓ (very far from optimal).
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ϕ′ → ϕ′ + ω t, t ∈ R+ (5.12.8)

and is therefore quasi-periodic with pulsations ω0.
(ii) The functions α,β are analytic on T ℓ and

̺−1
0 |α(ϕ′)|+ |β(ϕ′)| ≤ q. (5.12.9)

Observations.
(1) Using the notations of Proposition 18, p.481, §5.11, Proposition 18, Eqs.
(5.11.16) and (5.11.12), imply that f0 can be written as

f0(A, z) =
∑

ν∈Zℓ

f0ν(A) zν =
∑

a∈Zℓ
+
,ν∈Zℓ

f
(a)
0ν (A−A0)

azν , (5.12.10)

where f0ν(A) is the sum of the series in a in the right-hand side of Eq.

(5.12.10) and is holomorphic in Ŝ̺(A0).
Then the derivatives ∂/∂ϕ appearing in Eq. (5.12.5) can be simply defined as

∂/∂ϕk
def
= i zk∂/∂zk (see Definition 9 (ii), p.481).

(2) It follows from the theory of the Taylor-Laurent expansions for holomor-
phic functions that if g1, . . . , gr are r real analytic functions on V ×T ℓ, V ⊂ Rr
open, it is possible to find two functions A → ̺(A), A → ξ(A) positive and
continuous on V such that S̺(A) ⊂ V, ∀A ∈ V , and, furthermore, such that
g1, . . . , gr are holomorphic in C(̺(A), ξ(A);A), see Definition 8, p.479, and
|gj |̺(A),ξ(A) are continuous functions of A in V , j = 1, . . . , r.
Therefore Proposition 22 could be formulated in an apparently more general
form by only requiring the analyticity of h0, f0,M

−1
0 in Ŝ̺(A0) × T ℓ rather

than their holomorphy in C(̺, ξ;A0).

(3) An elementary result of measure theory implies that, given C > 0 and
supposing V bounded, the set V (C) of the points A ∈ V such that

|ν · ω(A)|−1 ≡
∣∣ν · ∂h0(A)

∂A

∣∣−1 ≤ C|ν|ℓ, ∀ ν ∈ Zℓ, |ν| > 0

has a Lebesgue measure µ(V (C))−−−−−→
C→+∞ µ(V ) if M0(A)−1 exists, ∀A ∈ V ;

see Problems 9 and 10 to §5.10, p.477. It follows that for all A’s outside a set
of zero Lebesgue measure, there is a number C, depending on A, such that the
above inequality holds. The question of determining or estimating a number
C such that C > supV 06=ν∈Zℓ |ν · ω|−1|ν|−ℓ is, for a given ω, an interesting
and difficult number-theoretic problem. Some of its aspects are discussed in
detail in the problems of §2.20.

(4) Suppose f0 = λf̃0, with f̃0 λ-independent, and fix a set Ṽ ⊂ V , bounded
and closed. Using the notations of the Observation (2) let



490 5 Stability Properties for Dissipative and Conservative Systems

̺0 = min
A∈V

̺(A), ξ0 = min
A∈V

ξ(A),

E0 = max
A∈V

|∂h0

∂A
|̺(A), η0 = max

A∈V
||M−1

0 ||̺(A).

Then apply Proposition 22 to the Hamiltonian system described by Eq.
(5.12.3) in S̺0(A0)×T ℓ with A0 ∈ Ṽ (C), see Observation (3) above. By Eq.
(5.12.6), one immediately deduces that for λ small, the perturbed Hamilto-
nian system admits simultaneously coexisting invariant tori T (ω(A0)), ∀A0 ∈
Ṽ (C). Such tori will be located geometrically close to the unperturbed tori,
by Eq. (5.12.9).
This means that the “less resonant” the pulsations ω of the unperturbed quasi-
periodic motions,31 the larger the perturbations intensity λ has to become
before it can possibly succeed in destroying these motions and the invariant
tori on which they take place.

(5) Observations (1)-(4) above show that the statement (i) of Proposition 15,
p.460, §5.9, and the statement that W (ε) 6= ∅ follow from Proposition 22.
From the proof of Proposition 22, however, all of Proposition 15 follows with
some effort, in the analytic case. We shall not discuss this problem, (see for
instance [39], [12], [21]).

(6) The condition (5.12.6) involves only the derivatives of h0 and f0: this is
natural since only such functions appear in the equations of motion.
Also, it should be noted that the nature of the condition (5.12.6) is quite
simple: given h0, f0,A0, one can form the quantities E0, ε0, C and, with them,
the “dimensionless quantities” Cε0, CE0, η0̺

−1
0 E0, ξ0 in terms of which all the

other dimensionless quantities can be formed. It can be seen that

CE0 ≥ 1, η0̺
−1
0 E0 ≥ 1, (5.12.11)

see Problem 1 at the end of the section. Then Eq. (5.12.6) just says that the
perturbation strength Cε0, has to be small compared to the other “small”
dimensionless quantities (CE0)

−1, (η0̺
−1
0 E0)

−1 and ξ0 which are relevant to
the problem.
Note that in the above argument, the parameters “relevant to the problem”
are just E0, ε0, C, ̺0, ξ0, η0: this is, in fact, not obvious and, a priori, one

might expect that other quantities may be relevant, like F0 = |∂2h0

∂A2 |̺0 or

F̃0 = |∂3h0

∂A3 |̺0 , etc. All that the above argument says is that if the results
of Proposition 22 hold under conditions that just involve E0, ε0, C, ̺0, ξ0, η0,
then it is not surprising that such conditions can take the form of Eq. (5.12.6),
i.e., the simplest imaginable form.

(7) The condition η0 < +∞ or something like it must be necessary: in fact,
for isochronous systems the above theorem cannot hold. Just consider ℓ =

31 i.e., the smaller C is.
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1, h0(A) = A, f0(A,ϕ) = εA; in this case all the perturbed motions have
pulsations ω = 1 + ε and none = ω0 = 1. The parameter η0 will be called
the “anisochrony parameter” and a system for which η0 < +∞ is said to be
“anisochronous” near A0.
The systems of harmonic oscillators are strictly isochronous, and the theorem
does not directly apply to them.
However, if h0(A) = ω0 ·A and if ω0 verifies Eq. (5.12.4), then the theorem
can still be indirectly applied under some additional assumptions. In fact, let
f0 = λf̃0 with f̃0 λ-independent. Assume that

η̃0 = ||( ∂f̃00
∂A∂A

)−1|| < +∞ (5.12.12)

where f̃00 denotes the average of f0 over T ℓ, i.e., its Fourier coefficient with
ν = 0 [see also Eq. (5.11.16)]. Now apply Proposition 17, p.469, to change
variables completely canonically and to transform the problem into that of
the analysis of the systems with Hamiltonian

h′0(A) + λ(n+1)f ′0(A,ϕ), (5.12.13)

where h′0, f
′
0 are holomorphic in C(1

2̺0,
1
2ξ0;A0) and in the variable A for λ

close to zero, see Eq. (5.10.27); choose n as n = aℓ+ b+ ℓ, a and b being the
constant in Eq. (5.12.6). Also, from Eq. (5.10.41), we see that

h′0(A) = h0(A) + λf̃00(A) + λ2h̃(A), (5.12.14)

where h̃ is analytic in λ (actually, it is a polynomial) and in A, near A0.
Therefore, if λ is small enough, the quantities E′0, η

′
0, ε
′
0 such that

E′0 ≥|
∂h′0
∂A
|̺0/2, η′0 ≥ ||(

∂2h′0
∂A∂A

)−1||̺0/2,

ε′0 ≥λbℓ+1
(
|∂f
′
0

∂A
|̺0/2, ξ0/2 +

2

̺0
|∂f
′
0

∂ϕ
|̺0/2, ξ0/2 +

2

̺0

) (5.12.15)

can be chosen so that for a suitable K > 0, depending on E0, ε0, ̺0, ξ0 but
not on λ, and ∀λ small:

E′0 ≤ 2E0, η′0 ≤ 2η̃0λ
−1, ε′0 ≤ Kλbℓ+1. (5.12.16)

Consider, next, the points A′0 ∈ S 1
2̺0

(A0) with ω′(A′0) =
∂h′

0

∂A (A′0) such that

|ω′(A′0) · ν|−1 ≤ Cλ−ℓ|ν|ℓ, ∀ ν ∈ Zℓ+, |ν| > 0 (5.12.17)

Using the results of the Problems 9 and 15, §5.10, p.477 and 478, and the
estimate on η′0, it is possible to see that such points actually exist and fill
a considerable part of S 1

4 ̺0
(A′0) (in fact, their ensemble forms a set whose

measure approaches that of S 1
4̺0

(A′0) itself as C →∞, uniformly in λ).
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Proposition 20 can be applied to h′0 +λbλ+ℓ+1f ′0, regarded as holomorphic on
C(1

4̺0,
1
4ξ0;A0) with A′0 verifying Eq. (5.12.17), and Eq. (5.12.6) becomes

BCλ−ℓKλaℓ+bℓ+1(2λ−1E0)
a(2η̃0λ

−14̺−1
0 2E0)

b(4ξ−1
0 )c < 1

which can be fulfilled for λ small.
This could be interpreted as saying that the quasi-periodic motions with A′0
such that Eq. (5.12.17) holds are not destroyed by the perturbation, but sur-
vive with a slightly modified pulsation (since ω′(A′0) = ω0 + O(λ)), running
on slightly deformed tori.

(8) So Observation (7) shows that the non isochrony condition, η0 < +∞ ,
can be essentially weakened. One can ask whether this is the case for the “non
resonance” condition C < +∞ as well. The whole discussion of perturbation
theory, §5.10, suggests that this is not the case.
In fact, by considering some extreme cases, it appears that one cannot go
too far toward weakening the conditions. Consider a harmonic isochronous
resonating oscillators in R3:

H(p,q) =
1

2
(p2 + q2). (5.12.18)

and use action-angle coordinates (A,ϕ) ∈ (R/+0)33 × T 3 to describe (most
of) the motions via the Hamiltonian32

h0(A) = A1 +A2 +A3

on (0,+∞)3×T 3. A further completely canonical change of coordinates, A→
Ã, ϕ→ ϕ̃:

Ã1 =A1 +A2 +A3, ϕ̃1 = ϕ1,

Ã2 =A2, ϕ̃2 = ϕ2 − ϕ1,

Ã3 =A3, ϕ̃3 = ϕ3 − ϕ1,

(5.12.19)

(see Problem 33, §3.11, p.232) transforms the Hamiltonian (5.12.18) into

h̃0(Ã) = Ã1, (Ã, ϕ̃) ∈ (0,+∞)3 × T 3. (5.12.20)

Let f0(Ã2, Ã3, ϕ̃2, ϕ̃3) be an analytic non integrable Hamiltonian on V ×T 2 ⊂
(0,+∞)2 × T 2: its existence is not obvious, but we state without proof that
it exists and that it can be chosen so that it produces non quasi periodic
motions.33 Then the system

h̃0(Ã) + εf0(Ã2, Ã,ϕ̃2, ϕ̃3) (5.12.21)

32 See exercises for §4.1.
33 An example could be constructed on the basis of Observation (3), p.336, but the discus-

sion is quite long.
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cannot be integrable as, manifestly, the coordinates corresponding to the de-
grees of freedom with indices 2 and 3 verify the equations with Hamiltonian
εf0 which gives rise, for ε 6= 0, to motions coinciding with those of f0, up to
a change of scale in time and which are not quasi periodic, i.e., not integrable
by criterion (i), p.353.
The example shows why resonances can be important. In a resonant situation,
it happens that some degrees of freedom of the system “do not move at all”
as can be seen by suitable changes of coordinates. Hence, upon perturbation,
their motion will be entirely governed by the perturbation and it will therefore
become important whether or not the perturbation by itself is integrable.
If the perturbation by itself describes an integrable system in the phase space
region around a resonant torus of the unperturbed system, the above argu-
ment suggests that something could, nevertheless, be done. This is in fact the
situation found in celestial mechanics in the vicinity of the unperturbed tori
corresponding to orbits of small eccentricity and small inclination. As shown
in §5.10, Observation (3), p.473, in this situation one can set up some per-
turbation scheme to compute the secular perturbations. The scheme can lead
to a rigorous proof of tori conservation (under suitable assumptions on the
phase-space region which is considered). This proof is in a celebrated paper
by Arnold, [3].
Of course, in the above discussion, one could have directly started from Eqs.
(5.12.20) and (5.12.21), but we thought that starting from a physical system
would be easier for the reader. On the other hand, the choice of R3 is essen-
tial to the argument: if we had chosen R2, the argument could have failed
since only Ã2, ϕ̃2 would have been present, i.e., f0 would have described a
one-degree-of-freedom system (which is “necessarily”34 integrable).

(9) The above observation shows that the non resonance condition is essential
in a case in which the resonance is very manifest, i.e., the unperturbed system
is isochronous and resonating. However, one could think that the non inte-
grability phenomenon might be only related to isochronous resonances: if a
system is anisochronous one might argue that the perturbation will cause the
motion to wander around in phase space, keeping it away from the resonances
most of the time. The fallaciousness of this way of reasoning is made clear by
an example that goes back to Poincaré. Consider the system on R2 × T 2:

H(A1, A2, ϕ1, ϕ2) =
1

2
(A2

1 +A2
2) + ε f(ϕ1, ϕ2), with (5.12.22)

g(ϕ2 − ϕ1)
def
=

∫ 2π

0

f(ϕ1 + ψ, ϕ2 + ψ)
dψ

2π
= not constant (5.12.23)

To fix the ideas we shall take f(ϕ1, ϕ2) = 1 − cos(ϕ2 − ϕ1): in this case Eq.
(5.12.22) has a simple physical meaning, as it describes two points ideally

34 See the statement (19), p.363, and §2.7 for general conditions of integrability.
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bound to a unit circle attracting each other via a harmonic force. The reader
should, as an exercise, understand the physical meaning of the argument below
and why it can be immediately extended to the general case if (5.12.23) holds.
For ε = 0 all the motions on the torus {A0} × T 2, A0 = (1, 1), are periodic
with pulsations ω0 = A0 = (1, 1), so the torus is resonant.
Suppose, per absurdum, that the torus is not destroyed for small ε, in the
sense that there exists an invariant torus (i.e., invariant with respect to the
perturbed motion) with parametric equations:

A =A0 +α(ϕ′),

ϕ =ϕ′ +α(ϕ′),
(5.12.24)

where α,β are R2-valued functions in C∞(T 2), and that the torus given by
Eq. (5.12.24) is close to the unperturbed torus for ε small:

γ(ε) = max |α(ϕ′)|̺−1
0 + max |β(ϕ′)| −−−→ε→0 0. (5.12.25)

Suppose also that the motion on the torus in Eq. (5.12.24) is described by
ϕ′ → ϕ′′ + ω t, ω = (1, 1) = A0, i.e., assume that the perturbed torus is run
periodically with the same spectrum as that corresponding to the unperturbed
torus {A0} × T 2. Write the Hamiltonian equations for h0 + εf and subtract
the two equations for A1 and A2:

Ȧ2 − Ȧ1 = −2ε sin(ϕ2 − ϕ1). (5.12.26)

Then integrate both sides between t = 0 and t = 2π, assuming that to have
computed them on a motion developing on the torus of Eq. (5.12.24) with
initial datum corresponding to ϕ′ ∈ T 2. Since the motion is periodic, by
assumption, with period 2π (ω0 = (1, 1)), it is

0 = −2ε

∫ 2π

0

sin(ϕ2 − ϕ1)dt (5.12.27)

=− 2ε

∫ 2π

0

sin[ϕ′2 − ϕ′1 + β2((ϕ
′
1 + t, ϕ′2 + t))− β1((ϕ

′
1 + t, ϕ′2 + t))] dt

=− 4πε([sin(ϕ′2 − ϕ′1)] + 2γ̃(ε))−−−→ε→0 ∼ −4πε sin(ϕ′2 − ϕ′2),

where γ̃(ε) ∈ [−γ(ε), γ(ε)] is suitably chosen. This is absurd if ϕ′2−ϕ′1 6= 0, π
and shows that the torus of Eq. (5.12.24) cannot exist as an invariant torus
run periodically with pulsation ω0 = (1, 1). The resonating torus correspond-
ing to A0 = (1, 1) is “destroyed” upon perturbation, no matter how small.
The argument shows that the torus is “destroyed”, but does not show that
all the periodic motions with period 2π are destroyed. For instance if ϕ1 = ϕ2

or ϕ1 = ϕ2 + π we form, together with A1 = A2 = 1, two sets of initial data
evolving periodically with period 2π and, topologically, such sets are two cir-
cles (i.e., like T 1 instead of T 2).
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This example is interesting because it considers a case in which all the as-
sumptions of Proposition 22 hold except the non resonance condition (5.12.4),
thereby showing its necessity. However, it does not provide an example as
“shocking” as the one of observation (8), since the perturbed system still ex-
hibits only quasi-periodic motions or motions with rather trivial asymptotic
behavior.35 Much more interesting in this respect would be the case when f
in Eq. (5.12.23) is replaced by a function really depending on both ϕ1, and
ϕ2, not only on ϕ2 − ϕ1. In such a case, one expects to find some motions
with very complex asymptotic behavior near a resonating unperturbed torus.

(10) Observations (7)-(9) above clarify the necessity of the assumptions in
Proposition 22. They can be summarized as follows: non resonating quasi-
periodic motions on ℓ-dimensional tori are preserved, in anisochronous sys-
tems, in the presence of small perturbations; they are also preserved in
isochronous non resonating systems for all the non isochronous small per-
turbations (modulo a small change in the frequencies). Resonating motions
on ℓ-dimensional tori are generally destroyed by small perturbations in both
the isochronous and the non isochronous cases.

(11) It is important that the reader who is about to read the following proof
realizes that all the very numerous inequalities that will be met can easily
be guessed on “dimensional grounds”, i.e., using what we called in §5.11,
Observation (2), p.483, “dimensional estimates”. In this way, one can easily
check the calculations (which we give in great detail only for completeness
since this book is supposed to be elementary).
The possibility of simple dimensional estimates is what makes the proof in
the analytic case easy to visualize.
In the upcoming proof no attention is paid to optimal estimates, nor to the
evaluation of the various constants. However, in principle, the proof below
does not contain any crude approximation, and if the constants are evaluated
with care it should give results which are optimal in the given generality of
the assumptions.
This, of course, does not mean that in particular cases the estimates could
not be greatly improved.
Finally let us point out to the reader familiar with present trends in statistical
mechanics and field theory that the proof below yields a nice example of a
vast class of theorems which can be proved by what has become known in
physics as the “renormalization group method”.

Proof. We think of the unperturbed Hamiltonian h0 and the perturbation
f0 as a pair of holomorphic functions on C(̺0, ξ0;A0) ⊂ C2ℓ, real on S̺0×T ℓ,
see Definition 9, p.481 487, §5.11. To this pair we associate the “characteristic
numbers” E0, η0, ̺0, ξ0, ε0 verifying Eq. (5.12.5).

We have already noted that [see Eq. (5.12.11)]

35 as can be seen by the completely canonical change of variables A = 1
2
(A1 + A2), B =

1
2
(A1 −A2z), ϕ = ϕ1 + ϕ2, ψ = ϕ1 − ϕ2, (exercise).
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η0̺
−1
0 E0 ≥ 1, CE0 ≥ 1. (5.12.28)

In the course of the proof, we shall have to “give up” some analyticity in the
A and ϕ variables in order to make dimensional estimates. The amount of
analyticity that is given up is, to a great extent, arbitrary: we introduce some
“analyticity loss” parameters δ0 > δ1 > . . . which will be used to describe
precisely the analyticity loss. To be definite, let

δk =
1

24

ξ0
(1 + k)2

(5.12.29)

so that 5
∑∞
k=0 δk < ξ0 < 1. For simplicity, assume that Cε0E < 1.

The identification of ϕ = (ϕ1, . . . , ϕℓ) ∈ T ℓ with z = (eiϕ1 , . . . , eiϕℓ) ∈ Cℓ
will be often used, while also freely using an “angular notation” for z even
if z is not on the product of the ℓ unit circles. In this case, ∂/∂ϕk means
izk∂/∂zk, see Definition 9 (ii), p.481. Also, it will be convenient to write
ei∆ ≡ (ei∆1 , . . . , ei∆ℓ) and z ei∆ ≡ (z1e

i∆1 , . . . , zℓe
i∆ℓ) for ∆ ∈ Cℓ. Such

conventions greatly simplify the notations.
The proof proceeds by applying perturbation theory along the lines of

§5.10. Since the first problem is that f0 does not fulfill the assumptions of
Proposition 17, we shall divide f0 into two parts: one very small O(ε20) and
the other fulfilling the assumptions of Proposition 17, i.e., with only finitely
many Fourier components (“Arnold regularization”).

Then we shall apply Proposition 17 to find a canonical transformation
changing the Hamiltonian into a “renormalized” one with an integrable part
h1(A) plus a perturbation f1(A,ϕ) with f1 of O(ε20)). Afterwards, we proceed
to find a point A1 such that ∂h1

∂A (A1) = ω0, and we shall again be in a position
to begin the procedure all over again, provided we control the new charac-
teristic parameters E1, ε1, ̺1, ξ1, η1. Basically, the whole argument is reduced
to searching for an expression of E1, ε1, ̺1, ξ1, η1 in terms of E0, ε0, ̺0, ξ0, η0
(“Kolmogorov’s iteration”).

To reduce f0 to a trigonometric polynomial plus a small remainder, intro-
duce the “ultraviolet cut off”:

N0 =
2

δ0
log

1

Cε0δℓ0
> 1 (5.12.30)

and define the “regularized perturbation”

f
(≤N0]
0 (A,ϕ)

def
=

∑

ν∈Zℓ, |ν|≤N0

f0ν(A) ei ν·ϕ, (5.12.31)

using for f0 the notation of Eqs. (5.11.16), p.482. Let f [>N0] def= f0 − f (≤N0].

The choice of N0 has been made so that f
[>N0]
0 is indeed of O(ε20). This

can be seen by applying the estimates of Eqs. (5.11.15) to the functions ∂f
∂A
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and ̺−1
0

∂f0
∂ϕ , holomorphic in C(̺0, ξ0;A0), regarded as function on C(ξ) pa-

rameterized by A ∈ Ŝ̺0(A0), ∀ ν ∈ Zℓ, ∀ i = 1, . . . , ℓ,

∣∣∂f0ν
∂A

∣∣ ≤ ε0 e−ξ0|ν|, |νif0ν | ≤ ε0 ̺0 e
−ξ0|ν|, (5.12.32)

by the third of Eqs. (5.11.15). Also note that by item (v) Proposition 18, p.481,

the functions ∂f0ν(A)
∂A and νi f0ν(A) are ∀ν ∈ Zℓ, ∀ i = 1, . . . , ℓ, holomorphic

on Ŝ̺0 (A0). Just apply (v) to the functions g = ∂f0
∂A and g = ∂f0

∂ϕ .

Equation (5.12.32) allow us to bound f
[>N0]
0 and f

[≤N0]
0 as follows. There

exist B1, B2, 1 ≤< B1 ≤ B2 such that

∣∣∂f
[≤N0]
0ν

∂A

∣∣
̺0,ξ0−δ0 +

1

̺0

∣∣∂f
[≤N0]
0ν

∂ϕ

∣∣
̺0,ξ0−δ0 ≤ B1ε0δ

−1
0 ,

∣∣∂f
[>N0]
0ν

∂A

∣∣
̺0,ξ0−δ0 +

1

̺0

∣∣∂f
[>N0]
0ν

∂ϕ

∣∣
̺0,ξ0−δ0 ≤ B2ε

2
0C.

(5.12.33)

These estimates follow by substituting the bounds given by Eq. (5.12.32) into

Eq. (5.12.31) or into the analogous expression for f
[>N0]
0 , after the appropriate

differentiations. For instance, consider the second of Eqs. (5.12.33). One has,
∀ (A, z) ∈ C(̺0, ξ0 − δ0;A0),

∣∣∂f
[>N0]
0ν (A,ϕ)

∂A

∣∣ =
∣∣ ∑

ν∈Zℓ

|ν|>N0

∂f0ν(A)

∂A
eiν·ϕ

∣∣ ≡
∣∣ ∑

ν∈Zℓ,
|ν|>N0

∂f0ν(A)

∂A
zν
∣∣

≤
∑

ν∈Zℓ, |ν|>N0

ε0 e
−δ0|ν| ≤ ε0 e−

δ0
2 N0

∑

ν∈Zℓ, |ν|>N0

ε0 e
− 1

2 δ0|ν|

= Cε20δ
ℓ
0

(1 + e−
1
2 δ0

1 + e+
1
2 δ0

)ℓ ≤ B′Cε20, cr

(5.12.34)

where in the first equality, we use the symbolic but suggestive “angular nota-
tion” for z, and B′ > 0 is a suitable constant. Similarly,

∣∣∂f
[>N0]
0ν (A, z)

∂ϕ

∣∣ ≡
∣∣ ∑

ν∈Zℓ

|ν|>N0

ν f0ν(A)zν
∣∣ ≤ ε0̺0

∑

|ν|>N0

e−δ0|ν| ≤ B′Cε20̺0.

(5.12.35)
Hence, the second of Eqs. (5.12.33) follows from Eqs. (5.12.34) and (5.12.35).
The first of Eqs. (5.12.33) follows from the same type of arguments.36

36 One could take, say, B1 = B2 = 2 (4
√
e)ℓ, because 1+e

− 1
2

δ0

1+e
− 1

2
δ0

< 4
√
e

δ0
, if δ0 < 1.
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Following the ideas of perturbation theory, a canonical change of variables
will be constructed using, as in the proof to Proposition 16, §5.10, p.466, a
generating function of the form (A′,ϕ) → A′ · ϕ + Φ0(A

′,ϕ), where ϕ0 is
defined on a suitable set S˜̺0 × T

ℓ as

Φ0(A
′,ϕ) =

∑

ν∈Zℓ, 0<|ν|≤N0

f0ν(A
′) zν

−iω(A′) · ν (5.12.36)

which defines a holomorphic function of (A′, z) ∈ C(˜̺0, ξ0 − δ0;A0) if ˜̺0 is
chosen so small that, by consequence of Eq. (5.12.4), |ω(A) · ν| > 0 ∀ν ∈
Zℓ,ν 6= 0, ∀A ∈ Ŝ˜̺0 (A0). Actually, a simple choice for ˜̺0, good enough for

our purposes. In fact, ∀A′ ∈ Ŝ˜̺0(A0) and if ˜̺0 < 1
2̺0, it is

|ω(A′) · ν|−1 ≡ |(ω0 + (ω(A′)− ω(A0))) · ν|−1

≤ |ω0 · ν|−1
∣∣∣1− |(ω(A′)− ω(A0)) · ν|

|ω0 · ν|
∣∣∣
−1

≤ C |ν|ℓ
∣∣1− 2C|ν|ℓ+1ℓE0

˜̺0
̺0

∣∣−1

(5.12.37)

because we can bound |ω(A′)− ω(A0)| as

|ω(A′)− ω(A0)| ≡
∣∣∣
∫ 1

0

dt
d

dt
ω(A0 + t (A−A0))

∣∣∣

=
∣∣∣
∫ 1

0

dt
( ℓ∑

j=1

∂ω(A0 + t (A′ −A0))

∂Aj
(A′j −A0j)

)
dt

≤ℓ E0

̺0 − ˜̺0
˜̺0 ≤ 2ℓE0

˜̺0
̺0

(5.12.38)

by a dimensional estimate like the first of Eqs. (5.11.18); hence, if

˜̺0 def=
̺0

2ℓCE0N
ℓ+1
0

, (5.12.39)

then, since CE0 ≥ 1, N0 ≥ 1, ˜̺0 < 1
2̺0, that Eq. (5.12.37) implies

|ω(A′) · ν|−1 < 2C|ν|ℓ, ∀ 0 < |ν| ≤ N0 (5.12.40)

for A′ ∈ Ŝ̺0(A0). Hence, Eq. (5.12.36) implies that Φ0 is holomorphic in
C(˜̺0, ξ0 − δ0;A0) and that, using the second of Eqs. (5.12.32),37

37 Recall that ν|,ν ∈ Zℓ and |w|,w ∈ Cℓ, have a different meaning by our conventions,
Eqs. (5.11.1) and (5.11.2). This explains the factor ℓ.
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|Φ0(A
′, z)| ≤

∑

0<|ν|≤N0

|f0ν(A′)|
|ω(A′) · ν|e

(ξ0−δ0)|ν|

≤
∑

0<|ν|≤N0

2C|ν|ℓ|f0ν(A′)|e(ξ0−δ0)|ν|

≤
∑

0<|ν|
2C|ν|ℓ−1λε0̺0e

−δ0|ν ≤ B3ε0C̺0δ
−2ℓ+1
0

(5.12.41)

for all (A′, z) ∈ C(≀̺0, ξ0 − δ0;A0), with B3 > 2.38

Hence, by the dimensional estimates of Eq. (5.11.18),

∣∣∣∂Φ0

∂A′

∣∣∣˜̺0,ξ0−2δ0
≤2B3ε0C̺0δ

−2ℓ+1
0 ˜̺−1

0 .

∣∣∣∂Φ0

∂ϕ

∣∣∣˜̺0,ξ0−2δ0
≤B3ε0C̺0δ

−2ℓ+1
0 δ−1

0 .

(5.12.42)

Therefore, it makes sense to consider the map

A =A′ +
∂Φ0

∂ϕ
(A′, z),

z′j =zj exp
(
i
∂Φ0

∂A′
(A′, z)

)
, j = 1, . . . , ℓ

(5.12.43)

defined for (A′, z) ∈ C(˜̺0, ξ0 − δ0;A0) with values in C2ℓ. Here we regard the
second of Eqs. (5.12.43) as the complex version of

ϕ = ϕ′ +
∂Φ0

∂A′
(A′, z). (5.12.43′)

Now the problem arises of inverting the first of Eqs. (5.12.43) or the second
of Eqs. (5.12.43) in the respective forms

A′ =A +Ξ ′(A, z′),

zj =z′j exp
(
i∆j(A

′, z)
)
, j = (1, . . . , ℓ)

(5.12.44)

where the second should be regarded as the complex extension of

ϕ = ϕ′ +∆(A′,ϕ′), ϕ′ ∈ T ℓ. (5.12.45)

For this purpose, we use, respectively, Proposition 21, p.485, and Propo-
sition 20, p.484, §5.11 (choosing, say, τ = log 2). They guarantee that the
above inversions can indeed be made in the desired form, via Eqs. (5.12.39)
and (5.12.42), if

1

2ℓ
B4ε0C

̺0

˜̺0
δ−2ℓ
0 ≡ B4ε0CE0CN

ℓ+1
0 δ−2ℓ

0 < 1, (5.12.46)

38 Using
P
ν |ν|ae−δ|ν| ≤ maxy≥0(y

ae−δy/2)
P
ν e

−δ|ν|/2 ≤ maxy≥0(y
ae−y)( 2

δ
)a (4

√
e)ℓ

δℓ

one can take, say, B3 = ℓ!2ℓ(4
√
e)ℓ.
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where B4 is a suitable constant determined by imposing Eqs. (5.11.23) and
(5.11.27).39 In this case, Ξ ′ is holomorphic on C(1

2 ˜̺0, ξ0− 2δ0;A0) as well as
∆ and they verify the bounds

|Ξ ′|˜̺o/2,ξ0−2δ0
<B3ε0C̺0δ

−2ℓ
0 ε2ξ0 <

˜̺0
8
,

|∆|˜̺o/2,ξ0−2δ0
<2B3ε0C̺0δ

−2ℓ+1
0 ˜̺−1

0 < δ0,
(5.12.47)

where the first right-hand-side inequalities follow from Eq. (5.11.29) or Eq.
(5.11.25), while the second right-hand-side inequalities follow, if B4 is chosen
as in the footnote,39 from Eq. (5.12.46).

Eq. (5.12.47) permit us to define on C(1
2 ˜̺0, ξ0−2δ0;A0), say, the functions

Ξ(A′, z′) =
∂Φ0

∂ϕ
(A′, zei∆(A′,z′)),

∆′(A, z) =
∂Φ0

∂A′
(A +Ξ ′(A, z), z)

(5.12.48)

and, by Eqs. (5.12.42) and (5.12.39) they verify

|Ξ|˜̺o/2,ξ0−3δ0
<B3ε0C̺0δ

−2ℓ
0 ε2ξ0 <

˜̺0
8
,

|∆′|˜̺o/4,ξ0−2δ0
<4ℓB3ε0CE0CN

ℓ+1
0 δ−2ℓ+1

0 < δ0.
(5.12.49)

Therefore we define the maps C0, on (A′, z′) ∈ C(1
2 ˜̺0, ξ0 − 2δ0;A0), by

A =A′ +Ξ(A′, z′),

z =z′ ei∆(A′,z′).
(5.12.50)

and C̃0, on (A, z) ∈ C(1
2 ˜̺0, ξ0 − 2δ0;A0), by

A′ =A +Ξ ′(A, z),

z′ =z ei∆
′(A,z).

(5.12.51)

which have the properties [by Eqs. (5.12.47) and (5.12.49)]

39 One can take B4 = 4γe2B3ℓ. Note that, not surprisingly, both inversions require the
same condition up to a constant factor, adjusted in Eq. (5.12.46) to be the same. This is
basically so because the implicit function theorems impose conditions on ∂2Φ0/∂A′∂ϕ
for the first inversion or on ∂2Φ0/∂ϕ∂A′ for the second.
Actually, it would be easy to check that Eqs. (5.12.42) and (5.12.46) automatically imply
that the matrix Jij = δij + ∂2Φ0/∂A′

jϕi is invertible in C( 1
8
e̺0, ξ0 − 4δ0;A0) if B3, B4

are chosen as in footnote 37 to p.498 and as above. Hence, the general theory of the
canonical transformations, §3.11, Problems 9-11, p.228, shows that under the condition
of Eq. (5.12.46), the map of Eq. (5.12.43) locally generates a completely canonical trans-
formation defined on S 1

8
e̺0 (A0)×T ℓ, changing (A′,ϕ′) into (A,ϕ). This map is actually

a globally canonical map, as we shall see.
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C0, C̃0 : C
(1
4
˜̺0, ξ0 − 3δ0;A0

)
→ C(

1

2
˜̺0, ξ0 − 2δ0;A0), (5.12.52)

Hence, it makes sense to consider C0C̃0 and C̃0C on C(1
4 ˜̺0, ξ0 − 3δ0;A0).

By construction, C0 and C̃0 are inverses of each other:

C0C̃0 ≡ C̃0C0 ≡ {identity map} (5.12.53)

on C
(

1
4 ˜̺0, ξ0 − 3δ0;A0

)
.

It follows, by the general theory of canonical maps, that C0 and C̃0 are
completely canonical, inverse to each other, maps of S 1

4 ˜̺0×T
ℓ onto its image.

If a motion takes place in C0(S 1
4 ˜̺0×T

ℓ) it can be described in the (A′,ϕ′)

variables as a motion generated by the Hamiltonian:

H1(A
′,ϕ′) = h0(A

′+Ξ(A′,′ ))+ f0(A′+Ξ(A′,′ ),ϕ′+∆(A′,ϕ′)) (5.12.54)

which, following the perturbation theory and ∀ (A′, z′) ∈ C(1
4 ˜̺0, ξ0−3δ0;A0),

we write as

H1(A
′,ϕ′) ≡

{
h0(A

′) + f00(A′)
}

+
{
h0(A

′ +Ξ(A′,ϕ′))− h0(A
′)

+ f0(A
′ +Ξ(A′,ϕ′),ϕ′ +∆(A′,ϕ′))− f00(A′)

}

def
= {h1(A

′)}+ {f1(A′,ϕ′)}

(5.12.55)

where h1 and f1 are implicitly defined, respectively, as the first and second
curly-bracket terms in the intermediate equality in Eq. (5.12.55).

We shall henceforth regard C(1
4 ˜̺0, ξ0−3δ0;A0) as the domain of definition

and holomorphy of h1 and f1: however we shall further reduce it, later, for the
purpose of using dimensional estimates or for other needs. This basic choice
of domain is convenient since we control well C0 on this set, see Eq. (5.12.52).

Our next task, according to the program of the proof, is to find a point
A1 ∈ S 1

4 ˜̺0(A0) such that

∂h1(A
′)

∂A′
= ω0. (5.12.56)

Recalling that ω0 = ∂h0(A0)
∂A this equation can be elaborated as
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ω(A′)− ω(A0) +
∂f00
∂A′

(A′) = 0, ⇒M(A− 0)(A′ −A0)

+
[
ω(A′)− ω(A0)−M(A− 0)(A′ −A0)

+
∂f00
∂A′

(A′)
]

= 0

⇒ (A′ −A0) +M(A0)
−1
[
ω(A′)− ω(A0)

−M(A− 0)(A′ −A0) +
∂f00
∂A′

(A′)
]

= 0

≡ (A′ −A0) + n(A′) = 0

(5.12.57)

where n is defined on Ŝ̺0(A0) by the term within square brackets in the third
relation.

Apply Proposition 19, p.484, to the last equation and deduce that if
γ|n|̺ < ̺ for some ̺ < 1

4 ˜̺0, then the equation admits a unique solution
A1 ∈ S̺(A0). Hence, we must estimate |n|̺ for ̺ < 1

4 ˜̺0 < 1
2̺0. For this

purpose note that

|ω(A′)− ω(A0)−M(A− 0)(A′ −A0)|

=
∣∣∣
∫ 1

0

dτ

∫ τ

0

δθ
d2

dθ2
ω(A0 + θ (A−A0))

∣∣∣

≡
∣∣∣

ℓ∑

i,j=1

∫ 1

0

dτ

∫ τ

0

δθ
∂2ω

∂Ai∂Aj
(A0 + θ (A′ −A0)(A

′
i −A0i)(A

′
j −A0j))

∣∣∣

≤ ̺2ℓ22
E0

(̺0 − ̺)2
≤ 8ℓ2E0

( ̺
̺0

)2
,

having estimated the second derivative of ω by a dimensional estimate; see
Eqs. (5.11.9) and (5.11.18). Hence, if ̺ < 1

4 ˜̺0 and if the first of Eqs. (5.12.32)
is used with ν = 0:

|n|̺ ≤ η0
(
8ℓ2E0

( ̺
̺0

)2
+ ε0

)
(5.12.58)

so that if we choose (recalling that CE0 > l,Cε0 < 1)

̺
def
=

1

8ℓ
˜̺0
√
ε0
E0

<
1

8
˜̺0,

it is |n|̺ < 2ε0η0. Applying Proposition 19, p.484, and if 2γη0ε0 <
1
8 ˜̺0, then

Eq. (5.12.56) admits a solution A1 ∈ S 1
8 ˜̺0(A0). The condition 2γη0ε0 <

1
8 ˜̺0

becomes, via the expression for ˜̺0 in Eq. (5.12.39), 16γε0C(η0̺
−1
0 E0)N

ℓ+1
0 <

1; and it can be implied together with Eq. (5.12.46) by requiring

B5ε0CE0C(η0̺
−1
0 E0)N

ℓ+1
0 δ−2ℓ

0 < 1, (5.12.59)
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having used Eq. (5.12.28) and having chosen B5 suitably,40 B5 > 4. Hence, if
Eq. (5.12.59) holds, the Hamiltonian h, and its perturbation f , in Eq. (5.12.55)
can be considered as functions defined and holomorphic in C(1

8 ˜̺0, ξ0−3δ0;A1)
with A1 so chosen that Eq. (5.12.56) holds.

The argument can now be iterated. In fact it is possible to associate with
the Hamiltonians h1, f1 in C( 1

16 ˜̺0, ξ0 − 4δ0;A1)
41 the characteristic parame-

ters ̺1 = 1
16 ˜̺0, ξ1 = ξ0 − 4δ0 and E1, η1, ε1, with E1, η1, ε1 estimates of

∣∣ ∂h1

∂A′
∣∣
̺1
,
∣∣∣∣( ∂2h1

∂A′∂A′
)−1∣∣∣∣,

∣∣ ∂f1
∂A′

∣∣
̺1,ξ1

+
1

̺1

∣∣| ∂f1
∂ϕ′

∣∣
̺1,ξ1

.

To find E1, η1, ε1, we apply, as usual, some dimensional estimates. The E1

estimate is based on the first of Eqs. (5.12.32):

∣∣ ∂h1

∂A′
(A′)

∣∣ =
∣∣ ∂h0

∂A′
(A′) +

∂f00
∂A′

(A′)
∣∣ ≤ E0 + ε0. (5.12.60)

The η1 estimate is based on the dimensional estimate, Eq. (5.11.18), for
σj(A) = ∂2f1/∂A

′
i∂A

′
j as σij(A

′)| ≤ ε0
̺0− 1

4 ˜̺0 ≤
2ε0
̺0

, ∀A′ ∈ S̺1(A1); in fact,

M1(A
′)−1 = (M0(A

′) + σ(A′))−1 =
(
M0(A

′)(1 +M0(A
′)−1σ(A′))

)−1

=
(
1 +M0(A

′)−1σ(A′)
)−1

M0(A
′)−1

≡M0(A
′)−1) +

[(
1 +M0(A

′)−1σ(A′)
)−1 − 1

]
M0(A

′)−1)
(5.12.61)

and (since given two ℓ × ℓ matrices R and S it is ||RS|| ≤ ||R|| ||S|| and
||(1 + R)−1 − 1|| ≤ 2||R||, if ||R|| < 1

2 )42 we see that ||M0(A
′)−1σ(A′)|| ≤

2ε0η0̺
−1
0 < 1

2 [by Eq. (5.12.59)] and

||M1(A
′)|| ≤ η0 + 4ε0η

2
0̺
−1
0 . (5.12.62)

The estimate of ε1, is slightly more complicated because it involves derivatives
of Ξ and ∆: which, however, can be estimated dimensionally. We first elab-
orate the formal expression of f1 by adding and subtracting suitable terms:

40 e.g. one could take B5 = 2B416γ = 232ℓ!(8
√
e)ℓ ≤ 232ℓ!!24ℓ, if γ = 28.

41 We further restrict the domain in which we consider h1, f1 to be able to perform dimen-
sional estimates later.

42 See Appendix E, Eqs. (E.2) and (E.10), p.523.
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f1(A
′, z) =h0(A

′ +Ξ(A′, z′))− h0(A
′)

+ f
[≤N0]
0 (A′ +Ξ(A′, z′), z′ei∆(A′,z′))− f00(A′)

+ f
[>N0]
0 (A′ +Ξ(A′, z′), z′ei∆(A′,z′))

=
{
h0(A

′ +Ξ(A′, z′))− h0(A
′)− ω(A′)Ξ̇(A′, z′)

}

+
{
f

[≤N0]
0 (A′ +Ξ(A′, z′), z′ei∆(A′,z′))− f00(A′)

+ ω(A′)Ξ̇(A′, z′)
}

+
{
f

[>N0]
0 (A′ +Ξ(A′, z′), z′ei∆(A′,z′))

}

(5.12.63)

where the addition and subtraction of ω ·Ξ is suggested by the formal per-
turbation theory and by the fact that, if (A, z) = C0(A′, z′), it is Ξ(A′, z′) =
∂Φ0

∂ϕ (A′, z) so that the various terms in curly brackets formally have size O(ε20).

In fact, the first term is manifestly of O(|Ξ|2) and Ξ is formally of O(ε0); the
third term is by construction of formal order O(ε20), while the second term
can be rewritten as

f
[≤N0]
0 (A′ +Ξ(A′, z′), z′ei∆(A′,z′))− f [≤N0]

0 (A′, z′ei∆(AA′,z′)) (5.12.64)

because, by the definition of Φ0,

ω(A′) ·Ξ(A′, z′) ≡ ω(A′)
˙∂Φ0

∂ϕ
(A′,ϕ)(A′, z) = f

[≤N0]
0 (A′, z− f00(A′))

and, therefore, Eq. (5.12.64) is formally of O(ε0)O(Ξ), i.e., O(ε20) (here we
use that z′ ei∆(A′,z′) ≡ z, also).

Writing the three terms in curly brackets in Eq. (5.12.63) as f I0 , f
II
0 , f III0

respectively, we now show rigorously that they have the right order of magni-
tude. Dropping the (A′, z′) in the arguments of for simplicity, and using Eq.
(5.12.64) and the Taylor-Lagrange formulae, we find

f I1 =

∫ 1

0

dt1

∫ t1

0

dt2
d2

dt22
h0(A

′ + t2Ξ)

≡
∫ 1

0

(1− t) dt
( ℓ∑

j,k=1

∂2h0

∂Aj∂Ak
(A′ + tΞ)ΞkΞj

)
,

f II1 =

∫ 1

0

dt
d

dt
f

[≤0]
0 (A′ + tΞ, z′ei∆)

=

∫ 1

0

dt
( ℓ∑

j=1

∂f
[≤N0]
0

∂Aj
(A′ + tΞ, z′ei∆)Ξj

)
,

f III1 =f [>N0]
o (A′ + tΞ, z′ei∆),

(5.12.65)
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Bounds for f I0 , f
II
0 , f III0 can now be found by dimensional estimates. Com-

bining Eq. (5.11.18) with Eq. (5.12.33), the second of Eqs. (5.12.47) and the
first of Eqs. (5.12.49), implies all the following inequalities except the fourth:

∣∣∣ ∂h0

∂A∂A

∣∣∣˜̺0
≤ E0

̺o − ˜̺0
≤ 2E0̺

−1
0 ,

∣∣∣ ∂h0

∂A∂A∂A

∣∣∣˜̺0
≤ 2!E0

(̺0 − ˜̺0)2
≤ 6E0̺

−2
0 ,

∣∣∣∂f
[≤N0]
0

∂A

∣∣∣˜̺0,ξ0−δ0
≤ B1ε0δ

−ℓ
0 ,

|f [>N0]
0 |˜̺0,ξ0−δ0 ≤ ℓB2ε

2
0C̺0,

|Ξ| 1
2 ˜̺0,ξ0−3δ0

≤ B3ε0C̺0δ
−2ℓ
0 e−2ξ0 <

˜̺o
8
,

|∆| 1
2 ˜̺0,ξ0−3δ0

≤ 4ℓB3ε0CE0CN
ℓ+1
0 δ−2ℓ+1

0 ≤ δ0.

(5.12.66)

To prove the fourth inequality, make use the second of Eqs. (5.12.33):

|f [>N0]
0 (A, z)| =

∣∣ ∑

|ν|>N0

f0ν(A)zν
∣∣ ≤

∑

|ν|>N0

|f0ν |e(ξ0−δ0)|ν|

≤
∑

|ν|>N0

|ν| |f0ν |e(ξ0−δ0)|ν| ≤ ε0̺0ℓ
∑

|ν|>N0

e−δ0|ν|

≤ε0̺0ℓe
− 1

2N0δ0
∑

|ν|>0

e−
1
2 δ0|ν| ≤ B2ℓε

2
0C̺0

(5.12.67)

in C(̺0, ξ0 − δ0;A0) [see also (5.12.35)].
For (A′, z′) ∈ C(1

4 ˜̺0, ξ0 − 3δ0;A0) it is (A′ + tΞ, z′ei∆) ∈ C(1
2 ˜̺0, ξ0 −

2δ0;A0); so we can insert the bounds of Eq. (5.12.66) into Eq. (5.12.65), using
eξ < e < 4 for simplicity, to obtain

|f I1 | 1
4 ˜̺o,ξ0−3δ0

≤2E0̺
−1
0 ℓ2(B3ε0C̺0δ

−2ℓ
0 e2)

≤ 29B2
3ℓ

2ε20CE0C̺0δ
−4ℓ
0 ,

|f II1 | 1
4 ˜̺o,ξ0−3δ0

≤24B1B3ℓε
2
0Cδ

−3ℓ
0 ̺0,

|f III1 | 1
4 ˜̺o,ξ0−3δ0

≤B2ℓε
2
0C̺0

(5.12.68)

so that

|f1| 1
4 ˜̺o,ξ0−3δ0

≤ B6ε
2
0CE0Cδ

−4ℓ
0 ̺0, (5.12.69)

where B6 is suitably chosen.43

43 e.g. B7 = 29B6 = 29ℓ2B2
3 < 24ℓℓ2(ℓ!)229.
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Next note that A1 ∈ S 1
8 ˜̺0(A0) so that C(̺1, ξ1;A1) ⊂ C( 3

16 ˜̺0, ξ0 −
4δ0;A0) so that the boundary of C(̺1, ξ1;A1) is quite far from that of
C(1

4 ˜̺0, ξ0 − 3δ0;A0) and Eq. (5.12.69) yields a dimensional estimate of

ε̃1
def
= sup

∣∣ ∂f1
∂A′

(A′, z′)
∣∣+ 1

̺1

∣∣ ∂f1
∂ϕ′

(A′, z′)
∣∣ (5.12.70)

where the supremum is taken over C(̺1, ξ1;A1). It is given by

ε̃1 ≤ |f1| 1
4 ˜̺o,ξ0−3δ0

( 1
1
4 ˜̺0 − 3

16 ˜̺0
+

1

̺1

e2δ0

δ0

)

≤25e2

δ0 ˜̺0
|f1| 1

4 ˜̺o,ξ0−3δ0
≤ B7ε

2
0C(E0C)2N ℓ+1

0 δ−4ℓ−1
0

(5.12.71)

recalling that ̺1 = 1
16 ˜̺0 and suitably choosing B7.

44

So, collecting all the above inequalities (5.12.71), (5.12.62), and (5.12.60)
and the definitions of ̺1, ξ1, the following quantities can be taken as charac-
teristic parameters for the Hamiltonians h1, f1 in C(̺1, ξ1;A1):

̺1 =
̺0

32ℓE0CN
ℓ+1
0

, N0 =
2

δ0
log

1

Cε0δℓ0
,

ξ1 =ξ0 − 4δ0,

E1 =E0 + ε0,

η1 =η0 + 4ε0η
2
0̺
−1
0 ,

ε1 =B8Cε
2
0(C0)

2(log
1

Cε0δℓ0
)ℓ+1δ−5ℓ−2

0 ,

(5.12.72)

having replaced N0 in Eq. (5.12.71) with its expression in Eq. (5.12.30), and
B8 = 2ℓ+1B7 provided the condition of Eq. (5.12.59) holds.

Consider now the mappings Kn : (̺n, ξn, En, ηn, εn)→ (̺n+1, ξn+1, En+1,
ηn+1, εn+1) defined by Eq. (5.12.72) in which δ0 is replaced by δn and 0 →
n, 1→ n+ 1, forgetting (temporarily) the condition of Eq. (5.12.59). Then

(̺n, ξn, En, ηn, εn) = Kn−1 · · ·K0(̺0, ξ0, E0, η0, ε0), (5.12.73)

and it becomes possible to check that if Cε0 is small enough (so that the
inequality in Eq. (5.12.85) below holds), then:

44 e.g. B7 = 29B6 = 218+4ℓℓ2(ℓ!)2.
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ξn >ξ∞ = ξ0 − 4
∞∑

j=0

δj

En ≤ 2E0,

ηn ≤ 2η0,

(ε0C)(2+
1
2 )n ≤ εnC ≤ (ε0C)(2−

1
2 )n

,

̺n ≥
̺0

(E0C)n
[
ξ−n0 (n!)22

1
2n

2
(log(Cε0)−1)2n

]ℓ+1
.

(5.12.74)

An inductive proof of the validity of Eq. (5.12.74) under a condition of the
form of Eq. (5.12.85) is described below, between Eqs. (5.12.75) and (5.12.86),
for completeness. The reader should, however, first realize that Eqs. (5.12.74)
and (5.12.86) are quite obviously valid under a condition of the type of Eq.
(5.12.85) below.

The first inequality follows from our choice of δj . The second and third
follow from the last two if, say,

ε0 <
1

2
E0,

∞∑

n=0

(Cε0)
( 3
2 )n−1 < 2, ε0η0̺

−1
0 <

1

8
, (5.12.75)

∞∑

n=0

(Cε0)
( 3
2 )n−1

[
(E0C)n[ξ−n0 (n!)22

1
2n

2

(log(Cε0)
−1)2n]ℓ+1

]
< 2 log 2

The fourth inequality in Eq. (5.12.74) is proved by remarking that, for x ≤ 1,
it is sup0≤x≤1 x

a(log 1
x)ℓ+1 ≤ a−ℓ−1(ℓ+1)!, ∀ a > 0; hence from Eq. (5.12.72),

εnCδ
ℓ
n ≥B8(CE0)

2(εn−1Cδn−1)
2δ−6ℓ−2
n−1 2−ℓ,

εnCδ
ℓ
n ≤B8(2CE0)

2(εn−1Cδn−1)
5δ−6ℓ−2
n−1 3ℓ+1(ℓ+ 1)!,

(5.12.76)

where the ratio δn

δn−1
has been bounded by 2−ℓ or 1 (below or above) and we

have applied the above elementary inequality with a = 1
3 .

Since B8 is very large, e.g., B82
−ℓ > 1, and CE0 > 1, δ

−(6ℓ+2)
n−1 > 1 we

conclude from the first of Eqs. (5.12.76) that

εnCδ
−ℓ
n ≥ (εn−1Cδ

ℓ
n−1)

2 ≥ (ε0Cδ
ℓ
0)

2n

(5.12.77)

which implies the lower bound in Eq. (5.12.74) for Cεn, if Cε0 is small enough.
And by the explicit expression (5.12.29) for δn, the condition turns out to be

(Cε0)
− 1

4 δℓ0 > 1. (5.12.78)

By Eq. (5.12.29) the second inequality in Eqs. (5.12.76) gives
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Cεnδ
ℓ
n ≤ (Cε0δ0)

( 5
3 )n

n∏

k=1

·
[
B8(2CE0C)2eℓ+1(ℓ + 1)!

( ξ0
16

)−6ℓ−2
(1 + n− k)12ℓ+4

]( 5
3 )k−1

≡ (Cε0δ0)
( 5
3 )n
[
B8(2CE0C)2eℓ+1(ℓ+ 1)!

( ξ0
16

)−6ℓ−2
](( 5

3 )n−1) 3
2

· e(12ℓ+4)( 5
3 )n−1

∑
n−1

k=0
( 3
5 )k log(1+k)

≤
(
Cε0δ

ℓ
0(E0C)3ξ−9ℓ−3

0 B9

)( 5
3

)n

(5.12.79)

if B9 is suitably chosen.45 Since for all n ≥ 0, δ
( 5
3 )n

0 ≤ δn, Eq. (5.12.79) implies:

(Cεn) ≤(Cε0)

(
3
2

)n[
(Cε0)

1−
(

9
10

)n

(E0C)3ξ−9ℓ−3
0 B9

]( 5
3

)n

≤(Cε0)

(
3
2

)n
(5.12.80)

provided (the worst case being n = 1)

(Cε0)
1
10 (E0C)3ξ−9ℓ−3

0 B9 < 1. (5.12.81)

Finally consider the last of Eqs. (5.12.74). By the recursive definition of
̺n,

̺n = ̺0
(dn−1 · · · δ0)ℓ+1

(25E0Cℓ)n(ℓ+1)
(∏n

k=1 log
(
Cεn−kδℓn−k

))ℓ+1
, (5.12.82)

By Eq. (5.12.77) and the explicit form of δn, this becomes

̺n ≥ ̺0
1

(ℓ25ℓ+10E0C)n

[ n!−2ξn0

2
1
2n(n−1)

(
log(Cε0δℓ0)

−1
)n
]ℓ+1

. (5.12.83)

So if Cε0 is small enough, the last inequality in Eqs. (5.12.74) holds. More
precisely, it holds if

Cε0 < δℓ0,

(
log(Cε0)

−1
)ℓ+1

26ℓ+ 11
ℓ > 1. (5.12.84)

Note that the conditions (5.12.84), (5.12.81), (5.12.78), and (5.12.75) can all
be satisfied by imposing a single condition which will also imply Eq. (5.12.59):

45 e.g. B9 = 8B83
3
2
(ℓ+1)(ℓ+ 1)!

3
2 26 exp{ 3

5
(12ℓ + 4)

P
h≥0( 3

5
)h log(1 + h)}.
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B10ε0C(E0C)a(E0η0̺
−1
0 )bξ−c0 < 1, (5.12.85)

where B10 is a suitable constant and so are a, b, c > 0. And if Eq. (5.12.85)
holds, then, ∀n ≥ 0, the analogue of Eq. (5.12.59)

B5εnCEnC(Enηn̺n)
−1N ℓ+1

n δ−2ℓ
n < 1 (5.12.86)

holds if Cε0 is small enough. In fact, Eq. (5.12.85) implies Eq. (5.12.74), as
just shown, and Eq. (5.12.74) inserted into Eq. (5.12.86) just gives a condition
like Eq. (5.12.85) with possibly new values for the constants B10, a, b, c.

So a condition of the form of Eq. (5.12.6) guarantees that the sequence of
numbers (̺n, ξn, En, ηn, εn) recursively defined in Eq. (5.12.73) verifies Eqs.
(5.12.74) and (5.12.86) as well.

This means that under the condition (5.12.6), with B, a, b, c suitably cho-
sen (and ℓ dependent), it is possible to define a sequence of completely canon-
ical transformations, C0, C1, . . ., having the form

A =A′ +Ξ(n)(A′, z′),

z =z′ ei∆
(n)(A′,z′)

(5.12.87)

and such that, ∀ j = 0, 1, . . .,

Cj : C(̺j+1, ξj+1;Aj+1) → C(̺j , ξj ;Aj)

and [see Eq. (5.12.52) and the discussion following it] Eqs. (5.12.49) and
(5.12.47)]Ξ(j),∆(j) can be bounded in C(1

4 ˜̺j , ξj−3δj;Aj) ⊃ C(̺j , ξj+1, ξj+1;
Aj+1) by

|Aj+1 −Aj | ≤ ˜̺j ,
|Ξ(j)(A′, z′)| ≤ B3εjCδ

−2ℓ
j ̺j ,

|∆(j)(A′, z′)| ≤ 2B3εjCδ
−2ℓ
j

̺j
˜̺j
,

(5.12.88)

where ˜̺j is defined as ˜̺0 with the index j replacing 0 everywhere.
The maps Cj are very close to the identity map on the very small set on

which they are defined. In fact, setting |(A, z)−(A′, z′)| def= |A−A′|+̺0|z−z′|,
for every pair (A′, z′), (A′′, z′′) ∈ C(̺j+1, ξj+1;Aj+1) it is:

|Cj(A′, z′)− Cj(A′′, z′′)| ≤ (1 + θj)|(A′, z′)− (A′′, z′′)| (5.12.89)

where θj is a small number that can be taken to be

θj = B11εjCδ
−2ℓ−1
j

̺j
˜̺j
̺0

˜̺j
(5.12.90)

which is implied by a simple calculation based on the dimensional estimates of
the derivatives of Ξ,∆ on the set C(̺j+1, ξj+1;Aj) (possible since Ξ,∆ are
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holomorphic on a much larger set, i.e., C(1
4 ˜̺j , ξj − 3δj;Aj)). Eqs. (5.12.74)

imply that θj −−−→j→∞ 0 very fast, in particular,
∑∞
j=1 θj <∞. They also imply

that
∑∞

j=1 θj −−−→ε0→0
0. Then a torus can be parametrically defined

(A, z) = C0 · · · Cn−1Cn(An+1, z
′), z′ ∈ T ℓ (5.12.91)

which can be written more explicitly as

A =A0 +α(n)(ϕ′)

ϕ =ϕ′ + β(n)(ϕ′),
ϕ′ ∈ T ℓ (5.12.92)

where |Ξ(n)|, |∆(n)| are defined by comparison between the right-hand sides of
Eqs. (5.12.91) and (5.12.92). By construction, α(n) and β(n) are holomorphic
on the multiannulus C(ξn) ⊃ C(ξ∞) and also

|α(n)(z′)−α(n−1)(z′)|+ ̺0|β(n)(z′)− β(n−1)(z′)| =
= |C0 · · · Cn(An+1, z

′)− C0 · · · Cn−1(An, z
′)|

≤
( ∞∏

j=1

(1 + θj)
)
|Cn(An+1, z

′)− (An, z
′)|

≤
( ∞∏

j=1

(1 + θj)
)
(|An+1 −An|+ |Ξ(n)|+ ̺0e

ξ0 |∆(n))
def
= σn

(5.12.93)

where |Ξ(n)|, |∆(n)| denote the right-hand sides of the second and third of
Eqs. (5.12.88). Since σn−−−−→n→∞ 0 very fast, by Eqs. (5.12.88) and (5.12.74), the
right-hand side of Eq. (5.12.93) is summable over n. Hence, the limits

α∞(ϕ′) = lim
n→∞

α(n)(ϕ′), β∞(ϕ′) = lim
n→∞

β(n)(ϕ′) (5.12.94)

exist and define (by the convergence theorem of Vitali on the sequences of
holomorphic functions) two holomorphic functions of ϕ′ in C(ξ∞). Via the
parametric equations:

A =A0 +α∞(ϕ′)

ϕ =ϕ′ + β∞(ϕ′),
ϕ′ ∈ T ℓ, (5.12.95)

a torus T (ω0) ⊂ S̺0(A0)× T ℓ s defined.
From Eqs. (5.12.88) and (5.12.74) one deduces that α∞ and β∞ are small

if ε0 is small, i.e., a property like Eq. (5.12.9) holds (possibly redefining
B, a, b, c).

So it remains to prove that T (ω0) is an invariant torus run “quasiperiod-

ically” with spectrum ω0. The Hamiltonian flow S
(n)
t , which describes in the

coordinates defined by the canonical transformation C0 · · · Cn−1 the perturbed
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Hamiltonian flow St associated with Eq. (5.12.1), is such that the coordinates

of S
(n)
t (An,ϕ

′) of S
(n)
t (An,ϕ

′) are

An + ̺nO(εnt), ϕ′ + ω0t+O((1 + Ent)εnt) (5.12.96)

because the Hamiltonian fn contributes terms of order O(εn) to the equations
of motion. Of course Eq. (5.12.96) hold only as long as the point in Eq.
(5.12.96) is inside C(̺n, εn;An).

46

If t > 0 is fixed, it is clear that ̺nO(εnt)≪ ̺n for n large, by Eq. (5.12.74),
and, therefore, by Eqs. (5.12.89) and (5.12.96), we get

|C0 · · · Cn−1(S
(n)
t (An,ϕ

′))− C0 · · · Cn−1(An,ϕ
′ + ω0t)|

≤
( ∞∏

j=1

(1 + θj)
)
(̺nO(εnt) + ̺0O(εnt(1 + Ent)))−−−−−→n→+∞ 0.

(5.12.97)

Hence

lim
n→∞

StC0 · · · Cn−1(An,ϕ
′) ≡ lim

n→∞
C0 · · · Cn−1(S

(n)
t (An,ϕ

′))

= lim
n→∞

C0 · · · Cn−1(An,ϕ
′ + ω0t)

(5.12.98)

but the first and third limit exist by Eqs. (5.12.91) and (5.12.94) and their
equality means

St(A0 +α∞(ϕ′),ϕ′ + β∞(ϕ′))

= (A0 +α∞(ϕ′ + ω0 t),ϕ
′ + ω0 t+Bb∞(Bf ′ + ω0 t))

(5.12.99)

which just says that T (ω0) is an invariant torus for the perturbed motion
on which quasi-periodic motions with spectrum ω0 take place (t > 0 being
arbitrary). mbe

5.12.1 Problems

1. Let A ∈ S̺(A0) and write Eq. (5.12.4) for ν = e(1) = (1, 0, . . . , 0) as |ω1(A)|−1 ≤ C
Deduce that this implies E0C > 1, with the assumptions and notations of, say, Proposition

46 One finds this as follows: let S
(n)
t (V An,ϕ′) = (A(t),ϕ(t)) so that

Ȧ = −∂fn
∂ϕ

, ϕ̇′ = ωn(A) +
∂fn

∂A
≡ ω0 + (ωn(A) −ω0) +

∂fn

∂A

Therefore by Taylor’s theorem and by a dimensional estimate, one finds after integration
over t

|A(t) −An| ≤ εn̺nt, |ϕ′(t) −ϕ′ −ω0t| ≤ (Ene̺−1
n ̺nεnt) t+ εnt

which implies Eq. (5.12.96).
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22. In the above context show that Mij(A0)| ≤ E0
̺0
, by a dimensional estimate [see Eq.

(5.11.18)], and deduce from this that ℓ|M−1
̺0 E0 > ̺0. (Hint: 1 ≡ (|M(A)−1M(A))11 =

|Pℓ
k=1 |M(A)−1

1kM(A)k1| ≤ E−0
̺0

ℓ|M(A)−1| or ≤ E0
̺0
||M(A)−1|| . . ..)

2. Consider the Hamiltonian on Rd+1 ×Rd+1:

A2

2
+

B2

2
+ εf(ϕ,ψ), (ϕ,ψ) ∈ T 1 × T d, (A,B) ∈ R1 ×Rd

Consider the motions near the resonating torus A = 1,B = 0 and write

A =1 +
√
ε aε(t

√
ε), ϕ = δε(t

√
ε),

B =
√
εbε(t

√
ε), ψ = γε(t

√
ε)

for the solution to the Hamiltonian equations with initial datum

aε(0) = a0, bε(0) = b0, γε(0) = γ0, δε(0) = δ0.

Show that the solutions to the Hamiltonian equations are such that aε,bε,γε (but not δε)
have a limit as ε→ 0 and this limit verifies the equations

ȧ = 0, γ̇ = b, ḃ = −∂f(γ)

∂γ
,

where f(γ) =
R 2π
0

f(θ,γ) dθ
2π

. Show that the limit is approached with a speed O(εt) at fixed
t. (Hint: Write the Hamiltonian equations and note that, after dividing them by

√
ε, they

converge formally to the above equations for a,b, γ. Then apply the ideas of the proof of
Proposition 13, p.186, §3.8, and of §3.7 and §3.8.)
3. In the context of Problem 2, take d = 1. Show that “up to a time O(1/ε)”, the motion
is quasi-periodic with pulsations ω1 = 1, ω2 = 2π

Tb0,γ0

√
ε, where

Tb0,γ0
= 2

Z γ+

γ−

dγq
2(E − f(γ))

where E0 = 1
2
b20 + f(γ0) and γ−, γ+ are 0 and 2π if the equation E0 = f(γ) has no

roots; otherwise, they are two suitably chosen roots of this equation. Consider only the case
Tb0,γ0 < +∞ (however, the data for which Tb0,γ0 = +∞ are exceptional).

4. Find a result analogous to the one of Problem 2 near a general torus with rational
pulsations for the solution flow of the equations associated with the Hamiltonian

1

2
A2 + ε f(ϕ).

(Hint: First extend Problem 2 to the case when f depends on A,B also; then canonically
change variables so that the torus under analysis appears to be run with pulsations ω =
(ω0, 0, 0, . . . , 0).)

5. Consider a time-dependent Hamiltonian with one degree of freedom, periodic in time
with period 2π: h0(A) + f0(A,ϕ, t); see Problems 12-14, p.478, §5.10.
Suppose that h0 is holomorphic in bS̺0(A0) and that f0 is holomorphic in C(̺0, ξ0, A0) =
bS̺0(A0)×C(ξ0)2 = {A,ϕ, t|(A, z, ζ) ∈ C3, |A−A0| < ̺, e−ξ0 < |z| < eξ0 , e−ξ0 < |ζ| < eξ0 ,
where z = eiϕ, ζ = eit. Using the formal perturbation theory of Problem 12, §5.10, p.478,
prove that if dh0

dA
6= 0 and f0 is “small” and

|ω(A0)ν1 + ν2|−1 ≤ C (|ν1|+ |ν2|)α, ∀ 0 6= ν ∈ Z2,



5.12 Small Denominators 513

for some C, α > 0, then the perturbed motion, regarded as taking place on the space of the
variables (A, ϕ, t), leaves invariant a torus on which a quasi-periodic motion with pulsations
(ω(A0), 1) takes place in the following sense. There exist two holomorphic functions α∞, β∞
on T 2 such that setting A = A0+α∞(ϕ′, t′), ϕ = ϕ′+β∞(ϕ′, t′), t = t′, the solution of the
equations of motion with datum assigned at time t′ and given by A = A0 +α∞(ϕ′, t′), ϕ =
ϕ′ + β∞(ϕ′, t′) for some ϕ′ ∈ T 1 evolves at time t′ + τ into

A(τ) =A0 + α∞(ϕ′ + ωτ, t′ + τ),

ϕ(τ) =ϕ′ + ωτ + β∞(ϕ′ + ωτ, t′ + τ),

i.e., regarding the phase space as R × T 2, the above motions can be regarded as taking
place on a two-dimensional torus in R×T 2 and having pulsations (ω, 1). (Hint: Just repeat
the proof of Proposition 22. No real simplification arises in this apparently simpler case.)

6. Consider the Hamiltonian (“Duffing oscillator”) H = 1
2
p2 + 1

4
q4 + ε q sin t. Fix an

initial datum (p0, q0). Show that if ε is small enough, the trajectory with datum (p0, q0)
at any initial time t0 is uniformly bounded in time. (Hint: Show that p0, q0 is between two
unperturbed tori in the phase space R1 × T 2, of the system with ε = 0, having pulsations
(ω1, 1), (ω2, 1) (see preceding problem) nonresonant and with finite resonance parameter
C. Use Problem 5 to show that for ε small, such tori are slightly deformed but remain

invariant. Then use the fact that a two-dimensional torus in a three-dimensional space has
an “interior” and an “exterior”.)

7. In the context of Problem 5, define ϕ = (ϕ, t) and E0 ≥
˛̨
˛̨ dh
dA

˛̨
˛̨
̺0

, η0 ≥
˛̨
˛̨
„
d2h
dA2

«−1 ˛̨
˛̨
̺0

,

ε0 ≥
˛̨
˛ ∂f∂A |̺0,ξ0 + 1

̺0

˛̨
˛ ∂f∂ϕ |̺0,ξ0 . Then the condition of smallness of ε0 for the property

envisioned there is implied by the following condition, as can be proven:47

1020(η0E0̺
−1
0 )4(CE0)

4Cε0 < 1.

Derive a similar formula (i.e., prove the statement in Problem 5, explicitly computing the
constants) and try to improve it.

8. Consider the system on R× T 2 (“Escande-Doveil pendulum”)

1

2
A2 + ε (cosϕ+ cos(ϕ− t)),

where t is the time; see Problems 12-14, §5.10, p.478. Apply the result of Problem 5 with
the estimate in Problem 7 to place a bound on how large ε must be in order that one
cannot guarantee the “stability of the quasi-periodic motions with pulsations (ω0, 1)” with

ω0 = 1
2 (
√

5− 1) = {golden section}.
9. Same as Problem 8, but applying the results of Problems 5 and 7 to the system ob-
tained from the one in Problem 8, by first removing the perturbation to O(ε) by ordinary
perturbation theory; see Problems 12-14, §5.10, p.478.

10. Same as Problem 9, but first removing the perturbation to O(ε4). Check that in this
way one obtains much better results.

11. Suppose that, observing the motions of the system in Problem 8, one is able to see
them with an absolute precision η of four digits (in decimal basis) and for an observation
time T about equal to 50 periods of the forcing term, T = 50 · 2π.
Note that (see (5.12.86)) to achieve a given accuracy for a given time, one only needs to

47 [23].
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“remove the perturbation” to an order n such that O(εnT (1 + EnT )) < η. Using this
remark, estimate a threshold for the “survival” of motions which look quasi-periodic, within

the error η up to time T , with pulsations (ω0, 1), ω0 = 1
2 (
√

5 − 1), and compare the
result with the experimental value of the “threshold of disappearance” of the quasi-periodic
motion in question: ε≃0.75.

12. Try to compute the constants B, a, b, c in Eq. (5.12.6), explicitly improving the values
of the constants B1-B9 suggested in the proof of Proposition 22. An example of a rigorous
result is48

ℓ12ℓ1040ℓ(η0E0̺
−1
0 CE0)

14ξ
−2(10ℓ+6)
0 < 1.

The following problems constitute a follow up of the problems in §4.10 on
the theory of precession. None of the approximations suggested below for per-
forming the lowest order perturbation theory is, strictly speaking necessary:
the calculations could be easily carried out without any approximation at
all, leading essentially to the same results. They would however be extremely
cumbersome. In practice they have never been done because already with the
approximations below it is clear that one has reached a precision where the
non rigid structure of the Earth is important togheter with its density irreg-
ularities, and the consequent non rotationally symmetric shape: therefore the
use made of the following calculations is just to provide some formulae with
free parameters to be used to perform numerical fits in the tables, much in the
same spirit that animated the Greek astronomy (which is not a good reason
for not trying someday a better calculation to test if newtonian mechanics can
be applied to the theory of nutation to investigate the elastic properties of the
planet). Let ω̄D, ı̄ be some approximations of the mean daily rotation angular
velocity and of the mean inclination of Earth’s axis. Below we suppose, as it is
the case for the Earth, that 1 >> (1−L2/A2)1/2 >> ω̄p/ω̄D (where we call ω̄p
the precession velocity calculated from the formula of problem (16) of §4.10,
with such approximate values for the Earth angular velocity and inclination);
this means that for many purposes the axis of rotation, the axis of symmetry
and the axis of the angular momentum of the Earth can be confused, even
though the theory is precisely looking for phenomena that exist just because
such axes are not identical.

13. In the context of problems (8) through (7) of §4.10, show that the Hamiltonian in §4.10,
problem (14), can be written, if K ≡ Kz :

Hp =
A2

2J
+

3η1kMS

2a3
J

„
(1− K2

A2
) sin2(λT − γ) +

“
1− K2

A2

”1/2“
1− L2

A2

”1/2

·
“
(
K

A
− 1) sin(λT − γ + ϕ) + (

K

A
+ 1) sin(λT − γ − ϕ)

”«

when one neglects, in the perturbation terms, (1−L2/A2) ≡ sin2 θ (but not its square root)
and the eccentricity of the Earth orbit. This means, as it appears below, that we neglect
the difference between the Earth angular momentum axis, the Earth instantaneous rotation

48 see [11].
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direction and the Earth symmetry axis everywhere in the hamiltonian except in the places
where they will produce the largest corrections to the equations of motion.

14. Show that neglecting terms proportional to (1−L2/A2) as well as the variability of the
Earth axis the hamiltonian in problem (13) can be put, using the notations of the problems
of §4.10, in the form:

Hp =ωTB +
A2

2J
− 3

2
η1ω

2
T

JK2

2A2
+

3

2
η1ω

2
T J


−1

2

„
1− K2

A2

«
cos 2(λ− γ)+

+ [(
K

A
− 1) sin(λ− γ + ϕ) + (

K

A
+ 1) sin(λ− γ − ϕ)]

„
1− K2

A2

«1/2„
1− L2

A2

«1/2ff

Note that L is a constant of motion and therefore it will not be considered a canonical
variable; the new canonical coordinates (B, λ) have been introduced artificially to make the
system autonomous. Note also that the parameters Ā, ı̄ are fictitious parameters, so far,
as they drop out of the above formula if ω̄p is fully rexpressed in terms the constants in
problem (13). (Hint: note that if the orbit is regarded as circular then λT can be identified
up to an additive constant with the average anomaly; hence it rotates at constant rate ωT ;
the auxiliary variable B will play no role here).

15. The classical theory of nutation averages the Hamiltonian in problem (14) over the fast
angles ϕ, but not over the relatively slower angles λ or over the very slow γ. The Hamiltonian
thus obtained should reliably describe motions over a time scale ≫ 2π/ωD = 1day and it
is:

HD =
A2

I3
+

3

2
η1ω

2
T J

„
1− K2

A2

«
sin2(λ− γ)

Show that this is integrable by quadratures and, setting γ − ωT t = γ̃, reducible to the
quadrature: Z γ̃

γ̃0

dγ′

−ωT − 3
2
I3η1ω2

T (2K/A2) sin2 γ̃′
= t− t0

3

2
η2I3ω

2
T (1− K2

A2
) sin2 γ̃ − ωTK = −ωTK0

having called K0, γ̃0, t0 the values of K, γ̃, t when γ − ωT t = 0. Show that, neglecting the
variations of K of higher order in η one finds that the motion is:

γ̇ =− ωpt−
3

2
ω2
T Jη1

2K0

A2
(sin2(ωT t+ λ0 − γ0)− 1

2
)

K̇ =− 3

2
ω2
T Jη1(1 − K2

0

A2
) sin 2(ωT t+ λ0 − γ0)

hence, recalling that cos δ = K/a and writing δ = i0 + δ′ and γ + ωpt = γ′, it is:

δ′ =
3

2
η

„
ωT

ωD

«
sin δ0 cos 2ωT , γ′ =

3

2
η

„
ωT

ωD

«
cos δ0 cos 2ωT

and we see that the two Euler angles expressing the deviations from the mean precession
motion move on a small ellipse with a period equal, in this approximation, to 2π/ωT . This
is the solar nutation motion.

16. If the Moon is taken into account along a similar scheme one finds that the Moon
nutation makes the δ′, γ′ revolve still over an ellipse. The theory has to be done from the
beginning as the main cause of the nutation due to the Moon is the fact that the plane of
motion of the Moon is not fixed in space but has a precession on a cone of angle equal to the
moon inclination iL ∼ 5o with a period of the 2π/ωpL, for some ωL. The nutation due to the
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Moon comes out to be on an ellipse about 10 times larger than that calculated above for the
Sun contribution and has a period of the order of 2π/ωpL. Check that such period has the
order of 20 years. (Hint: The precession of the Moon plane is due to the gravitational force
of the Sun. One can imagine, for the purpose of studying phenomena that take place over
a time scale large with respect to the Moon period of revolution (TL =∼ 27 days) that the
Moon is uniformly spread on its orbit on an annulus of radius aL whose plane is inclined of
iL to the ecliptic and which is rotating around its center T at velocity ωL equal to the mean
angular velocity of the Moon ωL = 2π/TL. The annulus is at a distance a from the Sun and
gravitates around it with angular velocity ωT , (neglecting the eccentricities of Earth and
Moon), hence it has a precession that can be calculated from that of the Earth simply by
using the value η1 appropriate for an annulus, i.e. 1/2 as the inertia moments of an annulus

are J = MLa
2
L and I = J/2. Hence the precession velocity is ωpL = −(3/4)ω2

T ω
−1
L .)

18. Show that the generating function of the canonical map formally removing, from the
above Hp, the perturbation to higher order is A0ϕ+K0γ +B0λ+ Φ with:

Φ(A0, K0, ϕ, γ, λ) =− ω̄pĀ

cos ı̄


− 1

4ωT
(1− K2

0

A2
0

)
sin 2(λ − γ)
1− ωp/ωT

− 1

ωD

·
„

1− K2
0

A2
0

«1/2„
1− L2

A2
0

«1/2

·
»
(
K0

A0
− 1)

cos(λ − γ + ϕ)

1 + (ωT − ωp)/ωD

− (
K0

A0
+ 1)

cos(λ− γ − ϕ)

1 − (ωT − ωp)/ωD

–ff

where ωD ≡ A0/I3, and ωp ≡ ω̄pĀ/2A2
0 cos ı̄.

19. Consider the canonical map with generating function A0ϕ+K0γ+B0λ+Φ(A0,K0, ϕ, γ)
and introduce the parameters ε = (1 − L2/A0

2)1/2, cos i0 ≡ K0/A0 and set q± = (1 ±
cos i0)/ cos i0. To simplify the calculations choose the so far arbitray constants ı̄, ω̄D to be
identical to i0, ωD ≡ A0/I3. Show that with this choice of ı̄, ω̄D the map is generated by
the relations:

ϕ0 =ϕ− ωp

ωDε

„
q+

cos(λ − γ − ϕ)

1− (ωT − ωp)/ωD
+ q−

cos(λ− γ + ϕ)

1 + (ωT − ωp)/ωD

«

γ0 =γ − ωp

ωT

sin 2(λ − γ)
2(1 − ωp/ωT )

A =A0 −
ωpA0

ωD
ε sin i0

„
q+

sin(λ− γ − ϕ)

1− (ωT − ωp)/ωD
− q−

sin 2(λ− γ + ϕ)

1 + (ωT − ωp)/ωD

«

K =K0 −
ωp

2ωT
A0 tan i0

cos 2(λ − γ)
1− ωp/ωT

and, trivially, λ0 ≡ λ. Neglecting terms of order O((ωp/ωT )2) as well as terms of order
O(ωpε/ωD) and assuming that ωp/εωD tan i0 is very small the above relations are trivially
inverted, up to corrections of higher order, as:

ϕ =ϕ0 +
ωp

ωDε

„
q+

cos(λ0 − γ0 − ϕ0)

1− (ωT − ωp)/ωD
+ q−

cos(λ0 − γ0 + ϕ0)

(1 + (ωT − ωp)/ωD)

«

γ =γ0 −
ωp

2ωT

sin 2(λ0 − γ0)

(1 − ωp/ωT )

A =A0

„
1− ωp

4ωD
ε sin i0

“
q+

sin(λ0 − γ0 − ϕ0)

1− (ωT − ωp)/ωD
− q−

sin(λ0 − γ0 + ϕ0)

1 + (ωT − ωp)/ωD

”«

K =K0

„
1 +

ωp

2ωT cos i0
tan i0

cos 2(λ0 − γ0)

1− ωp/ωT

«
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and the equations of motion are, in the new coordinates labeled by 0:

ϕ̇0 =ωD γ̇0 = ωp

A0 =I3ωD K0 = I3ωD cos i0

and i0, ωD , ωp, ε, as well as the initial data for ϕ0, γ0, λ0, must be regarded as parameters to
be determined from observations. They define the mean inclination, daily rotation, equinox

precession, and nutation constant.
Show that the terms neglected in problems (13) thorugh (15) and above would add

oscillating terms with much smaller amplitude.

20. Consider the motions described in the new primed coordinates by the last equations of
problem (18). The angles ϕ, γ can be thought to be animated by two distinct motions. The
first are the two precession motions:

ϕ→ ϕ+ ωDt, γ → γ + ωpt

are, respectively, the mean daily rotation and the mean precession of the equinoxes. The
second motion is linearly superposed to the first and is the motion obtained by replacing λ
by λ + ωT t, ϕ0 by ϕ0 + ωDt and γ0 by γ0 + ωpt in the trigonometric terms in the second
of problem (18). The second motion is the nutation caused by the Sun.

21. The axis k0 with Euler angles (i0, γ0 +ωpt) is called the mean axis of rotation: it is an
axis animated by a purely precessional, uniform, motion. Its node m0 on the ecliptic plane
is the mean node or mean equinox and it is rotating at uniform angular velocity ωp. Show
that, in the approximation in which the Earth axis, the angular momentum axis and the
angular velocity axis are identified, the actual inclination i of the axis and the longitude δ
of the apparent (i.e. the actual) node with respect to the mean node are given by:

cos i =
K

A
= cos i0

„
1 +

ωp

2ωT cos i0
tan i0

cos 2(λ− γ0)

1− ωp/ωT
+

+
ωp

2ωD
ε sin i0(q−

sin(λ − γ0 − ϕ0)

1− (ωT − ωp)/ωD
)− q+

sin(λ− γ0 + ϕ0)

1 + (ωT − ωp)/ωD

«

δ =
ωp

2ωT
tan i0

sin 2(λ− γ0)

1− ωp/ωT

having set q± = (1 ± cos i0)/ cos i0.

22. Consider the mean Earth axis and a plane orthogonal to it. Show that the coordinates of
i3, the actual rotation axis, and those of the mean rotation axis and mean equinox, k0,m0

are:
i3 =(sin i sin(γ0 + δ),− sin i cos(γ0 + δ), cos i)

m0 =(cos γ0, sin γ0, 0)

k0 =(sin i0 sinγ0, sin i0 cos γ0, cos i0)

Show that the coordinates of the extreme point projected on the just constructed plane are
given by:

x =i3 ·m0 = sin δ sin i

y =i3 · k0 ∧m0 = sin γ0(cos i sin i0 sinγ0 − cos i0 sin i sin(γ0 + δ))−

− cos γ0(cos i0 sin i cos(γ0 + δ) − cos i sin i0 cos i cos γ0)
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Show that if in the equations of motion one neglects the terms with the angles (λ−γ0±ϕ0)
then the endpoint of the rotation axis describes an ellipse, i.e. (x, y) describe an ellipse.

23. In general one has to take into account the force of the Moon, which in fact produces

terms greater than the ones considered above from the Sun. However the motions will be

basically of the same type: the nutation and precession will receive contributions also from

the Moon and the other planets. If one really wants, one can improve the above description

by distinguishing the three main rotation axes (the rotation axis, the symmetry axis and

the angular momentum axis) and describe the motion of the Earth symmetry poles (polar

motion) with respect to the instantaneous axis of rotation, which should be really taken as

defining the equinox line: the motion thus described includes the so called polar motion,

i.e. the motion of the angular momentum axis (and of the rotation axis) relatively to the

symmetry axis. But of course the calculations become intricate and in the end they only

provide formulae with free parameters that are determined empirically and used, as said

above, for the preparation of the Ephemerides. The nutation motion is simply described

by a motion of the Earth symmetry axis endpoint on an ellipse only if the very largest

terms from the Moon contributions are considered: all the remaining corrections have the

consequence that the motion of the pole around the mean pole is a quasi periodic motion

with many periods (ranging from periods of the order of the day up, if one starts including

in a very refined theory effects like the tides influence). But the quasi periodic motion

can be a good approximation only as long as perturbation theory remains meaningful: the

long time behaviour is possibly non quasi periodic and chaotic, even assuming the Earth

perfectly rigid: but the chaoticity takes places over a very small scale as the corrections to

the main nutational terms correspond to motions of the poles on the Earth surface of the

order of 10m (and the main nutational terms correspond to the order of 100m).
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Appendices

6.1 A: The Cauchy-Schwartz Inequality

1 Proposition. Let Ω be a closed bounded Riemann-measurable (or Lebesgue-
measurable) set in Rd. Let f, g ∈ C(0)(Ω) be two R-valued functions. Then

|
∫

Ω

f(ξ)g(ξ)dξ| ≤
(∫

Ω

f(ξ)2dξ

) 1
2
(∫

Ω

g(ξ)2dξ

) 1
2

. (A1)

Proof. In fact ∀λ ∈ R:

0 ≤
∫

Ω

(f(ξ) + λg(ξ))2dξ =

∫

Ω

f(ξ)2dξ + 2λ

∫

Ω

f(ξ)g(ξ)dξ + λ2

∫

Ω

g(ξ)2dξ.

Hence, this polynomial of second degree in λ must have a non-negative dis-
criminant. Its discriminant is simply the difference between the square of the
r.h.s. of Eq. (A1) and the square of the l.h.s. mbe

Exercise.
Prove Eq. (A1) by remarking that (if vol∆ is the volume of the set ∆)

Z

Ω
f(ξ)g(ξ)dξ = lim

δ→0

X

i

f(ξi)g(ξi)vol∆i

where ∆1,∆2, . . . are a pavement of Ω with parallel cubes with side δ and ξi ∈ ∆i ∩ Ω.

Then apply the “ordinary Cauchy inequality”
P
i |aibi| ≤ (

P
i |ai|2)

1
2 (
P
i |bi|2)

1
2 to the

sequences ai = f(ξi)
√

vol∆i, bi = g(ξi)
√

vol∆i.
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6.2 B: The Lagrange-Taylor Expansion

1 Proposition. Let f ∈ C(k)(Rd) and suppose that f has a zero of order
(m+ 1) ≤ k in x0. Then

f(x) =
∑

α1,...,αd

αi≥0,

∑
αi=m+1

f̃x0,α1,...,αd
(x)

d∏

i=1

(xi − x0i)
αi

ai!
(B1)

and the functions f̃x0,α1,...,αd
(x) ∈ C(k−m−1(Rd). If they are regarded as func-

tions of (x0,x) ∈ R2d then they are in C(k−m−1)(R2d).

Proof. Consider the function λ→ f(x0 + λ(x− x0)) which has in λ = 0
a zero of order m+ 1, i.e., it has the first m derivatives vanishing. Then

f(x) =

∫ 1

0

dλ1
d

dλ1
f(x0 + λ1 (x− x0))

=

∫ 1

0

dλ1

∫ λ1

0

dλ2
d2

dλ2
2

f(x0 + λ2 (x− x0))

=

∫ 1

0

dλ1

∫ λ1

0

dλ2 . . .

∫ λm

0

dλm+1
dm+1

dλm+1
m+1

f(x0 + λm+1 (x− x0))

=

∫ 1

0

(1− λ)m
m!

dm+1

dλm+1
f(x0 + λ (x− x0))

(B2)

Expressing the derivative with respect to λ in terms of the derivatives with
respect to the x coordinates it follows, inductively

1

(m+ 1)!

dm+1

dλm+1
f(x0 + λ (x− x0))

=
∑

α1,...,αd

αi≥0,
∑

αi=m+1

∂m+1f(x0 + λ (x− x0))

∂xα1
1 . . . ∂xαd

d

d∏

i=1

(xi − x0i)
αi

ai!

(B3)

and this proves the proposition, showing that

f̃x0,α1,...,αd
(x) =

∫ 1

0

(m+ 1)!

m!
λm

∂m+1f(x0 + λ (x− x0))

∂xα1
1 . . . ∂xαd

d

(B4)

mbe

Observation. The same proof holds if f ∈ C(k)(Ω) and Ω is a convex open
set.

2 Corollary. If f ∈ C(k)(Rd ×Rn) has a zero of order m+ 1, m < k, in x0

for each y ∈ Rn:
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f(x,y) =
∑

α1,...,αd

αi≥0,

∑
αi=m+1

f̃x0,α1,...,αd
(x,y)

d∏

i=1

(xi − x0i)
αi

ai!
(B5)

and the functions f̃ , thought of as functions of (x0,x,y) ∈ Rd × Rd × Rn,
are in C(k−(m+1))(Rd ×Rd ×Rn).

Proof. It is a repetition of the above proof.

3 Proposition. If f ∈ C(k)(Rd ×Rn) , the function

f(x,y) −
∑

α1,...,αd

αi≥0,

∑
αi=≤m

∂α1+...+αdf(x0,y)

∂xα1
1 . . . ∂xαd

d

d∏

i=1

(xi − x0i)
αi

ai!
(B6)

has, for each m < k, a zero in x of order m at x0 for all y ∈ Rn. Furthermore,
the function in Eq. (B6) has a representation like the right hand side of Eq.
(B5) with functions f having the same properties as those of Corollary 2 above.

Proof. One first checks that Eq. (B6) has all the x derivatives vanishing in
(x0,y) up to order m. Then one applies Corollary 2 or repeats the proof of
Proposition 1. This time,

f̃x0,α1,...,αd
(x,y) =

∫ 1

0

(m+ 1)!

m!
λm

∂m+1f(x0 + λ (x− x0),y)

∂xα1
1 . . . ∂xαd

d

(B7)

mbe

6.3 C : C∞-Functions with Bounded Support and
Related Functions

1. There is a nonzero function ψa ∈ C∞(R), ψa ≥ 0 with support in [0, a]
a > 0, and one can take

ψa(t) =0 if t 6∈ (0, a)

ψa(t) =e
− 1

t2(a−t)2 if t ∈ (0, a)
(C1)

2. There exists a nondecreasing function g ∈ C∞(R) vanishing for t ≤ 0 and
equal to 1 for t ≥ a > 0. For instance,

χ(t) = C

∫ t

−∞
ψa(τ)dτ, C−1 =

∫ +∞

−∞
ψa(τ)dτ. (C2)
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3. The function

gα,β(t) = χ(t− α+ a)χ(β − t+ a) (C3)

has value 1 if t ∈ [α, β], 0 if t ≤ α− a or t ≥ β + a and is non-negative.

4. The function in C∞(Rd),

g(ξ1, . . . , ξd) =

d∏

i=1

gαi,βi(ξi), (C4)

has value 1 on the parallelepiped [α1, β1]× . . .× [αd, βd]; it is 0 outside [α1 −
a, β1 + a]× . . .× [αd − a, βd + a] and it is non negative.

6.4 D: Principle of the Vanishing Integrals

1 Proposition. Lt f ∈ C∞([α, β]) and suppose

∫ β

α

f(t)z(t)dt = 0 (D1)

for all z ∈ C∞0 ([α, β]). Then f ≡ 0.

Proof. If f 6≡ 0, there is t0 ∈ (α, β) where f(t0) 6= 0. Let [α, β] ⊂ [α, β]
be an interval around t0 such that |f(t)| > 1

2 |f(t0)|, ∀ t ∈ [α, β]. Let t →
χ(t), t ∈ [α, β] be a C∞ function positive in t0 and vanishing outside [α, β].
Then t→ f(t0)χ(t) is in C∞0 ([α, β]) and

0 =

∫ β

α

f(t)χ(t)f(t0)dt ≥
1

2

∫ β

α

|f(t0)|2χ(t)f(t0)dt > 0. (D2)

mbe



6.5 E: Matrices, Eigenvalues, Eigenvectors 523

6.5 E: Matrix Notations. Eigenvalues and Eigenvectors.
A List of some Basic Results in Algebra

The reader who wishes more details (or proofs) on the subjects discussed
below may consult [14] Chaps. 1 and 2.

1. Given a ℓ×m matrix J , and a m×p matrix L, JL denotes the ℓ×p matrix
obtained by multiplying “rows by columns” the matrices J and L.

2. If J is an ℓ ×m matrix and x ∈ Cm, we denote y = Lx the vector of Cℓ
with components

yi =

m∑

k=1

Jikxk, i = 1, . . . , ℓ. (E1)

3. The determinant, detJ , of a matrix J is defined for all the square ma-
trices. If J and L are two d × d square matrices, detJL = detJ detL. The
determinant is a linear combination of products of matrix elements.

4. The sum of two ℓ ×m matrices is an ℓ ×m matrix with matrix elements
given by the sums of the homonymous matrix elements of the two matrices.
The matrix λJ, λ ∈ C, is the matrix whose elements are those of J multiplied
by λ. The modulus of an ℓ×m matrix J is

|J | def=

ℓ∑

i=1

m∑

j=1

|Jij |. (E2)

If J is an ℓ×m matrix and L is a m× p matrix,

|JL| ≤ |J | |L|. (E3)

In §5.12 (only) we use the symbol ||J || for the right-hand side of (E2) and
|J | for max |Jij |; then Eq. (E3) is changed by an extra factor ℓm in the right
hand side.

5. The d×d identity matrix, will usually be simply denoted by 1 and similarly,
the product of λ ∈ C with the identity matrix will be denoted λ.

6. The eigenvalues of a square matrix are the solutions of the algebraic equa-
tion in λ (“secular or characteristic equation”):

det(J − λ) = 0. (E4)

7. The inverse matrix to a square matrix J exists if and only if detJ 6= 0 and
it will be denoted J−1: it is characterized by the property JJ−1 = J−1J = 1.
Its matrix elements are expressible as ratios of determinants of submatrices
of J by the determinant of J .
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8. If f(z) =
∑∞
n=0 cnz

n is a power series with radius of convergence ̺ > 0

and if J is a square matrix such that |J | < ̺ and if J0 def= 1, the series

fij =

∞∑

n=0

cn(Jn)ij (E5)

are absolutely convergent since

|fij | =
∞∑

n=0

|cn||Jn| ≤
∞∑

n=0

|cn||J |n ≤
∞∑

n=0

|cn|̺n <∞ (E6)

They define a matrix that will be denoted f(J).
If (P (z), Q(z)) are two polynomials and PQ(z) is their product polynomial,
it is

P (J)Q(J) = PQ(J) (E7)

(if one thinks of the definition of the product of polynomials and of the fact
that the product of matrices is distributive).
Similarly, if f(z), g(z) are two powers series with radius of convergence ̺, their
product power series fg(z) has the same radius of convergence and the above
relation is generalized by

f(J)g(J) = fg(J). (E8)

In particular, if |J | < 1, f(z) = 1−z, g(z) = (1−z)−1 =
∑∞

n=0 z
n, fg(z) = 1,

so that g(J) is the inverse to (1− J); i.e.,

(1− J)−1 =

∞∑

n=0

Jn (E9)

and

|(1− J)−1 − 1| = |
∞∑

n=1

Jn| ≤ |J |
1− |J | (E10)

9. A real square matrix J is said to be “orthogonal” if J−1 = JT , where

(JT )ij
def
= Jji, ∀ i, j. The orthogonal d × d matrices can also be thought of as

“rotations of Rd”. The rotation of Rd corresponding to the orthogonal matrix
J will be the map of Rd into itself:

x→ Jx (E11)

10. If J is a d× d matrix and if y,x ∈ Cd,

x · Jy = JTx · y. (E12)
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11. The eigenvalues of a matrix enjoy remarkable properties. For instance:

1 Proposition. If J is a d × d matrix with pairwise-distinct eigenvalues
λ1, . . . , λd, there are d vectors v(1), . . . ,v(d) ∈ Cd, generally complex even if J
is a real matrix, such that

Jv(i) = λiv
(i), i = 1, . . . , d (E13)

and they are linearly independent.
If J is a real matrix, the eigenvalues and the eigenvectors can be arranged so
that they appear in complex-conjugate pairs.
If the matrix J varies in the neighborhood (in the sense that |J −J0| is small)
of a matrix J0 with pairwise-distinct eigenvalues, then the eigenvalues and
the corresponding eigenvectors can be chosen and labeled so that they vary
smoothly with J , i.e., so that the eigenvalue λj of J and the corresponding
eigenvector components (v(j))k, j, k = 1, . . . , d, are C∞ functions of the ma-
trix elements of J .

6.6 F: Positive-Definite Matrices. Eigenvalues and
Eigenvectors. A List of Basic Properties

The reader who wishes more details (or proofs) on the subjects discussed
below may consult [14], Chaps. 1 and 2.

Definition. A real matrix V = (Vij), i, j = 1, . . . , d is “positive definite” if

(i) Vij = Vji, i, j = 1, . . . , d; (Symmetry) (F1)

(ii) For all α = (α1, . . . , αd) ∈ Rd, α 6= 0,

(α ·α)
def
=

d∑

i,j=1

Vijαiαj > 0 (Positivity) (F2)

We now collect the main properties of the positive-definite matrices in two
propositions.

First, note that detV 6= 0; otherwise, there would be α0 6= 0 such that
Vα0 = 0, contradicting (ii) above.

The following proposition states the “existence of an orthonormal basis on
which V is diagonal”.

1 Proposition. If V is a d× d positive-definite matrix, there exist d positive
numbers λ1, . . . , λd and an orthonormal basis v(1), . . . ,v(d) in Rd such that

V v(j) = λjv
(j), j = 1, . . . , d (F3)
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and the orthogonal matrix

Jij = (v(j))i, i, j = 1, . . . , d (F4)

is such that

JV JT = Λ, V = JTΛJ, (F5)

where Λ is the diagonal d×dmatrix with diagonal elements given by λ1, . . . , λd.

Observation. Eq. (F5) implies that λ1, . . . , λd are the eigenvalues of V counted
according to multiplicity. In fact,

det(V − λ) =(detJTΛJ − λ) = det(JT (Λ− λ)J)

=det(Λ− λ) =

d∏

i=1

(λi − λ)
(F6)

(since JTJ ≡ 1, detJ detJT = detJJT = 1)

2 Corollary. If V is a positive-definite d×d matrix, there is a positive definite
matrix

√
V such that (

√
V )2 = V . More generally, if a ∈ R, there is a positive-

definite matrix V a such that, ∀ a, b ∈ R, V aV b = V a+b and V 1 = V , V 0 = 1.

Proof. If Λ is a diagonal d × d matrix such that Eq. (F5) holds, we set
Λa = {diagonal matrix and diagonal elements λ1, . . . , λd}. Then ΛaΛb =
Λa+b, ∀ a, b ∈ R, Λ1 = Λ,Λ0 = 1; so we set

V a = JTΛaJ (F7)

and V a verifies the desired properties. V
1
2 =
√
V by definition. mbe

3 Corollary. If V is a d×d positive-definite matrix, there exists a continuous
function µ(V ) > 0 depending on the matrix elements of V such that

Vα ·α ≥ µ(V )|α|2. (F8)

In fact, µ(V ) = mini λi, are the eigenvalues of V .

Proof.

Vα ·α =JTΛJα ·α = ΛJα · Jα =

d∑

i=1

λi(JBa)
2
i

≥µ(V ) =

d∑

i=1

(JBa)2i = µ(V )Jα · Jα

=µ(V )JTJα ·α = µ(V )α ·α.

(F9)

mbe

We conclude with a generalization of the above results.
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4 Proposition. Let G, V be two positive-definite d × d matrices. There are
d independent vectors v(1), . . . ,v(d) ∈ Rd and d positive numbers λ1, . . . , λd
such that

V v(j) = λjGv(j), j = 1, . . . , d, (F10)

Gv(i) · v(j) = δij , i, j = 1, . . . , d; (F11)

The numbers λ1, . . . , λd are the solutions repeated with multiplicity of

det(V − λG) = 0. (F12)

There is a function µ(V,G) > 0 continuously dependent on the matrix ele-
ments of V,G such that

Vα ·α ≥ µ(V,G) (Gα ·α). (F13)

Observation. This is reduced to the preceding propositions. If w(1), . . . ,w(d)

are the eigenvectors of the positive-definite matrix W = G−
1
2V G−

1
2 , the v(j)

are

v(j) = G−
1
2 w(j), j = 1, . . . , d. (F14)

6.7 G: Implicit Functions Theorems

Let f ∈ C∞(Rm×Rd) be a function with values in Rd associating to (x,y) ∈
Rm ×Rd the value f(x,y).

Consider the equation for y ∈ Rd parameterized by x:

f(x,y) = 0 (G1)

which is a system with d equations in d unknowns y1, . . . , yd.
Suppose that (x0,y0) ∈ Rm×Rd verifies Eq. (G1). By the Taylor theorem,

see Appendix B,

f(x,y) = J (y − y0) + L (x− x0) + N(x,y) (G2)

where J, L are d× d matrices built with the derivatives of f :

Jij =
∂f (i)

∂yj
(x0,y0), i, j = 1, . . . , d, (G3)

Lij =
∂f (i)

∂xj
(x0,y0), i = 1, . . . , d, j = 1, . . . ,m (G4)
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and N is an Rd-valued C∞-function with a second-order zero in (x0,y0), see
Appendix B, Proposition 3 with m = 1, k = +∞

The implicit function theorem compares the solution of Eq. (G1), written
as

J (y − y0) + L (x− x0) + N(x,y) = 0, (G5)

with that of the linear equations (d× d linear system)

J (y − y0) + L (x− x0) = 0. (G6)

If detJ 6= 0, the matrix J−1 exists and Eq. (G6) has the unique solution

y − y0 = −J−1 L (x− x0). (G7)

Therefore, it becomes natural to think that Eq. (G5) admits a solution
differing from Eq. (G7) “by higher-order infinitesimals in x− x0”, since such
is the difference between Eq. (G5) and Eq. (G6). More precisely, one can hope
that there exists in a vicinity U of x0 a function ϕ(x) such that

f(x,ϕ(x)) ≡ 0, x ∈ U, (G8)

ϕ(x) = −J−1 L (x− x0) +Φ(x), x ∈ U (G9)

where Φ ∈ C∞(U) and has a second-order zero at x0.
This is, in fact, the content of the implicit function theorems. Since we

shall also need explicit estimates of the size of the set U , on which Φ can
be defined, and on the size of Φ(U), its Φ image, it is more appropriate to
describe the proof in notations which are convenient for us rather than to
refer to a standard book.

We first treat the d = 1 case, denoting Γn(x, ̺) ⊂ Rn the closed cube with
center x ∈ Rn and side 2̺.

1 Proposition. Given δ > 0, α > 0, α ≥ δ, define

̺δ,α
def
=

δ

2

min |∂f∂y |
max(

∑m
j=1 | ∂f∂xj

|+ |∂f∂y |)
, (G10)

where the minimum and the maximum are considered as x varies in Γm(x0, α)
and as y − y0 varies in [−δ, δ] and we suppose that f(x0, y0) = 0.
If ̺δ,α > 0 it is possible to define a function ϕ in C∞(Γm(x0, ̺δ.α)) verifying
Eq. (G8) for every x ∈ Γm(x0, ̺δ,α).
Furthermore, all the solutions of Eq. (G1) in Γm(x0, ̺δ,α) × [y0 − δ, y0 + δ]
have the form (x, ϕ(x)) and

∂ϕ

∂xi
(x) = −

∂f
∂xi

(x, ϕ(x))
∂f
∂f (x, ϕ(x))

. (G11)
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Proof. Let (x, y0 + δ) be a point on the upper face of the parallelepiped
Γm(x0, ̺δ,α)× [y0 − δ, y0 + δ]. We show that on this face f has a well-defined
sign, opposite to the one it has on the lower face.

Since ∂f
∂y 6= 0 cannot vanish in the parallelepiped, by the choice of ̺δ,α and

because ̺δ,α > 0 this will imply that for each x ∈ Γm(x0, ̺δ,α) there is and
only one point ϕ(x) ∈ [y0 − δ, y0 + δ] such that f(x, ϕ(x)) = 0 (note as that
∂f
∂y 6= 0 implies strict monotonicity).

To show that f takes opposite signs on the opposite faces suppose, to be
definite, ∂f∂y > 0 in Γm(x0, ̺δ,α)× [y0 − δ, y0 + δ]. Then

f(x, y + δ) ≡f(x, y0 + δ)− f(x0, y0)

=f(x, y0 + δ)− f(x, y0) + f(x, y0 + δ)− f(x0, y0)
(G12)

and we apply the Lagrange theorem to find x̃ and ỹ, intermediate between x
and x0 and between y0 and y0 + δ, such that the right-hand side of Eq. (G12)
can be written

f(x, y0 + δ) =
∂f

∂y
(x, ỹ) δ +

m∑

j=1

∂f

∂xj
(x̃, y0)(x − x0)

≥ (min
∣∣∂f
∂y

∣∣) δ − (max

m∑

j=1

∣∣ ∂f
∂xj

∣∣) ̺δ,α
(G13)

Similarly, one proves that f(x, y0 − δ) < 0, ∀x ∈ Γm(x0, ̺δ,α). This proves
the existence of β(x) and its uniqueness.

To show the differentiability in the direction of the axis e = (e1, . . . , ed) ob-
serve that, given x ∈ Γm(x0, ̺δ,α) and given e such that x0+ε e ∈ Γm(x0, ̺δ,α)
and if x̃, ỹ are suitable intermediate points between x and x+ εe or ϕ(x) and
ϕ(x + ε e), one finds

0 ≡ f(x + εe, ϕ(x + εe))− ϕ(x, ϕ(x)), (G14)

0 =

m∑

i=1

ei
∂f

∂xi
(x̃, ỹ) ε+

∂f

∂y
(x̃, ỹ)(ϕ(x + εe)− ϕ(x) (G15)

by the Lagrange theorem, and this shows that

|ϕ(x + εe)− ϕ(x) ≤
max

∑m
i=1 | ∂f∂xi

|
min |∂f∂y |

(G16)

i.e., ϕ is continuous. Eq. (G15) also yields, dividing it by ε and letting ε→ 0,

lim
ε→0

ϕ(x + εe)− ϕ(x, ϕ(x))

ε
=
−∑m

i=1 ei
∂f
∂xi

(x, ϕ(x))
∂f
∂y (x, ϕ(x))

, (G17)

proving the differentiability of ϕ and Eq. (G11).
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By the chain-differentiation rule of composed-function, Eq. (G11) implies
that ∂ϕ

∂xj
are differentiable in x and their derivatives can be expressed in

terms of ϕ, of its first derivative and of f and its first two partial derivatives.

Therefore, ∂2ϕ
∂xi∂xj

are differentiable, etc., i.e., ϕ ∈ C∞(Γm(x0, ̺δ,α). mbe

Observation. It appears from the proof that the same results hold if no relation
is assumed a priori between α and δ provided ̺δ,α replaced by

̺δ,α =
{

minimum between α and 1
2δ

min |∂f
∂y |

max
∑m

i=1
| ∂f

∂xi
|

}
(G18)

which is a better result; see Eq. (G13).
To deal with the general case, introduce, given a matrix M ,

|M | =
∑

i,j

|Mij | (G19)

and note that |M ·N | ≤ |M | |N | if M ·N makes sense, i.e., if the number of
columns of M equals that of the rows of N . Also define the matrices

J(x,y)
def
=

∂f

∂y
, L(x,y)

def
=

∂f

∂x
(G20)

2 Proposition. Given δ, α > 0, define

̺δ,α
def
=

1

2

δ − 2(max |J−1|)(αmax |∂N∂x |+ δmax |∂N∂y |)
max |J−1L| (G21)

with the maxima taken on Γm(x0, α)× Γd(y0, δ) and set ̺δ,α = 0 if J−1 does
not exist at some point of this set. Suppose f(x0,y0) = 0, and α > ̺α,δ > 0.
It is then possible to find ϕ ∈ C∞(Γm(x0, ̺δ,α)) with values in Γd(y0, δ) ver-
ifying Eq. (G8).
Furthermore, all the solutions of Eq. (G1) in Γm(x0, α) × Γd(y0, δ) have the
form (x,ϕ(x)) and

∂ϕk
∂xj

= −
d∑

k=1

(∂f(x,ϕ(x))

∂y

)−1

ki

(∂fi(x,ϕ(x))

∂xj

)
, x ∈ Γ (x0, ̺δ,α) (G22)

Observations.
(1) Note that the above proposition is nonempty. Using the factN has a
second-order zero at (x0,y0), given B > |J(x0,y0)

−1JL(x0,y0)|−1, we see
that for δ small enough (depending on B) and α = Bδ it is:

0 <
1

2

δ

max |J−1L| < ̺δ,α <
δ

max |J−1L| < Bδ (G23)
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(2) There are two methods to prove a theorem like the above. The most
natural would be to deduce it as a corollary of Proposition 1. One would just
proceed by substitution as in the solution of the linear systems.

The assumption det J 6= 0 implies that there is at least one derivative
∂f(i1)

∂y1
. Then we apply Proposition 1 to the function f = f (i1) with y = y1

and x replaced by (x, y2, . . . , yd) and call ϕ1(x, y2, . . . , yd) its solution defined
close enough to x0, y0 2, y0 3, . . . , y0 d. Then, supposing i1 = 1, consider

f (2)(x, ϕ1(x, y2, . . . , yd), y2, . . . , yd) = 0

. . . . . .

f (d)(x, ϕ1(x, y2, . . . , yd), y2, . . . , yd) = 0

(G24)

The determinant of the Jacobian matrix J , of the left-hand side of Eq. (G24)
with respect to y2, . . . , yd cannot vanish in x0, y0 2, y0 3, . . . , y0 d because it can
be shown to coincide with the determinant of the linear system of equations
obtained from the system J(x0,y0)ξ = η by solving its first equation with
respect to ξ1 and substituting into the others. Therefore, we can again apply
Proposition 1, expressing, say, y2 as a function of x, y2, . . . , yd close enough
to x0, y0 3, . . . , y0 d etc. The only difficulty is that the left-hand side of Eq.
(G24) is only defined, and C∞, in a small vicinity of x0, (y0)2, . . . , (y0)d,
and not on all of Rm × Rd, as would be required by Proposition 1. This is,
however, an obviously trivial difficulty. What is more difficult in this method
is to keep track of the size of the neighborhoods involved, in order to obtain
an explicit formula like Eq. (G21). Therefore, here we shall adopt another
classical method of proof. The triumph of the naive substitution method will
appear in Appendix N where, however, additional assumptions on f are made.

Proof. Write Eq. (G1) as Eq. (G5) and let

y′ − y0 = −J−1L(x− x0)− J−1N(x,y) (G25)

for (x,y) ∈ Γm(x0, α) × Γd(y0, δ). Note that y′ − yo| < δ if (x,y) ∈
Γm(x0, ̺δ,α) × Γd(y0, δ) and if (as supposed) a > ̺δ,α > 0. In fact, by the
Lagrange theorem and N(x0,y0) = 0, it follows that

|y′ − y0| ≤|J−1L| ̺δ,α + |J−1(N(x,y) −N(x0,y0))|

≤|J−1L| ̺δ,α +max|J−1|
(∣∣∂N
∂x

∣∣α+
∣∣∂N
∂y

∣∣δ
)
<

1

2
δ

(G26)

Therefore, at x fixed in Γm(x0, ̺δ,α), Eq. (G25) yields a map of Γd(y0, ̺δ,α)
into itself. We can, therefore, recursively define, for each fixed x ∈ Γm(x0, ̺δ,α),

yn − y0 = −J−1L(x− x0)− J−1N(x,yn−1 (G27)

n = 1, 2, . . .. Then,
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|yn − yn−1| = |J−1(N(x,yn−1 −N(x,yn−2)|

≤ (max |J−1|)
(
max |∂N

∂y
|
)
|yn−1 − yn−2| <

1

2
|yn−1 − yn−2|

(G28)

having used in the last step the hypothesis ̺δ,α > 0 which implies that
(max |J−1|)(max |∂N∂y |) < 1

2 . Therefore, |yn − yn−1| ≤ 2−(n−1)|y1 − y0| and
there exists the limit

ϕ(x) = lim
n→∞

yn = y0 +

∞∑

k=1

(yk − yk−1) (G29)

If (x, ỹ) is another solution to Eq. (G1) in Γm(x0, ̺δ,α) × Γd(y0, δ), we can
write Eq. (G1) in the form of Eq. (G5) for y and ϕ(x) and subtract

|ỹ −ϕ(x)| = |J−1(N(x, ỹ)−Nn(x,ϕ(x))| ≤ 1

2
|ỹ −ϕ(x)| (G30)

i.e. ỹ = ϕ(x), proving uniqueness. The differentiability statement is proved
as in Proposition 1. mbe

3 Corollary. Under the assumptions of Proposition 2, let m = d and, see Eq.
(G23), give B,C > 1 such that

B > (min |J−1L|)−1, C > (min |L−1J |)−1, (G31)

where the minima are taken over Γd(x0, α) × Γd(y0, δ) with given α, δ > 0.
Suppose that δ > 0 is so small that δ,Bδ < α, δ.
Define ̺α,δ as in Eq. (G21) and ˜̺α,δ

˜̺α,δ =
1

2

α− 2(max |L−1|)(αmax |∂N∂x |+ δ|∂N∂y |)
max |L−1J | , (G32)

where the maxima are now considered on Γd(x0, α) × Γd(y0, δ) both for ̺δ,α
and ˜̺δ,α . Then if δ is so small that

0 < ̺
def
= ̺δ,Bδ < Bδ, and 0 < ˜̺def= ˜̺ 1

BC ̺,
1
B ̺

< δ (G33)

(which is possible by Observation (1), p.530), the ϕ-image of Γd(x0, ̺) covers
Γd(y0, ˜̺).
Observations.
(1) This means that if the Jacobians of f with respect to x and with respect to
y have non vanishing determinant at (x0,y0), the f sets up a correspondence
between x,y near x0,y0 of class C∞, with inverse of class C∞, and sending
open sets onto open sets (it is a local “C∞ diffeomorphism”).
(2) Since Corollary 3 is quantitative, it says much more: it gives, in fact,
estimates of the size of the regions where f can be inverted.
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Proof. Just apply Proposition 2 twice, to express y in terms of x and vicev-
ersa (make a two-dimensional drawing to better understand the situation).
mbe

Another important application of Proposition 2 is the following corollary
used in §5.10.

4 Corollary. Let f ∈ C∞(T ℓ) with values in R. Consider the equation for
ϕ ∈ T ℓ:

ϕ′ = ϕ+ ε f(ϕ) (G34)

with ε ∈ R+ and suppose max |f(ϕ)| ≤ 1 , max | ∂f∂ϕ (ϕ)| ≤ 1.
There is εℓ > 0, depending only on ℓ and not on f , such that, ∀ ε < εℓ, the
above equation can be solved uniquely in the form

ϕ = ϕ′ + εg(ϕ′, ε) (G35)

with g ∈ C∞(T ℓ) at fixed ε. Furthermore maxϕ |g(ϕ, ε)| ≤ 1, and if ϕ verifies
Eq. (G34), then it is given by Eq. (G35) up to 2πν, ν ∈ Zℓ.
Observation. This is a “global theorem” involving an inversion on a large set,
namely, T ℓ. It can be improved to cover the case when f depends parametri-
cally on some A ∈ Rp so that (A,ϕ)→ f(A,ϕ) is a C∞ function on Rp×T ℓ.
Then if f verifies the assumptions of the corollary for each A ∈ V ⊂ Rp, one
can check that g ∈ C∞(V × T ℓ), ∀ ε < εℓ.

Proof. Let 0 ≤ ε < 1
4 . The Jacobian matrices L, J of Eq. (G34) regarded

as an implicit equation F(ϕ,ϕ′) = 0 in Rℓ ×Rℓ near the solution (ϕ0,ϕ0 +
ε f(ϕ0)), with ϕ0 given in T ℓ, are

Lij = δij , Jij = Lij + ε
∂fi
∂ϕj

, (G36)

and by assumption [see Eqs. (E2), (E3), and (E10)] and since ε < 1
4 :

(ℓ− 1

4
) < |J | < (ℓ+

1

4
), (ℓ− 1

2
) < |J−1| < (ℓ +

1

2
), (G37)

so that the constants B,C in Eq. (G31) can be chosen B,C ≥ (ℓ− 1
2 )−1. We

now apply Corollary 3 to our equation near (ϕ0,ϕ0 + εf(ϕ0)) by choosing
δ =
√
ε, say, and noting that from Eqs. (G21) and (G32), it follows that for ε

small enough,

δ

4(ℓ− 1
2 )2
≤ ̺, B ˜̺≤ Bδ, (G38)

Noting that δ ≫ ε, we see that Corollary 3 implies that as ϕ0 varies on T ℓ,
the point ϕ0 + ε f(ϕ0) also varies covering T ℓ if ε is small enough.
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Furthermore, the map of Eq. (G34) is one to one, for ε very small, as a
map of T ℓ onto itself. In fact, if ϕ1,ϕ2 ∈ T ℓ and if the segment σ given by
t → ϕ1t + ϕ2(1 − t), t ∈ [0, 1], is the shortest segment on T ℓ connecting ϕ1

and ϕ2, we see that the points ϕ′1 = ϕ1 + ε f(ϕ1) and ϕ′2 = ϕ2 + ε f(ϕ2) can
coincide mod 2π only if ϕ′1 = ϕ′2, if ε is small. 1

Since f is periodic, the assumption that σ is the shortest path on T ℓ leading
from ϕ1 to ϕ2 cannot be restrictive and, therefore, the map ϕ → ϕ+ εf(ϕ)
is one to one for ε < 1.

So the map of Eq. (G34) can be inverted on T ℓ and its inverse map ϕ′ →
Fε(ϕ

′) is C∞ near every point if ε is small enough. Clearly, Eq. (G35) holds
with g(ϕ′, ε) = −f(Fε(ϕ

′)) which also proves |g| < 1. mbe

Concluding Remark
The above proofs do not really make use of the fact that f is of class C∞.
If f is only supposed to be of class C(k), k ≥ 1, the ideas of the proofs still
work, and the only difference will be that the inverse function ϕ will not turn
out to be of class C∞, of course, but only of class C(k). We use the above
“C(k)-version” of the implicit function theorems only in §5.7.

Exercise
In the context of Proposition 1, compute the second derivative of f(x) in
terms of f and of its first derivatives ∂ϕ

∂x and in terms of f and of its first two
derivatives. (Answer:

∂2ϕ

∂xj∂xi
= −

∂2f(x,ϕ)
∂xi∂xj

+ ∂2f(x,ϕ)
∂xi∂y

· ∂ϕ∂xj

∂f(x,ϕ)
∂y

+

∂f(x,ϕ)
∂xi

(∂f(x,ϕ)
∂xi∂y

+ ∂2f(x,ϕ)
∂y2 · ∂ϕ∂xi

)

(∂f(x,ϕ)
∂y )2

.)

6.8 H: The Ascoli-Arzelá Convergence Criterion

The following elegant proposition is famous.

1 Proposition. Let Ω be a closed bounded set in Rd. Let (fn)
∞
n=0 be a se-

quence of continuous functions defined on Ω such that:
(i) The sequence (fn)

∞
n=0 is “equibounded”, i.e., there exists M such that

||fn|| = max
ξ∈Ω
|fn(ξ)| ≤M (H1)

(ii) the sequence (fn)
∞
n=0 is “equicontinuous”, i.e., given ε > 0 there exists

δε > 0 such that

sup
n,|ξ−ξ′|<δε

|fn(ξ)− fn(ξ′)| < ε. (H2)

1 In fact, |ϕ1 −ϕ2| cannot be too large (≤ π) if σ is the shortest segment joining ϕ1 and
ϕ2 on T ℓ.
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Then there is a subsequence (fni)
∞
i=0 such that the limit

f(ξ) = lim
i→∞

fni(ξ) (H3)

exists, uniformly, ∀ ξ ∈ Ω.

Observations.
(1) Hence f is continuous on Ω.
(2) The most interesting aspect of this theorem is the uniformly of the con-
vergence.

Proof. Let Ω0 ⊂ Ω be a denumerable dense subset of Ω (to be concrete,
think of the case when Ω is a square and Ω0 is the set of its points with
rational coordinates). We shall write Ω0 = {ξ1, ξ2, . . .}.

By the equiboundedness condition, it will be possible to find a subsequence
(fni)

∞
i=0 of (fn)

∞
n=0 such that the limits

lim
i→∞

fni(ξj)
def
= f(ξj) (H4)

exist. For instance, one can use the Cantor diagonal method; f is defined by
the right-hand side of Eq. (H4).

Without loss of generality, we may and shall assume that the subsequence
(ni)

ω
i=0 coincides with (0, 1, 2 . . .), i.e., that the limits limn→∞ fn(ξj) exist

without passing to a subsequence. This will now be used to show that the
function f defined on Ω0, can be extended to Ω by showing that the limit
limn→∞ fn(ξ) exists ∀ ξ ∈ Ω.. In fact, we show that (fn(ξ))

∞
n=0 is a Cauchy

sequence for all ξ ∈
O.

Let ξ ∈ Ω. Given ε > 0 let ξ̃ ∈ Ω − 0 be such that |ξ − ξ̃| < δε, see (ii);
then, by Eq. (H2):

|fn(ξ)− fm(ξ)| ≤|fn(ξ)− fn(ξ̃)|+ |fn(ξ̃)− fm(ξ̃)|
+ |fm(ξ̃)− fm(ξ)| ≤ 2ε+ |fn(ξ̃)− fm(ξ̃)| −−−−−→n,m→∞ 2ε

(H5)

because f(ξ̃)
∞
n=0 is a Cauchy sequence. Hence, by the arbitrariness of e, we

see that (fn(ξ))∞n=0 is also a Cauchy sequence and we can define, ∀ ξ ∈ Ω,
f(ξ) = limn→∞ fn(ξ).

If ξ,η ∈ Ω, |ξ − η| < δε, t then follows from Eq. (H2) that

|f(ξ)− f(η)| = lim
n→∞

|fn(ξ)− fn(η)| ≤ ε (H6)

It remains to show that the limit given by Eq. (H3) is uniform onΩ. Otherwise,
we could find ε > 0, a sequence ni−−−→i→∞ ∞ and points xi ∈ Ω such that

|fni(xi)− f(xi)| > ε, i = 1, 2, . . . (H7)
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Assuming (no loss of generality) that ni = i i.e.,

|fn(xn)− f(xn)| > ε, n = 1, 2, . . . (H8)

This is impossible because there would be an accumulation point x ∈ Ω for the
sequence xn, n = 1, 2 . . . and again we may assume, without loss of generality,
that limxn = x. Then if |x− xn| < δ 1

4 ε
, using Eqs. (H6) and (H2),

ε <|fn(xn)− f(xn)| ≤ |fn(xn)− f(xn)|+ |fn(xn)− f(xn)|

+ |f(x)− f(xn)| ≤
2ε

4
+ |fn(x) + fm(x)| −−−−→n→∞

1

2
ε

(H9)

which is a contradiction. mbe

2 Corollary. Under the assumptions of Proposition 1, aside from that of
boundedness (or of closure or both) for Ω, the same conclusions hold with the
exception of the uniformity of the convergence of fni(ξ) to f(ξ). Nevertheless,
f is uniformly continuous on Ω.

Proof. By inspection of the proof of Proposition 1.

Exercises

1. Let (fn)∞n=0 be a sequence of C(1)(Ω) functions on a convex set which is the closure

of its interior. If there is M such that supnmaxξ∈Ω | ∂fn(ξ)
∂ξ
| ≤ M then (fn)∞n=0 is an

equicontinuous family on Ω. (Hint: Express the variation of f , as the integral of its derivative
along a segment joining two points.)

2. Define C(ε)(Ω), ε ∈ (0, 1], to be the set of the functions such that

|f |ε def= sup
x
|f(x)|+

X

x,y

|f(x)− f(y)|
|x− y|e < +∞

Then any sequence(fn)∞n=0, fn ∈ C(ε)(Ω), such that |fn|ε ≤M < +∞, ∀n, is an equicon-

tinuous equibounded sequence.

6.9 I: Fourier Series for Functions in C
∞

([0, L])

Lemma 11, §4.5, p.266, will be proved here.
If u ∈ C∞([0, L]), set

u∗(x) = u(x), x ∈ [0, L],

u∗(L+ x) = − u(L− x), x ∈ [0, L]
(I1)

and, by the assumption that the even derivatives of u in 0 and in L vanish,
the function thus defined on [0, 2L] is in C∞([0, 2L]) and is periodic, together
with all its derivatives, with period 2L. By the Fourier theorem, we set
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û∗h =
1

2L

∫ 2L

0

u∗(x)e−i
2πh
2L x dx (I2)

for h ∈ Z and, ∀ 0 < h ∈ Z+, remark that

û∗h =
1

2L

∫ L

0

(
u(x)e−i

πh
L x − u(L− x)e−i πh

L (L+x)
)
− dx

=
1

2L

∫ L

0

u(x)
(
e−i

πh
L x − eiπh

L x
)
dx

=
−i
L

∫ L

0

u(x) sin
πhx

L
dx =

−i
2
u(h) = −û∗−h,

(I3)

having used the change of variables x→ L− x.. Therefore, for x ∈ [0, 2L],

u∗(x) =
∑

h=−∞
+∞û∗hei

πh
L x =

∑

h=1

+∞uh sin
πh

L
x. (I4)

Hence, for x ∈ [0, L],

u(x) =
+∞∑

h=1

uh sin
πh

L
x., (I5)

where uh defined in Eq. (I3) coincides with Eq. (4.5.20). Equation (4.5.21)
follows from Eq. (I3) and from the decay properties as h→∞ of the Fourier
coefficients for C∞-periodic functions. Equation (I5) gives Eq. (4.5.22). mbe

6.10 L: Proof of Eq. (5.6.20)

Let (S
(α,δ)
t (w1, w2))i

def
= σi(t,w), i = 1, 2, t ∈ [0, 1]. Eqs. (5.6.17),(5.6.18) give

σ1(t,w) =w1 +

∫ t

0

χδ(σ(τ,w)) (ασ1(τ,w) + P (σ(τ,w))) dτ,

σ2(t,w) =e−ν0tw2 +

∫ t

0

e−ν0(t−τ)χδ(σ(τ,w))Q(σ(τ,w)) dτ

.

(L1)

Consider, for instance, ∂σ
∂w1

and drop the w in the arguments of σ, for sim-
plicity. Note that
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∂σ1

∂w1
=1 +

∫ t

0

{
∂χδ(σ(τ)) · ∂σ(τ)

∂w1
(ασ1(τ) + P (σ(τ)))

+ χδ(σ(τ)) (α
∂σ1(τ)

∂w1
+ ∂P (σ(τ)) · ∂σ(τ)

∂w1
)
}
dτ

∂σ2

∂w1
=

∫ t

0

e−ν0(t−τ)
{
∂χδ(σ(τ)) · ∂σ(τ)

∂w1
Q(σ(τ))

+ χδ(σ(τ)) ∂Q(σ(τ)) · ∂σ(τ)

∂w1

}
dτ

(L2)

where ∂g denotes ( ∂g
∂w1

, ∂g
∂w2

) if g is a function of w1, w2 and possibly other
variables. Hence, using Eq. (5.6.15) and the fact that P and Q have a second-
order zero at the origin, we see that there are two constants p, q such that

∣∣∂σ1(t)
∂w1

− 1
∣∣ ≤ p

∫ t
0

{
1
δ |
|∂σ(τ)
∂w1

|(|α|δ + δ2) + |α||∂σ(τ)
∂w1
|+ |δ||∂σ(τ)

∂w1
|
}
dτ (L3)

(since |σ(τ)| ≤ δ
√

2) and

|∂σ1(t)

∂w2
| ≤ q

∫ t

0

{1

δ
| |∂σ(τ)

∂w1
|δ2 + |δ||∂σ(τ)

∂w1
|
}

(L4)

Therefore, adding and subtracting 1 appropriately:

|∂σ1(t)

∂w1
− 1| ≤2p(|α|+ δ)t+ 2p(|α|+ δ)

·
∫ t

0

{
| |∂σ1(τ)

∂w1
− 1|+ | |∂σ1(τ)

∂w1
|
}
dτ

|∂σ2(t)

∂w1
| ≤2q + 2qδ

∫ t

0

{
| |∂σ1(τ)

∂w1
− 1|+ |∂σ1(τ)

∂w1
|
}
dτ

(L5)

Setting y(t) = |∂σ1(τ)
∂w1

|+ |∂σ1(τ)
∂w1

|, the preceding inequalities, added up, imply

y(t) ≤ 2(p+ q)(|α|+ δ)t+ 2(p+ q)(|α| + s)

∫ t

0

y(τ) dτ (L6)

and y(0) = 0. The above integral inequality implies y(t) ≤ y(t), ∀ t ≥ 0, where

y(t) ≤ 2(p+ q)(|α| + δ)t+ 2(p+ q)(|α|+ δ)

∫ t

0

y(τ) dτ (L7)

and y(0) = 0 (see Problems 8 and 9, §2.5). Hence,

y(t) = (e2(p+q)(|α|+δ)t − 1) ≤Mt(|α|+ δ) (L8)

for 0 ≤ t ≤ 1, |α| ≤ 1, δ ≤ 1 (and M could be 2(p+ q)e4(p+q)).
An identical argument could be given for t ∈ (−1, 0).
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6.11 M: Proof of Eq. (5.6.63)

Let

(x, πt(x)) = S
(α,δ)
t (x0, π(x0)), (x, πt′ (x)) = S

(α,δ)
t′ (x′0, π(x′0)) (M1)

Then from Eq. (5.6.33), it follows that

|πt(x)− πt′(x)| ≤ |e−ν0tπ(x0)− e−ν0t
′

π(x′0)|+
∣∣
∫ t

0

dτ e−ν0(t−τ)

Zδ(S
(α,δ)
τ (x0, π(x0)), α)−

∫ t′

0

dτ e−ν0(t′−τ)Zδ(S
(α,δ)
τ (x′0, π(x′0)), α)

∣∣.
(M2)

Using Eqs. (5.6.25), (5.6.24), and (5.6.49) and supposing 0 ≤ t′ < t ≤ t+, the
right-hand side of Eq. (M2) is

≤|e−ν0t − e−ν0t′ ||π(x0)|+ e−ν0t
′ |π(x0)− π(x′0)|

+Mδ2|t− t′|+
∫ t′

0

|e−ν0(t−τ) − e−ν0(t′−τ)|Mδ2 dτ (M3)

+

∫ t′

0

e−ν0(t
′−τ) |Zδ(S(α,δ)

τ (x0, π(x0)), α) − Zδ(S(α,δ)
τ (x′0, π(x′0)), α)|dτ

≤δν0|t− t′|+ |π(x0)− π(x′0)|+ (1 + ν0t)Mδ2|t− t′|
+ 2Mtδ(1 +M(a+ + δ)t)(|x0 − x′0|+ |π(x0)− π(x′0)|)
≤(δν0 + (1 + ν0t)Mδ2)|t− t′|+

{(
c
√
δ + 2Mtδ(1 +M(a+ + δ)t)

+ 2Mtδ(1 +M(a+ + δ)t)C
√
δ
)}
|x0 − x′0|.

To estimate |x0 − x′0| proceed as in subsection 5.6.G, p.421, using the expres-
sions analogous to Eq. (5.6.58):

x0 =x−
∫ t

0

dτXδ(S
(α,δ)
−τ (x, πt(x)), α),

x′0 =x−
∫ t′

0

dτXδ(S
(α,δ)
−τ (x, πt′(x)), α),

(M4)

By Eqs. (5.6.25), (5.6.23), and (5.6.20),

|x0 − x′0| ≤M |t− t′|(a+δ + δ2) +

∫ t′

0

dτ

· |Xδ(S
(α,δ)
−τ (x, πt(x)), α) −Xδ(S

(α,δ)
−τ (x, πt′ (x)), α)| (M5)

≤M(a+δ + δ2)|t− t′|+ 2M(a+ + δ)t(1 +M(a+ + δ)t)|πt(x)− πt′(x)|.
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The restrictions imposed on a, t0, by the second of Eqs. (5.6.41) imply (recall
that C, δ < 1)

θ =(C
√
δ + 2tMδ(1 +M(a+ + δ)t)(1 + C

√
δ))

· 2M(a+ + δ) t (1 +M(a+ + δ)t)

≤(1 +
1

10
(1 +

1

20
))(1 + 1)

1

10
(1 +

1

10
) <

1

2

(M6)

By combining the last of Eqs. (M5) with the last of Eqs. (M3), it follows that

(1− θ)|πt(x) − πt′(x)| ≤ (δν0 + (1 + ν0t)Mδ2)|t− t′|, (M7)

so that, since θ < 1
2 :

|πt(x) − πt′(x)| ≤ 2(δν0 + (1 + ν0t+)Mδ2)|t− t′| (M8)

∀ t, t′ ∈ [0, t+]; hence, by Eq. (5.6.51), for all t, t′ ∈ R+, t
′ ≤ t, |t− t′| < t+.

6.12 N: Analytic Implicit Functions

The proofs of Propositions 20 and 21, §5.11, are based on the following idea.
Let F be a holomorphic function of a single complex variable z ∈ Ω ⊂ C.
Assume that its complex derivative, denoted by a prime in this section, F ′(z),
does not vanish in Ω.

It is a consequence of the theory of power series that, as z′ varies in a
small vicinity of z′0 = F (z0) and z varies close to z0, the equation z′ = F (z)
can be uniquely solved for z by a function I defined in a neighborhood U of
z0 and holomorphic in U :

F (I(z′)) ≡ z′ (N1)

for all z′ in U , and

I(F (z)) ≡ z (N2)

for all z in a suitable neighborhood of z0. The function I has Taylor coefficients
in z′0 which can be computed via a simple algorithm from those of F in z0.

The function F will be invertible on the whole F (Ω) if and only if F (z) 6=
F (z′) whenever z 6= z′. In this case the inverse function I will be holomorphic
on F (Ω) and it will be the unique inverse of F defined on F (Ω).

A simple criterion implying that F (z) 6= F (z′) for z 6= z′ is the following.
Suppose that for every pair z, z′ ∈ Ω there is a smooth curve Λ(z, z′) ⊂ Ω
with length |Λ(z, z′)| bounded by

Λ(z, z′) < β(Ω)|z − z′|, (N3)
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where β(Ω) is a suitable constant. Then F will be a one to one map between
Ω and F (Ω) if

σ = β(Ω) sup
z∈Ω
|F ′(z)− 1| < 1 (N4)

In fact (N4) implies

|F (z)− F (z′)| ≡ |
∫

Λ(z,z′)

F ′(ζ)dζ ≡ |
∫

Λ(z,z′)

dζ

+

∫

Λ(z,z′)

(F ′(ζ)− 1)dζ| ≥ |z − z′| − σ|z − z′| = (1− σ)|z − z′|.
(N5)

Proposition 20 can be proved by using the above remarks. First consider the
inversion problem for the equation

ϕ′ = ϕ+ g(ϕ) mod 2π (N6)

with ϕ ∈ T ℓ and g holomorphic on C(ξ). Let g be the holomorphic extension
of g to C(ξ). Eq. (N6) can be written

z′ = z eig(z) ≡ F (z), z ∈ T 1 (N7)

Let δ ∈ (0, 1), δ < 1
2ξ (say); we regard (N7) as an equation for z ∈ C(ξ − δ),

i.e., Ω = C(ξ − δ) in the language of the above discussion.
Between any two points z, z′ ∈ C(ξ) draw a line Λ(z, z′) contained in C(ξ)

with length ≤ 2π|z − z′|: i.e. β(C(ξ − δ)), see Eq. (N3), can be taken = 2π.
Hence Eq. (N7) can be inverted in C(ξ − δ) under the condition

2π sup
z∈C(ξ−δ)

|eig(z) − 1 + ig′(z)eig(z)| < 1 (N8)

which also ensures that F ′(z) 6= 0 because

F ′(z) ≡ 1 + (eig(z) − 1) + g′(z)eig(z). (N9)

The supremum in inequality (N8) is bounded dimensionally, as in (5.11.18):

2π
(
(e|g|ξ − 1) + e|g|ξeξδ−1

)
< 2πe2ξe|g|ξ |g|ξδ−1 (N10)

By the above analysis a function I(z′) on F (C(ξ − δ)) can be defined with

F (I(z′)) = z′, ∀ z′ ∈ F (C(ξ − δ)), provided (N11)

4πe2ξe|g|ξ |g|ξδ−1 < 1 (N12)

The form of F ,

F (z) = zeig(z), (N13)
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implies that

F (C(ξ − δ)) ⊂ C(ξ − δ − |g|ξ) (N14)

because the F -image of ∂C(ξ − δ) consists of two lines outside C(ξ − δ −
‖g|ξ) and the boundary of F (C(ξ − δ)) is F (∂C(ξ − δ)). The latter property
follows from general properties of holomorphic functions but it can also be
seen directly in our case as follows. If z′0 ∈ F (C(ξ − δ)), there is a sequence
zn ∈ C(ξ − δ) such that

z′0 = limn→∞F (zn) (N15)

and, without loss of generality, we may suppose that the sequence zn converges
to a limit z0. If z0 ∈ ∂C(ξ − δ), then z′0 ∈ F (C(ξ − δ)); if z0 ∈ C(ξ − δ), then
the local invertibility of F implies that z0 is interior to F (C(ξ − δ)) which is
impossible.

Therefore if Eq. (N12) holds the function I inverse to F is holomorphic at
least in C(ξ − 2δ), because Eq. (N12) implies |g|ξ < δ. Assuming the validity
of the inequality in Eq. (N12), set

∆(z′) = −g(I(z′)), z′ ∈ C(ξ − 2δ). (N16)

This defines a holomorphic function on C(ξ − 2δ) such that

|∆|ξ−2δ < |g|ξ, and (N17)

I(z′) = z′ ei∆(z′). (N18)

As z varies on the unit circle, the point z′ = F (z) also varies on the unit circle
so that ∆ is real on the F -image of the unit circle: since |g|ξ < δ and F is
given by Eq. (N13) it follows (by a continuity argument) that as z varies on
the unit circle z′ varies covering the entire unit circle. This means that ∆ is
real on T 1 and it becomes possible to define

∆(ϕ)
def
= ∆(eiϕ) (N19)

and ∆ is analytic and real on T 1.
Since δ is arbitrary in (0, 1

2ξ), replacing 2δ by δ the theorem is proved, in
the case considered, under the condition

8πeξe|g|ξ |g|ξδ−1 < 1 (N20)

Next we study the inversion problem for the equation

ϕ′ = ϕ+ g(A, ϕ), (N21)

where g is holomorphic on C(̺, ξ;A0). We write Eq. (N21) as

z′ = z eig(A,z), (N22)
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Repeat, ∀A ∈ Ŝ̺(A0), the above argument, once more keeping in all the for-
mulae an explicit A dependence which will, however, play no role whatsoever.
So Eq. (N22) will be invertible in the form

z = z′ eig(A,z) (N23)

with ∆ holomorphic on C(̺, ξ − 2δ;A0) if Eq. (N20) holds with |g|ξ replaced
by |g|̺,ξ. The function ∆ will also turn out to be real for A ∈ S̺(A0), i.e. for
A real and for |z′| = 1.

The same conclusions hold if g is defined and holomorphic on a more
general set of the form W × T 1 with W ⊂ Cℓ open. Eq. (N22) is inverted
by Eq. (N23) if Eq. (N20) holds with |g|ξ replaced by the supremum of g in
W × C(x).

With these remarks in mind, the proof of Proposition 20 can be concluded.
Consider the case contemplated in Proposition 20:

ϕ′ = ϕ+ g(A,ϕ) (N24)

with g extending to a holomorphic function on C(̺, ξ;A0). Write the system
of Eq. (N24) as

z′k = zke
igk(A,z), k = 1, . . . , p, (N25)

and consider the first equation for z1:

z′1 = z1e
ig1(A,z1,...,zp). (N26)

If Eq. (N20) holds with |g|̺,ξ replaced by |g|̺,ξ, we can invert Eq. (N26) as

z1 = z′1e
i∆̃1(A,z′1,...,zp) (N27)

with ∆̃, holomorphic for A ∈ Ŝ̺(A0), z
′
1 ∈ C(ξ − δ), and zk ∈ C(ξ) for all

k = 2, . . . , p. Also, |g|̺,ξ < δ. Furthermore, Eq. (N27) inverts Eq. (N26) on

the same set A ∈ Ŝ̺(A0)× C(ξ − δ)× C(ξ)ℓ−1, and

|∆̃1| < |g1|̺,ξ ≤ |g|̺,ξ (N28)

where |∆̃1| denotes the supremum of ∆̃1 on its domain of definition. Finally,

∆̃1, is real if A ∈ S̺(A0), |z′1| = |z2| = . . . = |zk = 1.
Now substitute Eq. (N27) into the Eq. (N25) for k = 2, . . . , p, and set

g
(1)
k (A, z′1, z2 . . . , zp) = gk(A, z

′
1e
i∆̃1(A,z′1,z2...,zp), z2, . . . , zp) (N29)

which are defined and holomorphic for A ∈ Ŝ̺(A0), z
′
1 ∈ C(ξ − δ), and

zk ∈ C(ξ) and, of course, the supremum of |g(1)
k | on its domain of definition

can be estimated as
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sup |g(1)
k | ≤ |g

(1)
k |̺,ξ ≤ |g|̺,ξ (N30)

Hence, we can take as parameters A, z′1, z2 . . . , zp) and solve the equation

z′2 = z2 e
ig

(1)
2 (A,z′1,z2,...,zp) (N31)

for z2 as before, etc. After p steps, we will have inverted the full system, in
the desired form, on the set C(̺, ξ − δ;A0) under the sole condition

8πe2ξe|g|̺,ξ |g|̺,ξ|δ−1 < 1, (N32)

Which, if δ < 1, and, hence, |g|̺,ξ| < γ can be put into the form of Eq.
(5.11.19) with γ < 28. With some care, one could find smaller values for γ.

mbe
In the same way, one can prove the implicit function theorem mentioned

in Proposition 21. Since this is a “local theorem”, the proof is actually slightly
easier than the above.

6.13 O: Finite-Difference Method

Consider f ∈ C∞(Rd) and the equation

ẋ = f(x), x(0) = x0 (O1)

To estimate x(τ), given τ > 0, let η = 1
N τ,N ∈ Z+, and define inductively

x0 =x(0),

xn =xn−1 + η f(xn−1), n = 1, 2, . . . , N.
(O2)

Let

C = sup
x∈Ω

d∑

i=1

|fi(x)|, L = sup
x∈Ω

d∑

i,j=1

∣∣∣∂fi(x)

∂xj

∣∣∣, (O3)

where Ω ⊂ Rd is some convex region where one can a priori guarantee that
x(t), ∀ t ∈ [0, τ ], and xn, ∀n = 0, 1, . . . , N , will fall (Ω has to be found in each
case: out of despair one could always take Ω = Rd). Then

|xN − x(τ)| ≤ Cτ

2N
(eLτ − 1) (O4)

This formula gives an a priori estimate of the error that would be committed if
one iteratively solved Eq. (O1) with the method of Eq. (O2) (“finite-difference
algorithm”). It can be used in many of the exercises proposed in this book,
where the use of a computer is suggested.

The proof of Eq. (O4) is a simple consequence of the considerations and
proofs given in §2.2-§2.4.
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Proof. Let dk
def
= xk − x(kη), k = 0, 1, . . . , N . One finds

dk =xk−1 + ηf(xk−1)− x((k − 1)η)−
∫ η

0

f(x((k − 1)η + θ)) dθ

=dk−1 −
∫ η

0

(
f(x((k − 1)η + θ))− f(xk−1)

)
dθ.

(O5)

Hence, applying Taylor’s formula and adding and subtracting suitable terms:

|dk| ≤|dk−1|+ L

∫ η

0

|x((k − 1)η + θ)− xk−1|dθ

≤|dk−1|+ L

∫ η

0

(|x((k − 1)η + θ)− x((k − 1)η)|+ |dk−1)dθ

≤|dk−1|+ Lη|dk−1|+ LC

∫ η

0

θdθ.

(O6)

where in the last inequality, the derivative of x has been bounded by recalling
that ẋ = f(x) and |f(x)| ≤ C. If Ω 6= Rd Taylor’s formula can still be applied
by the convexity assumption on Ω (by the proofs of appendix A). Then

|dk| ≤ (1 + Lη)|dk−1|+
LC

2
η2 (O7)

which, by iteration, yields (since d0 = 0)

|dk| ≤
LC

2
η2

k−1∑

j=0

(1 + Lη)j =
Cη

2
[(1 + Lη)k − 1] (O8)

which for k = N , recalling that η = τ
N , becomes

|xN − x(τ)| ≤ Cτ

2N

[
(1 +

Lτ

N
)N − 1

]
≤ Cτ

2N
(eLτ − 1) (0.9)

The approximation is therefore of order O(N−1) at fixed τ . Since the
relation ẋ = f(x), by differentiating n − 1 times with respect to t, yields
expressions for the first n derivatives it is possible to obtain “higher order
approximations”, O(N−n), by natural modifications of the above algorithm.

It is also possible to achieve higher order approximations avoiding the
(often lengthy) calculations of the higher order derivatives and using only
f(x) (of course evaluated at several points ): the most common algorithm is
the Runge-Kutta algorithm. Its fourth order version is used in producing the
graphs of §4.8 in the programs attached to this book.
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6.14 P: Astronomical Data

(1) Gravitational constant k = 6.67× 10−8cm3/g(sec)2.
(2) Radius of the Sun: Rs = 6.96× 105Km.
Mass of the Sun: Ms = 1.99× 1033g.
Density of the Sun: ps = 1.41g/cm3. (3) Elements of the Planets’ Orbits.

Planet Semiaxis Semiaxis SiderealPeriod Eccentricity Eclipticincl Long. Long.

u.a. 106 km Days Asc.node Perigee

Mercury 0.387099 57.91 87.969 0.206625 7o0′13′′.8 47o44′66” 76o40′32”

V enus 0.723332 108.21 224.700 0.006793 32339.3 761411 1305120

Earth 1.000000 149.60 365.257 0.016729 1020441

Mars 1.52369 227.94 686.980 0.093357 1510.0 491025 3355819

Jupiter 5.2028 778.34 4332.587 0.048417 11821.2 995655 133133

Saturn 9.540 1427.2 10759.21 0.055720 22926.1 1131337 920439

Uranus 19.18 2869.3 30685. 0.0471 04622.0 734336 16951

Neptune 30.07 4498.5 60188. 0.0087 14628.1 1311351 4410

Pluto 39.44 5900. 90700. 0.247 170824 1093802 22330

For the year 1950. From [5]

(3) Elements of the Planets’ Orbits.

Planet Radius Radius Mass Mass Density Grav. Escape Period Equator′s

km /Earth /Earth 1027 g g/cm3 accel. Km/s sideral inclin.

Mercury 2437 0.382 0.055 0.330 5.5 372 4.3 58d.65 7o

V enus 6050 0.950 0.816 4.87 5.2 887 10.4 243d.2∗∗ 3o24′

Earth 6378 1.000 1.000 5.98 5.5 981 11.2 23h56′4′′.1 23o27′

Mars 3394 0.531 0.107 0.64 3.9 376 5.0 24h37′22′′.6 24o56′

Jupiter 71400 11.2 318. 1900. 1.3 2500 61. 9h50′.5 3o07′

Saturn 60400 9.5 95.1 568. 0.7 1100 36. 10h14′ 26o45′

Uranus 24800 3.9 14.6 87. 1.6 950 22. 1Oh49′∗∗ 82o

Neptune 25050 3.9 17.2 103. 1.7 1150 24. 15h.81 29o

Pluto ¡2900 0.45 0.9∗ 5.5∗ − − − 6d.4 −

* Approximate ** Retrograde
From [5].
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(5) Satellites of the Planets.
Planet Satellite Av.distance PeriodSid. PeriodSyn. Inclin. Eccen. Radius Mass Mass

103km days days km (Pl./Sat) 1O24g

Earth Moon 384.4 27.321661 29d12h44′02′′.8 5lE 0.0549 1738 81.3 73.4

Mars 1.Phobos 9.4 0.318910 073926.65 1.8P 0.019 14

2.Deimos 43.5 1.262441 1062115.68 1.4P 0.003 8

Jupiter 1.Io 421.8 1.769138 1182835.95 OP Small 1660 24000 79

2.Europa 671.4 3.551181 3131753.74 OP and 1440 39800 7.8

3.Ganymede 1071. 7.154553 7035935.86 OP variab. 2470 12400 153

4.Callisto 1884. 16.689018 16180506.92 OP 2340 21000 90

5.Amalthea 181. 0.498179 115727.6 OP 0.003 80

6. 11500. 250.62 260.0 28.5B 0.155 60

7. 11750. 259.8 276.10 28.0B 0.207 20

8. 23500. 738.9 631.05 R33B 0.38 20

9. 23700. 755. 626 R24B 0.25 11

10. 11750. 260. 276 28.3B 0.140 10

11. 22500. 696. 599 R16.6 0.207 12

12. 21000. 625. 546 R 0.13 10

Saturn 1.Mimas 185.7 0.942422 223712.4 1.5P 0.0196 260 15000000 0.038

2.Encelado 238.2 1.370218 1085321.9 O.OP 0.0045 300 8000000 0.07

3.Tethys 294.8 1.887802 1211854.8 1.1P 0.0000 600 870000 0.65

4.Dione 377.7 2.736916 2174209.7 O.OP 0.0021 650 555000 1.03

5.Rhea 527.5 4.517503 4122756.2 0.3P 0.0009 900 250000 2.3

6.T itan 1223. 15.945452 15231525 0.3P 0.0289 2500 4150 137

7.Hyperion 1484. 21.276665 21073906 0.6P 0.110 200 5000000 0.11

8.Iapetus 3563. 79.33082 79220456 14.7P 0.029 600 100000 5

9.Phoebe 12950. 550.45 53616 R30P 0.166 150

10.Themis 157.5 0.749 300

Uranus 1.Ariel 191.8 2.52038 2122940 OP 0.007 300

2.Umbriel 267.3 4.14418 4032825 OP 0.008 200

3.T itania 438.7 8.70588 81700 OP 0.023 500

4.Oberon 586.6 13.46326 13111536 OP 0.010 400

5.Miranda 130.1 1.414

Neptune 1.Triton 353.6 5.87683 5210327 R20P 0.000 2000 700 150

2.Nereid 6000?. 500. 0.7 150 3000000 0.05

P. on the plane of the planet’s equator
B. on the plane of the planet’s orbit
R. retrograde rotation
From [5].



548 6 Appendices

6.15 Q: Gauss Method for Planetary Orbits
of an Orbit through Three Observations

This appendix contains a series of guided problems on the two body central
motion which is taken from the Gauss’ treatise on the motion of heavenly
bodies gravitating about the Sun in conic sections (1804).
1. (Earth motions) the Earth is assumed spherical and its rotation axis has
a conical precession motion around the axis N celestial north, perpendicular
to the Earth orbital plane ε, ecliptic. The two rotations take place at angular
velocities, respectively, ωD and ωp. The velocities are called the diurnal rota-
tion and the precessional rotation. The second is very slow for the following
qualitative reasons which could be made quantitative at least as far as the
orders of magnitude are concerned and even as far as the actual theoretical
computation of the first order corrections.

Show that if the Earth was really a perfect sphere then one would expect
that the Earth axis would stay fixed in orientation (Hint: in a frame of refer-
ence with center at the Earth center and axes fixed with the fixed stars the
moment of the forces exercised by the Sun and by the Moon would vanish by
symmetry and so would the moment of the inertial forces. Hence the motion
would be that of a sphere with fixed center and no external forces: i.e. the
axis would be fixed and no precession would be present).

Show also that if the Earth had cylindrical symmetry around its axis and
one still neglected the forces exercised by the Sun and the Moon, then one
would expect it to have a uniform rotation around its axis which in turn
would rotate at constant angular velocity around a fixed axis (oriented as the
angular momentum), keeping a constant angle with it.

2. (further considerations on the Earth spin motion) the following heuristic
considerations are useful to keep in mind, even though strictly speaking, they
are not specifically part of the problem of the orbit determination but rather
pertain to the general problem of fixing the reference frames.

Since the Earth angular velocity and angular momenta can be taken as
essentially parallel this movement would simply cause the inclination of the
Earth axis as well as the intersection between the ecliptic and the plane or-
thogonal to the Earth axis to have a small motion around their average values:
it could not be responsible for the precession motion. At best it could account
for a small motion of the rotation axis around its average position. The preces-
sion is therefore caused by the action of the forces due to the Sun and Moon
and to the non spherical symmetry of the Earth, and to the non circularity of
the Earth and Moon orbits (causing further variations of the forces exercised
by the Sun and Moon).

If the forces due to the Sun and to the Moon and to the inertial forces were
constant in time in the frame of reference with center at the Earth and x-axis
pointing at the Sun (which they are not because the distance and relative
positions of the bodies change periodically in time, to a first approximation)
then the Earth motion would be that of a top subject to a constant torque
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moment trying to put the Earth equatorial plane on the ecliptic plane, where
the Sun and Moon can be thought to be (again to a first approximation).
Hence, as it follows from the theory of the spinning top, the Earth axis rotates
around the N axis (because the variations of the angular velocity have to
rotate around the axis such that if the body was oriented parallel to it then
the moment of the forces would vanish, which in our case is N since the Earth
is compressed at the poles).

However in the theory of the top it emerges that the speed of rotation is
not uniform: it follows in fact that it periodically changes with time. Hence
the motion is only to a first approximation uniform and the actual motion
consists of the above rotation-precession plus a nutation motion which causes
the precession speed to be altered and the inclination to oscillate quasi peri-
odically around a mean value. All the above corrections can be given explicit
theoretical values by using the theory of perturbation of integrable motions in
the assumption that the motions of the Sun and of the Moon are essentially
known and given by the Kepler’s laws: this is called the principal correction.

Again this may not be satisfactory and one could introduce further re-
finements. We do not enter here into the details of such calculations and we
summarize the above discussion by saying that one can compile, on theoretical
grounds tables which allow to determine as a function of time the positions of
the Earth axis and that of the intersection of the Earth equatorial plane and
the ecliptic plane. The data given below are deduced from such tables, called
the Astronomical Ephemeris tables.

3. (zenithal frame) if O is an astronomical observatory the local system of
coordinates will have the origin in O and z-axis pointing upwards vertically
(along a plomb line), i.e. towards the zenith Z. The x-axis will be the horizon
axis Ω, determined by the tangent to the Earth in the plane µ of the z-axis
and the terrestrial axis or north axis; the orientation of the Ω-axis will be
towards south. The plane µ containing the zenith axis and the north axis will
be called the meridian plane. Draw a graphical representation of the above
frame.

4. (equatorial frame) in this frame one takes the origin to be the Earth center
T the z-axis to be the axis N of the Earth’s rotation oriented towards north.
The plane ZN cuts the plane orthogonal to the N axis (called the equatorial
plane) along a line called the equator line which is taken to be the x-axis of
the equatorial frame.

Thus the equatorial frame and the zenithal frame are fixed relative to
each other. Check that the angle δO between the equator and the zenith is
what is commonly called the latitude of the observatory and draw a graphical
representation of the zenithal and equatorial frames.

5. (geocentric frame) in this frame the origin is the Earth center T but the
xy plane is the ecliptic plane (see 1)). The z axis points to the celestial north
N and the x-axis will be parallel to the intersection between the equatorial



550 6 Appendices

plane and the ecliptic plane ε. The orientation of the axis is towards the Aries
constellation, the Γ point, (in fact this axis goes roughly through the Spring
and Autumn noon positions of the Sun, i.e. through Aries and ???).

When the Sun crosses this axis one has the equinox, respectively the Spring
or Autumn equinoxes. The x axis is called the equinox axis and is denoted
by Γ . The angle between the axes N and N axes is the inclination angle i0
of the Earth axis. Therefore the Γ axis is not fixed in direction but rotates
around the N axis with angular velocity ωp.

Find a graphical representation for the equatorial and the geocentric
frames.

6. (heliocentric frame) this is an inertial frame: its origin is at the center of
mass of the solar system (which we confuse here with the center of the Sun
for simplicity). The z axis is orthogonal to the ecliptic and parallel to the N
axis previously introduced. Thus the xy plane is the ecliptic plane ε. The x
axis will be parallel to the equinox axis Γ .

Knowing that the Earth motion on the ecliptic is a counterclockwise ro-
tation, as seen standing up on the northern emisphere, check that when the
Earth crosses the positive Γ -axis it is the Autumn equinox and that the N
axis is obtained from the N axis by a clockwise rotation of an angle equal to
the Earth inclination angle i0 (Hint: because the Sun is in Aries in Spring
and because Winter comes after Autumn).

Find a graphical representation of the heliocentric and of the geocentric
frames and mark the point where the Earth would be at the Autumn or Spring
equinox and the Γ point.

7. (precession and nutation) since the Γ point moves because of the precession
one fixes the x axis of the heliocentric and geocentric systems to be the above
axes in the positions in which they were at a given time called the epoch E of
the time measurements, which is taken as the origin of the time. At any other
time t the position of the Γ axis will form an angle ωp(t−E) with the x axis
of the heliocentric system. To distinguish between the two lines one calls the
actual intersection between the equator and the ecliptic the apparent equinox
line, denoted Γapp.

The Γ -point and inclination i0 in fact change in time also because of the
nutation and we assume for the purposes of this illustration of Gauss method
that this change can be desumed from the astronomical ephemeris tables to
be equivalent to replacing λp by λp + λn and ∞o by ∞n.

8. (observations) by observation of a celestial body one means the recording
of the time t at which it crosses the meridian plane and of the angle δ above
the horizon on which it is seen at the moment of the crossing. Sometimes one
records instead of δ the angle δE at which it is seen. Of course the relation
between the two data is simply: δE = δ + δO − π/2. The angles δ and δE are
the heights above the horizon or above the equator. Show that one expects to
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have to make three observations to determine the orbit of the planet (Hint:
the system has three degrees of freedom, i.e. six parameters).

9. (apparent positions) call RT the vector leading from S to T , RO the vector
from T to O and Ba the unit vector pointing in the apparent position of the
body. In the zenithal frame it is Ba = (cos δ, 0, sin δ). Introduce the matrices:

V1(α) =

(
1 0 0
0cosα− sinα
0sinα cosα

)
V2(α) =

(
cosα 0sinα

0 1 0
− sinα0cosα

)
V1(α) =

(
cosα− sinα0
sinα cosα 0

0 0 1

)

(Q1)
and the vectors

n1 = (1, 0, 0),n2 = (0, 1, 0),n3 = (0, 0, 1)

check that the matrices V1, V2, V3 rotate the whole world counterclockwise by
an angle α around the axes 1, 2, 3.

We call λT the angle between T and the Γapp-line; the angle of inclination
of the Earth axis will be i0. Because of the mentioned the precession and
nutation the angle i between the N axis and the N axis is somewhat different
from i0. Also the longitude angle between T and the fixed Γ line is λT+λp+λn
(see 7) above). Let R be the Earth radius.

Show that:

RT =DTV3(λT + λp + λn)n1

RO =RV3(λp + λn)V1(−i)V3(λO)V2(
π

2
− δO)n3

BA =V3(λp + λn)V1(−i)V3(
π

2
− δO +

π

2
− δ)n3

(Q2)

Setting A = RT + RO, Xa = A + ̺Ba where ̺ is the distance between the
the heavenly body C and the observatory O, we see that the vector A consists
of two terms of different order of magnitude (because R/DT << 1): the first
is the heliocentric placeof the Earth and the second is the parallax correction.
The vector Ba is the apparent heliocentric place of the heavenly body and ̺
is of course unknown.

10. (fixed stars aberration) this is a further correction that bears this name
because it has to be considered even when one observes a fixed star. It is due
to the finiteness of the light speed c. By the composition law of the classical
velocity we see that if cB is the light velocity in the heliocentric frame and c′B′

is the velocity in the zenith frame and if v is the velocity of the observatory,
then:

cB = c′Ba + v (Q3)

Show that if one neglects corrections of order (v/c)2 then one can write:

B = Ba|B−
v

c
|+ v

c
≃ Ba(1 −

Ba · v
c

) +
v

c
(Q4)
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There is no need to use the relativistic velocity composition law as it leads to
corrections of order O((v/c)2) which have anyway been neglected in deducing
the last equation.

11. (computation of fixed stars aberrations) if ωT is the diurnal Earth period
show that the velocity of the observatory can be written:

vO = ωTR cos δO V3(λp + λn)V1(−i)V3(λO)n2 (Q5)

Show also that vT can be computed from the fact that the Earth motion is
Keplerian in terms of the vector RT , which in the heliocentric frame has polar
coordinates DT , λT + λn + λp, by:

vT = ḊT
RT

DT
+DT θ̇

n3 ∧RT

DT
(Q6)

Using Eqs. (4.10.11),(4.10.12),(4.10.18), i.e. the fact that the areas constant
is A = 2πRgRm/T where T is the Earth revolution period and Rg, Rm are
the great axis of the Earth orbit and the minor axis, show that:

Ḋ =± 2πRgRm
T

(( 1

R−
− 1

DT
)(

1

DT
− 1

R+

))1/2

DT θ̇ =
2πRgRm

T

1

DT

(Q7)

where R+, R− denote the perihelion and aphelion distances in the Earth orbit,
i.e. R± = Rg(1± e) if e is the Earth orbit eccentricity.

Setting D̄ = Dt

Rg
we find after some algebra:

vT = ±2π(1− e2)1/2
T

(
(

1

1− e −
1

D̄
)(

1

D̄
− 1

1 + e
)
)1/2 RT

D̄
+

1

D̄

n3 ∧RT

DT
(Q8)

The sign to choose in (Q.8) is − for observations between roughly the summer
solstice and the winter solstice and + in the other period (as in this epoch the
perihelion is early in January a few days after the winter solstice).

The calculation of the fixed stars aberrations needs not be computed if one
has astronomical tables containing in some form its value, for the observatory
of interest.

12. (time aberrations) If A + ̺B is the heliocentric position calculated as
above as a function of the unknown distance ̺ between the Earth and the
heavenly body, and a s observed at the time t one has to think that in fact
it provides us with the position really occupied by the heavenly body at the
time t− ̺/c, since the speed of light is finite.

Furthermore sometimes the astronomical tables give the geocentric posi-
tion of the Sun rather than the heliocentric position of the Earth: in this case
some obvious changes have to be made to the above formulae and one has to
add the further correction on the time of the observation obtained by reading
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in the tables the data relative to the times t+ ts if ts is the time necessary to
the light to travel from the Sun to the Earth, i.e. 500s or ≈ 8m. In practice
this means that one has to change the Earth longitude λT into λT + λ̃ if λ̃ is
the arc described by the Earth in the time ts: this would be constant if the
Earth had a circular orbit, but it varies in a way that can be desumed from
the tables around a mean value of 20.25s, with oscillations between −0.34s

(at the perihelion) and +0.34s (at the aphelion).

13. (planetary aberrations) the Earth ecliptic plane (as one should by now
suspect) is in fact also not fixed in space, mainly because of the perturbations
caused by the Jupiter attraction, and the Earth is not exactly on the ecliptic
plane, mainly because of the Moon (in fact, it is the center of mass of the
Earth-Moon system which is really moving and defining the ecliptic plane):
hence the Sun has an apparent latitude −β: this small quantity is directly
measurable (for the main Moon contribution) or is accessible to theoretical
analysis and can be found in the tables. One can take it into account (ne-
glecting terms of O(β2)) simply correcting the expression for the vector A by
adding to it a vector +βDT ν3.

14. (summary of the heliocentric coordinates calculations) a heavenly body
C observed on the meridian with height above the equator δE at a time t is
the sum of two vectors A and ̺B whose Cartesian components components
in a heliocentric system can be computed, via the astronomical tables which
provide the orbital data for the Earth. the aberrations etc. In terms of the
symbols introduced in the previous problems one finds:

A =DTV3(λT + λp + λn)n1 +RV3(λp + λn)

· V1(−i)V3(λO)V2(−δO)n1 + βDTn3

Ba =V3(λp + λn)V1(−i)V3(λO)V2(−δe)n1

B =Ba(1 −
vT ·Ba

c
) +

vT + vO
c

(Q9)

The ̺ coordinate is not measurable directly: it will be our main problem
to show that it can be computed from the data.

Compute A,B from the following table providing the data of the asteroid
Juno (observed at Greenwich on October 5, 17, 27 1904; the data (taken from
the book of Gauss) are referred to the epoch E =1 January 1805):

t δE λT λp i− i0

5d10h51m6s −6o40p8s 12o28p53.72s 11.87s 59.48s

17d9h58m10s −8o47p25s 24o20p21.54s 10.23s 59.26s

27d9h16m41s −10o2p28s 34o16p52.21s 8.86s 59.06s

λO DT β λn
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357o10p22.35s 0.9988899 0.49s −15.43s

355o43p45.30s 0.9953968 −0.79s −15.41s

355o11p10.95s 0.9928340 0.15s −15.60s

and:

R = 4.1683397× 10−5 e = 0.016729 δO = 51o28p39s

i0 = 23o27p c = 2.0039603× 10−3au/s TD = 23h56m4.1s

Rg = 1.496× 108 km T = 3.15582048× 107s

where DT and R are in astronomical units and TD is the period of rotation
of the Earth, (use a computer to write a program producing the Cartesian
components of A and B).

15. (planarity condition) let Ai,Bi,Xi, i = 1, 2, 3 be the vectors describing
aberration free heliocentric coordinates of a heavenly body gravitating around
the Sun according to the Keplerian laws. Then X1,X2,X3 are on the same
plane. Show that this implies:

(X1 ∧X2 · k)X3 + (X2 ∧X3 · k)X1 + (X3 ∧X1 · k)X2 = 0 (Q10)

where k denotes the unit vector orthogonal to the plane X1,X2,X3 (Hint:
remark that there exist α, β such that X3 = αX1 + βX2 and substitute in
(Q.14)).

If one introduces the oriented areas npq/2 of the triangles Spq, p, q = 1, 2, 3
formed by joining S, p, q, show that (Q.14) becomes:

n12X3 + n23X1 − n13X2 = 0 (Q11)

because of the geometrical meaning of Xp ∧Xq · k.

16. (distance and area relations) show that (Q.11) implies:

a̺1 =− (B2 ∧B3 ·A1) +
n13

n23
(B2 ∧B3 ·A2)−

n12

n23
(B2 ∧B3 ·A3)

a̺2 =− n23

n13
(B1 ∧B3 ·A1) + (B1 ∧B3 ·A2)−

n12

n13
(B1 ∧B3 ·A3)

a̺3 =− n23

n12
(B1 ∧B2 ·A1) +

n13

n12
(B1 ∧B2 ·A2)− (B1 ∧B2 ·A3)

(Q12)

where a = (B1 ∧B2) ·B3).

17. (other distance areas relations) an alternative set of relations. which will
be useful is found my multiplying the first of the (Q.11) vectorially by B3

(thus eliminating the explicit dependence on ̺3 and then scalarly by B1 ∧B3

(so that in the same sense one eliminates ̺3). Show that in this way one finds:



6.15 Q: Gauss Method for Planetary Orbits 555

(B1 ∧B3)
2̺1 = −n12

n23
(A3 ∧B3) · (B1 ∧B3)− (A1 ∧B3) · (B1 ∧B3)+

+
n13

n23
(A2 ∧B3) · (B1 ∧B3) +

n13

n23
̺2(B2 ∧B3) · (B1 ∧B3)+

(B1 ∧B3)
2̺3 = (A3 ∧B1) · (B1 ∧B3) +

n13

n12
(A1 ∧B1) · (B1 ∧B3)−

− n13

n12
(A2 ∧B1) · (B1 ∧B3)−

n13

n12
̺2(B2 ∧B1) · (B1 ∧B3)+

(Q13)

18. (computation of relevant constants) with reference to the above two prob-
lems write a program for the computation of the following constants:

a =(B1 ∧B2) ·B3 b = (B1 ∧B3) ·A2

c =− (B1 ∧B3) ·A1 d = −(B1 ∧B3) ·A3

γ0 =(B1 ∧B3)
2

γ1 =− (A3 ∧B3) · (B1 ∧B3) γ2 = −(A1 ∧B3) · (B1 ∧B3)

γ3 =(A2 ∧B3) · (B1 ∧B3) γ4 = (B2 ∧B3) · (B1 ∧B3)

γ5 =(A3 ∧B1) · (B1 ∧B3) γ6 = (A1 ∧B1) · (B1 ∧B3)

γ7 =− (A2 ∧B1) · (B1 ∧B3) γ8 = −(B2 ∧B1) · (B1 ∧B3)

(Q14)

and show that the second of (Q.12) and (Q.13) become:

a̺2 =b+ c
n23

n13
+ d

n12

n13

γ0̺1 =γ1
n12

n23
+ γ2 +

n13

n23
(γ3 + ̺2γ4)

γ0̺3 =γ5 +
n23

n12
γ6 +

n13

n12
(γ7 + ̺2γ8)

(Q15)

19. orders of magnitude suppose that the angles between Bi,Bj are small
and so are the angles between Ai,Aj , let ε be their order of magnitude. Show
that the coefficients in the preceding problem have the following orders of
magnitude in terms of ε:

a = O(ε3) b = O(ε) c = O(ε) d = O(ε)
γ0 = O(ε2)
γ1 = O(ε) γ2 = O(ε) γ3 = O(ε) γ4 = O(ε2)
γ5 = O(ε) γ6 = O(ε) γ7 = O(ε) γ8 = O(ε2)

(Q16)

(Hint: to see that a = O(ε3) note that the volume of the parallelepiped gener-
ated by three vectors forming an angle O(ε) between each other is in general
of O(ε2); however if A1 = A2 = A3 it would be a = 0, because then the
B’s would be in the same plane. Hence the reason why the B’s are not on
the same plane is because the A’s are not identical; but the A and B vary
smoothly and the A’s too form between each other angles of O(ε)...).
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20. (necessary accuracy ) if ti, i = 1, 2, 3 are the observation times let tpq =
tq − tp and show that the Kepler laws imply:

npq
nrs

=
tpq
trs

+O(ε2) (Q17)

if ε has the meaning of the previous problem. (Hint: the third Kepler’s law
gives proportionality between the signed area of the elliptic sector swept by
C in the time tpq and the area of the sector differs from that of the triangles
by O(ε2)).

Show that if one neglects O(ε2) and npq/nrs is replaced by tpq/trs (which
is directly accessible from the measurements) in (Q.17) then one makes an
error on ̺2, for instance, of O(1)! hence we see that we have to find a better
way to start an approximation.

21. (how well should ̺2 be known) show that if ̺2 were known to O(ε) then
the second and third of (Q.15) would permit us to evaluate ̺1, ̺3 also to an
error of O(ε) even using the approximation in which one makes an error of
order O(ε2) in the ratio’s npq/nrs, (for instance replacing it by tpq/trs; (Hint:
this follows immediately from the estimates in 18)).

Therefore one has to look for an approximation of ̺2 within O(ε).

22. (Gauss’ lemma) introduce the ratios zpq between the double of the area
of the elliptic sector swept by C between the times tp, tq and the quantities
npq introduced in 19) above. As already remarked such ratios differ from 1 by
O(ε2) and furthermore the ratios zpqnpq/tpq are constant in p, q.

Consider the first expression for ̺2 in (Q.15) and show that if one replaces
it with :

a̺2 = b+
ct23 + dt12
t23 + t12

n23 + n12

n13
(Q18)

one makes an error on ̺2 of order o(ε), rather than o(1) (as one could believe
on first thought on the basis of an argument similar to the one suggested in
18), until one remarked that:

ct23 + dt12
t23 + t12

− cn23 + dn12

n23 + n12
=

t12t23(c− d)(z12 − z23)
(t23 + t12)(z12t23 + z23t12)

(Q19)

and that the denominator has size O(ε2) while the numerator has size
O(ε4)(c − d) and, furthermore, that although c, d have size of O(ε) their dif-
ference has size O(ε2) because c− d = −(B2 −B3) · (A1 −A3).

22. (Gauss ̺2 equation) let κ = 2πR
3/2
g /T , where Rg is the great semiaxis

of any major planet orbiting the Sun and T is the corresponding period:
it follows from (4.10.7) that κ2 is the product of the sun mass times the
universal gravitational constant. It follows from the theory of the two body
problem, as remarked by Gauss that the following basic relation between
npq, zpq, rq = |Xq| and the angles at S of the triangles Spq with vertices in
the Sun and the C positions at the tines of the corresponding observations:
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n23 + n12

n13
= 1 +

κt12κt23
2z12z23r1r2r3 cos f12 cos f23 cos f13

(Q20))

A guide to the derivation of the above relation is provided in the following
problem 23). Approximating z and the cosines with 1 and identifying r1, r2, r3
show that one finds:

a̺2 = b+
ct23 + dt12
t23 + t12

(
1 +

κt12κt13
2r32

)
(Q21)

which is an equation for the unknown ̺2, because: tpq are known and r2 =
|A2+̺2B2| = (A2

2+̺2
2+2̺2A2 ·B2)

1/2. We neglect here the time aberrations
which will be corrected only at the end.

Usually (Q.21) admits only one acceptable solution (show, however that
it can be rationalized and becomes an equation of eight degree). Show that it
determines ̺2 to O(ε) (Hint: the zpq and the cosines differ from 1 by O(ε2)
and the rq differ between each other by O(ε); furthermore c, d, κtpq have size
of O(ε) and a = (ε3) . . .). Write a computer program to solve the equation
(Q.21) and find its positive solutions.

23. (digression on the two body problem to prove (Q.20) rewrite Eq. (4.10.6)
in the form:

r =
p

1− e cos θ
(Q22)

where p is the parameter of the ellipse and e is its eccentricity. Then deduce
that:

p =
2̺+̺−
̺+ + ̺−

e =
̺+ − ̺−
̺+ + ̺−

a =
̺+ + ̺−

2
b =
√
̺+̺−

̺± = a(1± e) b = a
√

1− e2 p =
b2

a

(Q23)

where we are denoting: a = major semiaxis of the ellipse, b = minor semiaxis.
If we call θ1, θ2, θ3 the three angles that X1,X2,X3 form with respect to

a given line drawn on their plane (eg with respect to the ascending node with
the ecliptic plane oriented parallel to n3 ∧ (X1 ∧X3) , and if g denotes the
angle between the same reference line and the major semiaxis of the elliptic
orbit of the heavenly body, then the true anomalies of the three positions will
be β1 = θ1 − g, β2 − g, β3 − g and it will be:

pr−1 =(1 − e cosβ1)

pr−2 =(1 − e cosβ2)

pr−3 =(1 − e cosβ3)

(Q24)

Note that with the notations of 22) it is

β3 − β2 = θ3 − θ2 = 2f23, β3 − β1 = θ3 − θ1 = 2f13, β2 − β1 = θ2 − θ1 = 2f12

and check that:



558 6 Appendices

zrsnrs
κtrs

=
√
p (Q25)

furthermore, since npq = rprq sin 2fpq, it is:

p =
sin 2f23 + sin 2f12 − sin 2f13

r−1
1 sin 2f23 + r−1

2 sin 2f12 − r−1
3 sin 2f13

=
4 sin f23 sin f13 sin f12r1r2r3

n23 + n12 − n13

(Q26)
and deduce from (Q.26),(Q.25) that (Q.20) holds (Hint: check first the (Q.26)
by remarking that, by the second Kepler law, the ratio between the area of the
elliptic sector Srs and the area of the ellipse, i.e. zrsnrs/2πab coincides with
the ratio between the time needed to sweep the sector and the heavenly body
period, i.e. trs/2πa

3/2/κ by the (4.10.7); hence (Q.25) and (Q.24) immediately
imply (Q.26)). Then to get (Q.20) one combines (Q.25),(Q.26), getting:

p =
z23z12n23n12

κt23κt12
=

4 sin f23 sin f13 sin f12r1r2r3
n23 + n12 − n13

=

=
sin 2f23 sin 2f12 sin 2f13r1r2r3

2(n23 + n12 − n13) cos f23 cos f12 cos f13

(Q27)

i.e. :

n23 + n12 − n13 =
κt23κt12

z23z12n23n12

sin 2f23 sin 2f12 sin 2f13r
2
1r

2
2r

2
3

cos f23 cos f12 cos f13r1r2r3
=

≡ κt23κt12n13

2z12z13 cos f23 cos f12 cos f13r1r2r3

(Q28)

because npq = rprq sin 2fpq).

24. (summary of above) the preceding problems permit us to compute a first
approximation ̺0

i to the distances ̺i up to errors of order O(ε), if ε is an
estimate of the size of the angles between the vectors Ai or the vectors Bi.
Hence we have a first approximation X0

i for the vectors Xi. It is useful to
summarize the above procedure as follows.

The value of ̺0
2 is found by solving the equation:

a̺2 = b+
ct23 + dt12
t23 + t12

(
1 +

Q̄

2r32

)
(Q29)

where Q̄ = κt23κt12, determining ̺2 to O(ε), (see problem 22). Set also P̄ =
t13/t23 and:

W̄ = P̄ (1 +
Q̄

2r32
− 1

P̄
) (Q30)

then one realizes that P̄ , W̄ are approximations to n13/n23 and n12/n23 to
order O(ε2). In fact this has been seen in (Q.17) for P̄ , and W̄ differs from
n12/n23 because, (see (Q.20)), (1 + Q̄/2r32) is not (n12 + n23)/n13 = 1 +
Q̄/(2r1r2r3z12z23 cos f12 cos f13 cos f23 nor 1/P̄ is n23/n13, but the latter two
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quantities differ from the preceding ones respectively to O(ε)Q̄ and ε2) (see
the hint to problem 22) and the equation (Q.17)) and Q̄ is of O(ε2))

Hence by problem 20) it is possible to find ̺1, ̺3 within O(ε) by using the
last two relations in (Q.15):

γ0̺1 =γ1W̄ + γ2 + (γ3 + γ4̺2)P̄

γ0̺3 =γ5 + γ0W̄
−1 + (γ7 + γ8̺2)P̄ W̄

−1
(Q31)

25. (elliptic elements) at this point we can compute five parameters (i0, λ0,
g0, e0, p0) needed to determine the Keplerian orbit of the heavenly body using
the information that is an ellipse with focus in the Sun S passing through the
three points determined by the vectors X0

i : this will be the first approximation
to the elements of the celestial body. We omit the superscript 0 in what follows
to simplify the notations. The five elements are:

i inclination of the orbit plane over the ecliptic
λ longitude of the ascending node between the orbit and the ecliptic
g angle between the orbit major axis oriented towards the aphelion and

the ascending node
e orbit eccentricity
p ellipse parameter

Denoting m the versor of X0
1∧X0

3 and with m′ that of n3∧m it is clear that
m is normal to the orbit plane (by construction the X0

i have been constructed
to verify approximately the (Q.11), hence to be almost on the same plane)
while m′ is the ascending node between the orbit plane and the ecliptic.

Let θ1, θ2, θ3 be the angles formed, respectively, by X0
1,X

0
2,X

0
3 with the

ascending node m′: they are the angular polar coordinates of the three ap-
proximate positions in orbit, measured on the orbit plane with respect to the
ascending node. Let ri = |Xi| and check the following relations:

cos i = n3 ·m cosλ = n1 ·m′ sinλ = n2 ·m′ (Q32)

and:

tan(g) =− r−1
1 (cos θ2 − cos θ3) + r−1

2 (cos θ3 − cos θ1) + r−1
3 (cos θ1 − cos θ2)

r−1
1 (sin θ2 − sin θ3) + r−1

2 (sin θ3 − sin θ1) + r−1
3 (sin θ1 − sin θ2)

e =
r−1
1 − r−1

3

r−1
1 cos(θ3 − g)− r−1

3 cos(θ1 − g)
(Q33)

p =
cos(θ3 − g)− cos(θ1 − g)

r−1
1 cos(θ3 − g)− r−1

3 cos(θ1 − g)

where the ambiguity on the g, defined up to π, is to be solved by imposing
that the eccentricity e be positive; alternatively one can express p via (Q.26),
etc. (Hint: use the (Q.24) in the form:
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r−1
1 =p−1 − ep−1 cos(θ1 − g)
r−1
2 =p−1 − ep−1 cos(θ2 − g)
r−1
3 =p−1 − ep−1 cos(θ3 − g)

(Q34)

The tangent of g is found by multiplying the (Q.34) respectively by (cos θ2 −
cos θ3), cos θ3− cos θ1) and cos θ1− cos θ2) and adding the resulting equations
side by side: the term with p−1 disappears and, developing the cos(θi− g) via
the addition formulae the terms with cos g also simplify. Repeat the scheme
by multiplying by (sin θ2− sin θ3), etc: this time the terms with p−1 and sin g
disappear; dividing the two relations thus obtained one finds the first of the
(Q.33). Once g is known one finds p−1 and ep−1 from the first and third
of the (Q.24), for instance, and one gets the last two of (Q.33). One could
find other essentially equivalent expressions: for instance p can be determined
also via the (Q26); (they would be really identical if the there had been no
approximations)).

Write a computer program for the calculation of the five elements defined
above.

26. (consistency problems) express in terms of X0
i , i = 1, 2, 3 the value that

the ratios z0
pq between the areas of the elliptic sectors Spq and the correspond-

ing triangles take in the ellipse constructed in problem 24), assuming that
the celestial body moves on it according to the Kepler laws and following the
hints given below.

Let a, b, p be the major, minor axes of the ellipse and the parameter; if rq, θq
are defined as in problem 24), introduce the quantities βq, ξq, lq as follows:

βq = θq − g rq = p(1− e cosβq)
−1 = a(1 + e cos ξq) (Q35)

The above quantities are called true anomaly, it is the polar coordinate of X0
q

with respect to the major semiaxis), eccentric anomaly and mean anomaly of
X0
q. Check that:

zopq =
ab(lq − lp)

rprq sin(θq − θp)
(Q36)

(Hint: the average anomaly l is independently defined as the product of 2π/T ,
T being the orbital period of the celestial body, times the time elapsed since
the celestial body passed its aphelion: this notion, naturally arising in the
theory of the central motions was defined in (4.9.31), where it was denoted
ϕ1 but setting the origin at the perihelion (hence the two definitions differ by
π). On the basis of this definition one has, therefore:

dl

dt
=

2π

T
l = 0 if β = 0 (Q37)

The (Q.36) is an immediate consequence of this property of the average
anomaly which makes it proportional to the time elapsed since the passage
through the aphelion. In the Keplerian motion the latter time is proportional
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to the area of the elliptic sector swept by the celestial body, hence the area
swept between Tp and tq is to the area of the ellipse as the variation of the
average anomaly is to 2π: i.e. the area swept is πab(lq − lp)/2π. Since, ob-
viously, the area of the triangle corresponding to the elliptic sector Spq is
tprq(sin θq − θp)/2 the (Q36) follows.

The true problem is therefore to check the (Q.35), once the average
anomaly is defined via (Q.37). Recalling (4.10.11),(4.10.12), one finds, using
(Q.37):

dl

dt
=

2π

T

dβ

dt
=
A

r2

dr

dt
=±A

√
(̺−1
− − ̺−1)(̺−1 − ̺−1

+ )

(Q38)

where ̺−, ̺+ denote the distances of the perihelion and of the aphelion.
From the (4.10.16), and (4.10.18) one deduces the following relations be-

tween the areas constant A, the period T , etc.:

1

2
A =

πab

T
a =

̺+ + ̺−
2

b =
√
̺+̺−

e =
̺+ − ̺−
̺+ + ̺−

̺± = a(1± e) p =
b2

a
= a(1 − e2)

(Q39)

most of which have already been remarked in (Q.23). Hence the (Q.38) can
be recast in the form:

dl

dt
=

2π

T

dβ‘

dt
=

2π

T

ab

r2

dr

dt
=± 2πab

T

√
(̺+ − r)(r − ̺−)

̺+̺−r2
= ±2πa

T

√
a2e2 − (r − a)2

r

(Q40)

which imply, by dividing between each other conveniently the above relations:

dl

dβ
=
r2

ab
=
p2

ab

1

(1− e cosβ)2
=

(1− e2)3/2
(1 − e2 cosβ)2

dl

dr
=± r

a
√
a2e2 − (r − a)2

(Q41)

It follows from the definition of the eccentric anomaly that r = a(1 + e cos ξ),
and dr = −ae sin ξ dξ, so that:

dl

dξ
= ± rae sin ξ dξ

a
√
a2e2 − (r − a)2

= 1 + e cos ξ l = ξ + e sin ξ (Q42)

and the final choice of the + sign is based on the remark that the average
anomaly, the eccentric anomaly and the true anomaly are simultaneously in-
creasing as one of them increased.
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The (Q.35), Q.36) are therefore proved, and we have also fond a remarkable
formula expressing in a Keplerian motion the mean anomaly in terms of the
true anomaly: the first of (Q.42) gives in fact:

l = (1 − e2)3/2
∫ β

0

dβ′

(1− e cosβ′)2
(Q43)

which, however, will not be used directly here.

27. (the gauss’ transformation) Let F be a map transforming a pair (P,Q) of
numbers into (P ′, Q′) defined as follows.

Given (P,Q) consider the operations:

(i) solution of the equation for ̺2:

a̺2 = b+
c− d
P

+ d(1 +
Q

2r22
) (Q44)

(ii)calculation of W via (Q.30), with (P,Q,W ) replacing (P̄ , Q̄, W̄ ).
(iii)calculation of ̺1, ̺3 via (Q.31), with (P,Q,W ) replacing (P̄ , Q̄, W̄ )
(iv)calculation of the elements via (Q.32),(Q.33).
(v)calculation of the parameters 2fpq = θp − θq and zpq via (Q.35),(Q.36)
(vi)calculation of P ′, Q′ via:

P ′ =
z23t12
z12t23

, Q′ =
κt12κt23r

2
2

r1r3z12z23 cos f12 cos f13 cos f23
(Q45)

Check that, on the basis of the problems 22),23),26), that the analysis
developed there can be interpreted as proving that if one sets:

P =
n12

n23
, Q = (

n12 + n23

n12
− 1)2r32 , (Q46)

where now npq and r2 are the true unknown values of the areas of the triangles
Spq and of |X2|, one has:

(P,Q) = F (P,Q) (Q47)

at least if one neglects the time aberration, i.e. if one assumes that the time
tq−tp measured between the observations p and q is the true value of the time
interval between the times in which the celestial body occupies the positions
p and q, i.e. it can be confused with tq − tp − (̺q − ̺p)/c (see problem 11)),(
Hint: check that (Q.44) becomes the first of (Q.15) if (P,Q) are as in (Q.46)).

Write a computer program realizing the map F defined above nd apply it
to the computation of (P ′, Q′) in the case of the asteroid Juno using the data
given above.

28. (Gauss’ algorithm) the preceding problem shows that one has to solve
(Q.47) as an equation on (P,Q).
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We have seen that (P̄ , Q̄) is a good first approximation. It is therefore
possible to improve it by some standard methods: the simplest is the iteration,
another possibility is Newton’s method. Both were used by Gauss in his boo.
And both methods have the drawback that one does not know a priori if they
will work nor one can easily foretell (if at all possible) an estimate of the time
necessary to reach a given precision. Very often they are used empirically and
work if one has a good approximate solution as a starting point. The methods
may otherwise prove an inconclusive or lead to absurd results.

We limit ourselves here to the discussion of the naive iteration method.
Let P̄ = t13/t23 and Q̄ = κt12κt23, see problem 24), and define:

(P0, Q0) = (P̄ , Q̄) (Pk, Qk) = F (Pk−1, Qk−1) k = 1, 2, . . . (Q48)

and it is clear that if this makes sense for all k, i.e. if (Pk−1, Qk−1 is always in
the domain of definition of F , then the limit of (Pk, Qk) as k →∞ will be, if
existing, one solution of the equation and the corresponding data will give the
ellipse elements and orbital parameters. Note that the domain of definition of
F has not been explicitly defined so far and consists of the set of pairs (P,Q)
for which the calculations necessary to evaluate F make sense, i.e. lead to the
construction of an ellipse: recall that given three points and a focus there may
be no ellipse passing through them; the whole theory can be easily adapted
to the case of hyperbolic or parabolic orbits.

In practice one can proceed by starting the iteration from any point
(P0, Q0). However if this initial point is not close enough to the solution it
may happen that (Pk, Qk) wonders out of the definition domain or has some
strange asymptotic motion: an undesirable event for our purposes.

The basic difficulty solved by Gauss was to find a method for determining
in a rather simple way a first approximation when one knows basically nothing
about the asteroid distance; he also devised the above algorithm based on the
iteration of a 2-dimensional map, which is remarkably efficient. He showed the
power of his method by computing the orbit of the first known asteroid Ceres.

A warning: sometimes the above algorithm may lead to more than one
solution as it may be that, even if the original determination of the first ap-
proximation for ̺2 has a unique acceptable solution, the (Q.47) has more than
one fixed points. This could provoke also the unpleasant result that modifi-
cations of the algorithm may lead to different final results. Unfortunately it
is not easy to develop a general theory of the equation (Q.46) and possible
ambiguities have to be solved on an empirical basis.

Use the above scheme to find the elements of the orbit of Juno, on the
basis of the data in problem 13).

29. (correction of time aberrations) The correction of the time aberrations
(problem 11)) can be performed by a small modification of the above itera-
tive method, very easy to implement numerically. Define, if (P̄ , Q̄) are as in
problem 28):



564 6 Appendices

(P0, Q0) =(P̄ , Q̄)

(P1, Q1) =F (P0, Q0)

. . .

(Pk+1, Qk+1) =Fk(Pk, Qk) k = 1, 2, . . .

(Q49)

where Fk is obtained from F by replacing tpq in (Q.29) and (Q.45) with:

t
(k)
pq = tq−tp−(̺

(k)
q −̺(k)

p )/c. Check that this leads to the aberration correction.
It is simple but it no longer allows to think that the above procedure as an
elegant map iteration problem. One could still interpret it as the iteration of
a map at the price of increasing the dimension of the space on which the map
acts.

Apply the above correction to the elements of Juno.
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[1]Gauss, F: Theory of the motion of heavenly bodies orbiting about the Sun
in conical sections, Dover, N.Y. 1975.
[2]Smart, W.: Textbook on Spherical Astronomy, Cambridge U. Press, 1977,
Cambridge.
[3]Explanatory Supplement to the Ephemeris, jointly prepared by the Nautical
Almanac of the U.K. and U.S., London Her Majesty’s Stationery Office, 1961
(say).
[4]The American Ephemeris and Nautical Almanac, U.S. Government printing
Office, Washington, D.C., 20402, 1971 (say).
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6.16 S: Definitions and Symbols

Si T est un ensemble, et A une partie de T , on notera ϕA
la fonction charactéristique de A, si cela n’entraine pas de confusion.
(Bourbaki, ch. IX)

C∞(A) : if A ⊂ Rd is an open set: the set of the functions on A continuous, together
with their partial derivatives of all orders; shortened often as C∞ when A is
understood.

C∞0 (A) : if A ⊂ Rd is an open set: subset of C∞(A) consisting of the functions vanishing
outside a closed bounded set contained in A.

C(k)(A) : if A ⊂ Rd is an open set: it is the set of the functions on A with partial
derivatives of order ≤ k continuous on A, k being a non-negative integer.

C∞(Q) : with Q ⊂ Rd arbitrary set with dense interior Q0: set of the functions in
C∞(Rd) which vanish outside Q.

C0(Q) : with Q ⊂ Rd arbitrary set with dense interior Q0: set of the functions in
C∞(Q0) vanishing outside some closed bounded set contained in Q0.

C(k)(Q) : with Q ⊂ Rd arbitrary set with dense interior: defined as C∞(Q), considering
only the first k derivatives.

C∞(T d) : functions of class C∞ on the d-dimensional torus T d (see Definition 12, p.100,
and Definition 13, p.101, §2.21).

C
∞

([0, L]): functions in C∞([0, L]) vanishing in 0 and L together with all the even-order
derivatives.

Cd : complex d-dimensional space and (or) complex d-dimensional vector space.
(O; i, j,k) : orthogonal reference system, O =origin, i, j,k axes unit vectors.
Rd : : real d-dimensional space and (or) real d-dimensional vector space.
T d : d-dimensional torus with side 2π (see p.101).
R,R1 : real line.
C, C1 : complex plane.
R+ : interval [0,+∞).
St : solution flow for an autonomous differential equation.
Zd : lattice of the d-tuples of integers.
Z,Z1 : integer numbers.
Z+ : non-negative integers.
ξ,η, . . . : points or vectors in Rd, Cd
ϕ,ψ, . . . : points in T d.
(X(α))α∈J : family of objects X(α) parameterized by in the index set J .
t : real parameter with the interpretation of time.
ẋ : t-derivative of x.
ẍ : second t-derivative of x.
O(ξ) : quantity of the order of magnitude of ξ: it means that there is C > 0,ξc > 0

such that O(ξ) < C|ξ| if |ξ| < ξc. Used when ξ is an “infinitesimal” variable.
o(ξ) : quantity infinitesimal of higher order compared to ξ: it means

limξ→0 |ξ|−1o(ξ) = 0.
mbe : end-of-proof symbol.
x · y : scalar product of vectors in Rd.
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x ∧ y : vector product of two vectors in R3.
P −Q : vector whose components in a given frame of reference are the

differences of the homonymous coordinates of P and Q in the
same frame of reference.

≡ : identity or, often, implicit definition.
def
= : implicit definition of l.h.s.by the r.h.s. or viceversa.
Re , Im : real or imaginary part of a complex number.
/, \ : symbols for the set theoretic difference.
∂ : partial derivative or boundary of a set
∂ : gradient operator.
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Landau L., Lifschitz, E.: Mécanique, Mir, Moscow, 1966.
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Gauthier-Villars, Paris, 1897.

Reed, M.: Abstract nonlinear wave equations, in Lecture Notes in Mathematics
507. Springer-Verlag, Berlin, 1975.

Ruelle, D.: Statistical Mechanics. Rigorous Results, Benjamin, New York,
1969.





References
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Index

C(k) solution, 14
normal solution, see differential

equation

distribution
probability of symbols, 350

a priori estimate, see estimate
action, 127, 151

invariance, 240
minimal, 132
principle, see principle
stationary, 131
variable, 464

action angle
for Kepler problem, 304
variables, 290

algorithm
finite differences, 544

alive force, 144
analytic implicit functions, 540
analytical mechanics, 211
anchor

escapement, 78, 80
escapement stability, 88

angle
anomaly, 295
ascension, 305
fast, 515
inclination, 296
longitude, 295
variable, 464

angles
Deprit, 318

Euler, 200, 307
angular velocity, 202

anisochrony, 363, 364, 460, 461, 495
parameter, 491

anomaly
average, 304
eccentric, 304

perihelion, 304
areal velocity, 294

Arnold, 493
diffusion, 462

on integrability, 363
regularization, 496

Ascoli-Arzelá convergence, 534
astronomical data, 546

attraction
modulus, 378

strength, 378
attractive manifold, 412

attractor, 376
vague, 390
axiom A, 443

basin, 376
bi-invariant, see set

minimal, 376, 381
non connectex, 381

normal, 376
projection, 376

strange, 444
strength, 378, 410

vague, 397
autonomous equation, see differential

equation
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average
anomaly, 295
of quasi periodic function, 113
stochastic, 121
value, continuous, 109
value, discrete, 110
value, existence, 112

Avogadro number, 208
axis

rotaion, 517

balance
kinetic-potential energy, 135

baricenter, 148
basin

attraction, 376
normal attraction, 376

Bernoulli, 12
best rational approximation, see

rational approximation, best
bifurcation, 403

doubling, 456
Hopf, 431, 434, 442
period doubling, 448, 457

Birkhoff
formal series, 472
normal form, 469
transformation, 470

books and complements, 566
bound, see estimate
boundary condition

periodic, 270
Bourbaki, 565
bracket

Poisson, 362

canonical commutation relation, 237
Catullus, 458
center

of gravity, 149
of mass, 149

center of mass
seebaricenter, 148

centrifugal barrier, 300
chaos, 445, 446, 452
Chebysčev inequality, 119
clock

anchor, 80
stability, 87

theory, 80
coefficient, expansion, 379
commutation

canonical, 237
complexity

absolute, 353
entropy, 354
small, 353

condition
Diophantine, 462
non resonance, 462

constant
Euler-Mascheroni, 125
Feigenbaum, 452

constant of motion, 287, 341
constraint, 153

approximate, 171
compatibility with, 159
holonomous, 159
ideal approximate, 181
ideality condition, 210
model, 170
perfect, 159
perfection condition, 210
reaction, 160
real, 168
rigidity, 170, 198
rigidity ideal, 199
unilateral, 167, 170

continued fractions, 96
convergence

Ascoli-Arzelá, 534
Birkhoff series, 473, 479
in distribution, 119
in probability, 119

coordinates
action angle, 290
adapted, 171
analytic, 338
angular on T d, 101
elliptic, 330
energy-time, 297
flat on tori, 101
independence, 152
orthogonal, 178
parabolic (squared), 333
well adapted, 178

criterion
vague attractivity, 397
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Dante, 116, 153
data

initial, 33
space, 33, 216, 285

Deprit variables, 318
Descartes, 12
determinant

of canonical map, 236, 242
differential equation

autonomous, 33
existence, 18
finite difference method, 544
flow, 35
global solution, 28
local solution, 27
normal, 28, 29, 378
normal form, 392
normal outside A, 31
regularity, 22
reversible, 33
singular, 31
solution, 14
uniqueness, 13

Dirichlet problem, see problem
distribution

of a string, 349
probability, 115
random variable, 117

divergence
of a field, 137

duality
Legendre, 216

eigenvalue
multiplicity, 526
properties, 525

elastic film, 278
energy

kinetic, 12, 143
potential, 12, 36, 142

energy conservation theorem, 11, 144,
162

entropy
Boltzmann, 355
of sequences, 354
positivity, 360

equation
cardinal, 146, 147
Euler, 312

Hamilton-Jacobi, 226, 297, 304, 305,
331, 333, 362

Hamiltonian, 136, 214
Lagrangian, 130, 179, 212
Liouville, 242
secular, 17, 523
symbolic of dynamics, 161
wave, 265

equilibrium
stable, 41, 42
strong, 44
tolerance, 41

equinox
mean, 517

equivalence
Lagrangian Hamiltonian, 215

ergodic, 349
ergodic, non mixing, 350
ergodicity

quasi periodic, 347
estimate

a priori, 28
Euler, 126
Euler angles, 200
Euler formula, 55
Euler-Lagrange equation, see equation
Euler-Mascheroni constant, see constant
expansion, Taylor, 520

feedback, 80
Feigenbaum constant, 452
Fermi coordinates, 183
finite differences, 262, 544

Runge-Kutta method, 545
first integral, see constant of motion
flow, see differential equation

geodesic, 326
Hamiltonian, 218
irrational, 250
pulsation, 248
quasi periodic, 248, 288
solution, 285

foliation
into tori, 288

force, 4
active, 160
conservative, 36, 142

formula
De Moivre, 55
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Euler, 55
Stirling, 125

Fourier
series, multidimensional, 103
quasi periodic series, 105
series, 59
series in C

∞
([0, L]), 536

theorem in C
∞

([0, L]), 267
frequency

of strings, 348
ergodicity, 347
not well defined, 360
of visit, 342
of visit, 342
quasi periodic, 288
well defined, 349

friction, 43, 74
anchor escapement, 88
and Lagrangians, 138
gyroscope, 365
time scale, 53

function
C∞ on regular surface, 258
C∞ bounded support, 521
C∞

0 (Ω), 258
analytic, 337, 481
generating, 222, 238
holomorphic, 481
holomorphic versus analytic, 481
implicit, 528
Lagrangian, 127
Lipschitzian, 425
Lyapunov, 387
multi periodic, 102
quasi periodic, 100, 104

Gauss method for Kepler motion, 548
geodesic, 230

on the ellipsoid, 327
on the sphere, 327
triagle, 231

geometry
axioms, 230
Lobatchesky, 230
noneuclidean, 230

global solution, 28
golden number, 98
golden section, see golden number
gyroscope, 309, 365

integrability, 310
Kowaleskaia, 332

Hamiltonian
regular, 214

harmonic mode, see harmonic
component

harmonic component, 59
harmonic oscillator, see oscillator
Huygens, 12

ideal constraint condition, 210
identity

Jacobi, 242
independence

rational, 290, 342
independent events, 118
inequality

Cauchy-Schwartz, 519
Chebysčev, 119
isoperimetric, 356

inertia matrix, 308
inertial frame, 5
integrability

analytic, 290, 355
anisochronous systems, 364
atom in electric field, 333
Calogero lattice, 331
canonical, 290
canonical, rigid body, 320
conditions, 289
criterion, 335, 359
ellipsoid geodesics, 327, 329
geodesics on torus, 329
heavy gyroscope, 330, 331
ionized hydrogen, 333
isochronous, 290
Kowaleskaia gyroscope, 332
rigid body, 311
Toda lattice, 331

integrable system, see motion
involution, 363

anisochrony, 363
irrational number, quadratic, 99
isochrony, 48, 288, 491, 492

Jacobi identity, see identity

Kepler laws, 299



Index 577

Kepler problem, action-angles, 304
kinetic matrix, see matrix
kinetic-potential energy balance, 135
Kolmogorov

iteration, 496

Lagrangian
density, 151
function, 151
regular, 212
rigid body, 309

Laplace
limit, 304, 486
operator, 262

law
force, 142
Kepler, 299
large numbers, 119
of mechanics, 5

Legendre duality, 136, 216
Legendre trasformation, 216
Levi-Civita, 486
Liouville

operator, 242
Liouville theorem, see theorem
local solution, 27
Lorenz model, 444

Mach, 9
manifold

attractive, 412, 428
central, 430
invariant, 412
stable, 430
unstable, 430

map, 219
canonical homogeneous, 225
canonical permutation, 239
complete canonicity condition, 234
completely canonical, 220
completely canonical example, 241
contact, 234
Deprit canonical, 315, 320
Henon, 457
integration, 288
linear canonical, 234
Poincaré, 440
relatively canonical, 219
symplectic, 234

matrix
inertia, 308
kinetic, 177
Lyapunov, 441
positive definite, 525
stability, 382
wronskian, 17, 69

Maupertuis pinciple, see principle
maximal solution, 27
method

Runge-Kutta, 545
mixing, 349
mode

excited, 249
normal, 246, 284
spatial structure, 263

model, 2
anchor escapement, 86
elastic film, 257
elastic string, 256
five modes NS, 374
Lorenz, 374
seven modes NS, 374

momentum
angular, 148
generalized, 217
linear, 148

motion
asymptotically periodic, 57
central, 292
conservative, 36
constant of, 287
constraint, 157
constraint compatible, 159
deferent, 476
epiycle, 476
Gauss’ method, 548
history, 334
integrable, 288
periodic, 35
precession, 476
quasi periodic, 248, 288, 311
small oscillations, 65
varied, 127

multi periodic, see function

Navier-Stokes
5 modes truncation, 446
7 modes truncation, 452
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Newton, 9
node line, 200, 296
non integrability

criterion, 359
geodesics, with negative curvature,

360
non isochrony, see anisochrony
ntation

constant, 517
nutation, 325, 514

Moon, 516
solar, 515, 517

observable, 109
history, 109

oscillation
fatigue, 170
isochrony, 288
pulsation, 284
small, 65, 284, 288

oscillator
harmonic, 48
boundary condition, 256
Duffing, 513
elastic body, 253
elastic film, 254
elastic string, 253
harmonic, 288
linear coupled, 246
proper time scale, 53
resonant, 75
resonating, 492

paradox
Zermelo, 219

partition
analytically regular, 341

path
mechanical, 230
optical, 231

pendulum, 65
damped, 70
Escande-Doveil, 513
periodically forced, 74

periodic motion, superposition, 93
perturbation

algorithms, 473
regularized, 496

phase

space, 216, 285, 290
phase space, 136

partition, 341
Phoedrus, 440
planetary orbit determination, 548
Poincaré, 493
point mass mechanics, 3
Poisson

bracket, 237, 362
precession, 514

equinoxes, 517
Hamiltonian, 321
lunisolar, 324
solar, 321

prime integral, see constant of motion
principle

of mechanics third, 147
action, 130
conservation of difficulty, 155
D’Alembert, 161
Fermat, 230
Hamilton, 136, 222
homogeneity space-time, 8
least action, 132, 326
least action with constraints, 163
Maupertuis, 229, 326, 336
of inertia, 6
of mechanics, first, 5
of mechanics, second, 5
of mechanics, third, 6, 146
virtual work, 161

probability distribution, see distribution
problem

Dirichlet, 263, 277
Kepler, 299
two bodies, 292

proof
constructive, 19

Ptolemy, 476
pulsation, 100, 248, see oscillation, 288

quadrature, 12, 22, 36, 320, 329, 515
quasi periodic function, see function

random variable, 117
rational approximation, best, 97
rational indepedence, 352
rational independence, 105, 250, 335
reference system, 3
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relation
canonical commutation, 237

renormalization group, 495
resonance, 76, 113
reversible equation, see differential

equation
Riemann measurability, 343
rigid body integrability, 311
rotation

axis, 517
daily, 517
mean axis, 517

satellite
artificial, 303

secular equation, see equation
sequence

mixing, 349
set

analytically regular, 338
attractor, 376
bi-invariant, 375
invariant, 375
invariant stable, 375
locally analytic, 338

solution flow, see differential equation,
285

space
C∞

0 (Ω), 255
data, 216, 285
phases, 136, 216, 285

stability
anchor escapement, 88
clock, 87
matrix, 441
of a map, 441

stable equilibrium, see equilibrium
stationarity point, 128
Stirling formula, see formula
string

distribution of, 349
ergodic, 349
frequency, 348
homologous to a given string, 349
of symbols, 349

surface
codimension, 171
locally analytic, 338
regular, 171

system
anisochronous, 363

theological, animistic and mystical
conceptions in mechanics, 244

theorem
Euler, 92
alive force, 144
analytic implicit functions, 483, 540
Arnold, 488
Arnold, on constraints, 186
Ascoli-Arzelá, 534
baricenter, 148
central manifold, 430
Deprit, 319
energy conservation, 11, 162
Fourier series, 60
global implicit functions, 533
Hopf bifurcation, 431
Hopf-Anosov-Sinai, 360
implicit functions, 528
König, 205
KAM, 461
Koushnirenko, 355
Lagrange on strings, 265
Liouville, 137, 218, 242
Liouville on integrability, 362
Lyapunov, 382
Lyapunov 2d, 387
recursion, 219
Shannon-McMillan, 360
small denominators, 488
Vitali convergence, 510

tidal stress, 300
time absolute, 3
time evolution flow, 285
tolerance, see equilibrium
torus, 101

rotation, 248
standard, 101

transformation, see map
Birkhoff, 470

trigonometry, spherical, 319
Truesdell, 9

variable, 6 464
action, 464

variables
canonical, 218
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variation of motion, see motion
variational minimum, 129
vibration

fatigue, 170
normal mode, 246

wave
equation, 265
plane, 270
propagation by characteristics, 270

velocity, 278, 282

Webster, 78

work

conservative force, 145

of a force, 113, 144

virtual, 162

wronskian matrix, 17

Zermelo paradox, 219


