Original Publications:

Cell, 46, 521 - 530.

and Sir protein concentration in silencer-mediated repression”

Genes & Dev. 10, 1796 - 1811.

Cell, 89, 381 - 391.

Genes & Dev., 11, 1504 - 1518.

EMBO J., 16, 3243 - 3255.

Current Biol., 8, 653 - 656.

“A functional characterization of the Silent Information Regulator 3 N-terminus.”

Cell. Biol., 18, 6110 - 6120.

“Sir2p interacts with Sir4p N-terminal domain and antagonizes telomeric silencing in yeast.”

Current Biol., 8, 787 - 790.

“SMC protein C-terminal Domains Bind Preferentially to DNA with Secondary Structure.”

“Meiotic behaviors of chromosomes and microtubules in budding yeast: relocalization of centromeres and telomeres during meiotic prophase.”

Genes to Cells, 3, 587 - 600.

“Targeting Sir proteins to nuclear domains: a general mechanism for transcriptional repression.”

“Cyclin B/Cdk1 stimulates ORC- and Cdc6-independent steps of semiconservative plasmid replication in yeast nuclear extracts.”

“Mutations in the C-terminal domain of topoisomerase II affect meiotic function and
interaction with casein kinase 2β subunit.”

“The cytochrome b₅ tail anchors and stabilizes subdomains of human DNA topoisomerase IIα in the cytoplasm of retrovirally infected mammalian cells.”

“Relocalization of telomeric Ku and Sir proteins in response to DNA strand breaks in yeast.”

Cell, 97, 621 - 633.

Genes & Dev., 13, 2159 - 2176.

Nucl. Acids Res. 27, 4687 – 4694.

Genes & Dev., 14, 81-96.

“Analysis of Sir2p domains required for rDNA and telomeric silencing.”

Genetics, 154, 1069 - 1083.

“MAP kinase signaling induces nuclear reorganization in budding yeast.”

Current Biol. 10, 373 – 382.

“The Dynamics of Yeast Telomeres and Silencing Proteins through the Cell Cycle.”

A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast.”

EMBO J. 20, 197 - 209.

Biochemistry, 40, 1624 - 1634.

Science, 293, 2181 - 2186.

73. Teixeira, M.T., Forstemann, K., **Gasser, S.M.** and Lingner, J. (2002) "Intracellular trafficking of yeast telomerase components."
 EMBO Reports, 3, 652-659.

 Current Biol., 12, 2076-2089.

76. Hediger, F., Dubrana, K. and **Gasser, S.M.** (2002) "Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring but act in the Tel1 pathway of telomere length control."

 Genes & Dev., 16, 3236 - 3252

 EMBO J., 22, 4325 - 4336.

 EMBO Reports, 4, 18 - 23.

 EMBO J., 23, 1301-1312.

 Cell, 119, 955 - 967.

 EMBO J., 24, 405 - 417.

IEEE Transactions on Image Processing, 14, 1372 – 1383.

Genes & Dev. 19, 3055 - 3069.

EMBO J. 25, 857 – 867.

Molecular Cell, 21, 825 - 836.

Cell, 125, 1233 - 1235

EMBO J. 26, 1315 - 1326,

Cell, 128, 85 – 99

EMBO J. 26, 4113 - 4125.

J Cell Science, 120, 4209 – 4220.

118. Stulemeijer, I. J. E. Pike, B. L., Oudgenoeg, G., Faber, A.W., Frederiks, F., Verzijlbergen, K.F. van Welsum, T., Heck, A. J., Gasser, S. M., and F. van Leeuwen “Dot1 binding induces long-range chromatin re-arrangements by histone methylation dependent and independent mechanisms.”, *PNAS, under revision*.

Methods articles, Review articles, Books:

 “Telomeres and the functional architecture of the nucleus”
 Trends Cell Biol. 3, 128 - 134.

 Current Opin. Cell Biol. 6, 373 - 379.

 “Repressor Activator Protein 1 and its Ligands. Organising Chromatin Domains.”

 “DNA topoisomerase II Mutations and Resistance to Anti-tumour Drugs.”
 BioEssays, 17, 767 - 774.

 Current Biol. 5, 357 - 359.

 Trends Cell Biol. 6, 408 - 409.

 Current Biol. 6, 1222 - 1225.

 Experientia, 52, 1136 - 1147.

 Transport in Saccharomyces cerevisiae” in The Molecular and Cellular Biology of the Yeast S. cerevisiae, E.

 Trends Cell Biol. 7, 201 - 205.

 “The Genetics of Epigenetics” in Chromatin and Epigenetic Regulation of Transcription, idem, eds.,
 Cell and Mol. Life Science, 54, 1 - 5.

 and silencing: trafficking of SIR proteins” in Epigenetics, Cardew, G. ed.,
 Novartis Foundation Symposium, 241, 114 - 126.

 Current Opin. Genet. Dev. 8, 137 - 139.

 Current Opin. Cell Biology 10, 304 - 310.

