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Boris Khesin and Serge Tabachnikov, Coordinating Editors

V
ladimir Arnold, an eminent mathemati-
cian of our time, passed away on June 3rd,
2010, nine days before his 73rd birthday.
This article, along with the one in the
next issue of the Notices, touches on his

outstanding personality and his great contribution to
mathematics.

A word about spelling: we use “Arnold”, as opposed
to “Arnol’d”; the latter is closer to the Russian pro-
nunciation, but Vladimir Arnold preferred the former
(it is used in numerous translations of his books into
English), and we use it throughout.

1. Arnold in his own words
In 1990, one of us (S.T.) interviewed V. Arnold for a
Russian magazine “Kvant” (Quantum). The readership
of this monthly magazine for physics and mathematics
consisted mostly of high school students, high school
teachers, and undergraduate students; the magazine
had circulation of about 200,000. As far as we know,
the interview was never translated into English. We
translate excerpts from this interview;1 the footnotes
are ours.

Q: How did you become a mathematician? What was
the role played by your family, school, mathematical
circles, olympiads? Please tell us about your teachers.

A: I always hated learning by rote. For that reason,
my elementary school teacher told my parents that a
moron, like myself, would never manage to master the
multiplication table.

My first mathematical revelation was when I met
my first real teacher of mathematics, Ivan Vassilievich
Morozkin. I remember the problem about two old ladies,

1Full text is available, in Russian, on the web site of Kvant

magazine (July 1990) http://kvant.mirror1.mccme.ru/.

Vladimir Igorevich Arnold

who started simultaneously from two towns toward

each other, met at noon, and who reached the opposite

towns at 4 pm and 9 pm, respectively. The question

was when they started their trip.

We didn’t have algebra yet. I invented an “arith-

metic” solution (based on a scaling – or similarity

– argument) and experienced a joy of discovery; the

desire to experience this joy again was what made me a

mathematician.

A. A. Lyapunov organized at his home “Children

Learned Society”. The curriculum included mathemat-
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Vladimir Arnold, circa 1985

ics and physics, along with chemistry and biology,

including genetics that was just recently banned2 (a

son of one of our best geneticists was my classmate; in a

questionnaire, he wrote: “my mother is a stay-at-home

mom, my father is a stay-at-home dad”).

Q: You have been actively working in mathemat-

ics for over 30 years. Has the attitude of the society

towards mathematics and mathematicians changed?

A: The attitude of the society (not only in the USSR)

to fundamental science in general, and to mathematics

in particular, is well described by I.A. Krylov in the

fable “The hog under the oak”.3 In the 1930s and

1940s, mathematics suffered in this country less than

other sciences. It is well known that Viète was a

cryptographer on service of Henry IV of France. Since

then, certain areas of mathematics are supported by all

governments, and even Beria4 cared about preservation

of mathematical culture in this country.

In the last 30 years, the prestige of mathematics has

declined in all countries. I think that mathematicians

are partially to be blamed as well (foremost, Hilbert

and Bourbaki), the ones who proclaimed that the goal

of their science was investigation of all corollaries of

arbitrary systems of axioms.

2In 1948, genetics was officially declared “a bourgeois
pseudoscience” in the Soviet Union.
3See A. Givental’s (slightly modernized) translation of this
early 19th century Russian fable at the end of this interview.
4The monstrous chief of Stalin’s secret police.

Q: Does the concept of fashion apply to mathemat-
ics?

A: Development of mathematics resembles a fast
revolution of a wheel: sprinkles of water are flying in
all directions. Fashion – it is the stream that leaves
the main trajectory in the tangential direction. These
streams of epigone works attract most attention, and
they constitute the main mass, but they inevitably
disappear after a while because they parted with the
wheel. To remain on the wheel, one must apply the
effort in the direction perpendicular to the main stream.

A mathematician finds it hard to agree that the
introduction of a new term, not supported by new
theorems, constitutes a substantial progress. However,
the success of “cybernetics”, “fractals”, “synergetics”,
“catastrophe theory”, and “strange attractors” illus-
trates the fruitfulness of word creation as a scientific
method.

Q: Mathematics is a very old and important part of
human culture. What is your opinion about the place
of mathematics in culture heritage?

A: The word “Mathematics” means science about
truth. It seems to me that modern science (i.e., theoret-
ical physics along with mathematics) is a new religion,
a cult of truth, founded by Newton 300 years ago.

Q: When you prove a theorem, do you “create” or
“discover” it?

A: I certainly have a feeling that I am discovering
something that existed before me.

Q: You spend much time popularizing mathemat-
ics. What is your opinion about popularization? Please
name merits and demerits of this hard genre.

A: One of the very first popularizers, M. Faraday,
arrived at the conclusion that “Lectures which really
teach will never be popular; lectures which are popular
will never teach.” This Faraday effect is easy to explain:
according to N. Bohr, clearness and truth are in the
quantum complementarity relation.

Q: Many readers of Kvant aspire to become math-
ematicians. Are there “indications” and “contraindi-
cations” to becoming a mathematician, or anyone in-
terested in the subject can become one? Is it necessary
for a mathematician-to-be to successfully participate in
mathematical olympiads?

A: When 90-years-old Hadamard was telling
A.N. Kolmogorov about his participation in Concours
Général (roughly corresponding to our olympiads) he
was still very excited: Hadamard won only the second
prize, while the student who had won the first prize
also became a mathematician, but a much weaker one!

Some olympiad winners later achieve nothing, and
many outstanding mathematicians had no success in
olympiads at all.

Mathematicians differ dramatically by their time
scale: some are very good tackling 15-minute problems,
some are good with the problems that require an hour,
a day, a week, the problems that take a month, a year,

2 Notices of the AMSVolume !!Not Supplied!!, Number !!Not Supplied!!



Teaching at Moscow State University, 1983

decades of thinking... A.N. Kolmogorov considered his
“ceiling” to be two weeks of concentrated thinking.

A success in an olympiad largely depends on one’s
sprinter qualities, whereas a serious mathematical
research requires a long distance endurance (B.N. De-
launay used to say: “a good theorem takes not 5 hours,
as in an olympiad, but 5,000 hours”).

There are contraindications to becoming a research
mathematician. The main one is lack of love of
mathematics.

But mathematical talents can be very diverse: ge-
ometrical and intuitive, algebraic and computational,
logical and deductive, natural scientific and inductive.
And all kinds are useful. It seems to me that one’s
difficulties with the multiplication table or a formal
definition of half-plane should not obstruct one’s way
to mathematics. An extremely important condition for
serious mathematical research is a good health.

Q: Tell us about the role of sport in your life.

A: When a problem resists a solution, I jump on my
cross country skis. After 40 kilometers a solution (or
at least an idea for a solution) always comes. Under
scrutiny, an error is often found. But this is a new
difficulty that is overcome in the same way.

The hog under the oak

A Hog under a mighty Oak
Had glutted tons of tasty acorns, and resigned

To nap under the tree. But when awoke,
He, with persistence and the snoot of real swine,

The giant’s roots began to undermine.
”You’ll damage it! With roots exposed”—

A Raven on a branch arose —
The tree may perish — don’t you worry?”

”So what?” the Hog replied, ”Yet,
There is no reason to be sorry.
The tree is useless. Be it dead

Two hundred fifty years, I won’t regret a second.
Nutritious acorns — that what’s only reckoned!”

”Ungrateful pig!” — the tree exclaimed with scorn —
”Should have your mug been fit to turn around

You’d have a chance to figure out

Where all these acorns have been born.”

Likewise, an ignoramus in defiance
Is scolding scientists and science,
And all preprints at lanl dot gov,

Oblivious of his partaking fruit thereof.

2. Arnold’s doctoral students
The list below includes those who defended their Ph.D.
theses under Arnold’s guidance. We have to admit that
it was difficult to compile. Along with straightforward
cases when Arnold supervised the thesis and was listed
as the person’s PhD advisor, there were many other
situations. For example, in Moscow State University
before perestroika, a PhD advisor for a foreigner had
to be a member of the Communist Party, so in such
cases there was a different nominal PhD advisor, while
Arnold was supervising the student’s work. In other
cases there were two co-advisors, or there was a different
advisor of the PhD thesis, while the person defended
the Doctor of Science degree (the second scientific
degree in Russia) under Arnold’s supervision. In these
“difficult cases” the inclusion in the list below is based
on “self-definition” as an Arnold student, rather than a
formality. We tried to make the list as complete and
precise as possible, but we apologize in advance for
possible omissions: there were many more people whose
work Arnold influenced greatly and who might feel to
belong to Arnold’s school.

Names are listed chronologically according to the
defense years, which are given in parentheses. Many
former Arnold’s students defended the second degree,
the Doctor of Science or Habilitation, but we marked it
only in the cases where the first degree was not under
Arnold’s supervision.

Edward G. Belaga (1965)
Andrei M. Leontovich (1967)
Yulij S. Ilyashenko (1969) (1994, DSci.)
Anatoly G. Kushnirenko (1970)
Askold G. Khovanskii (1973)
Nikolai N. Nekhoroshev (1973)
Alexander S. Pyartli (1974)
Alexander N. Varchenko (1974)
Sabir M. Gusein-Zade (1975)
Alexander N. Shoshitaishvili (1975)
Rifkat I. Bogdanov (1976)
Lyudmila N. Bryzgalova (1977)
Vladimir M. Zakalyukin (1977)
Emil Horozov (1978)
Oleg V. Lyashko (1980)
Olga A. Platonova (1981)
Victor V. Goryunov (1982)
Vladimir N. Karpushkin (1982)
Vyacheslav D. Sedykh (1982)
Victor A. Vassiliev (1982)
Aleksey A. Davydov (1983)
Elena E. Landis (1983)
Vadim I. Matov (1983)
Sergei K. Lando (1986)
Inna G. Scherbak (1986)
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Oleg P. Scherbak (1986)
Victor I. Bakhtin (1987)
Alexander B. Givental (1987)
Mikhail B. Sevryuk (1988)
Anatoly I. Neishtadt (1976) (1989, DSci)
Ilya A. Bogaevsky (1990)
Boris A. Khesin (1990)
Vladimir P. Kostov (1990)
Boris Z. Shapiro (1990)
Maxim E. Kazarian (1991)
Ernesto Rosales-Gonzalez (1991)
Oleg G. Galkin (1992)
Michael Z. Shapiro (1992)
Alexander Kh. Rakhimov (1995)
Francesca Aicardi (1996)
Yuri V. Chekanov (1997)
Emmanuel Ferrand (1997)
Petr E. Pushkar (1998)
Jacques-Olivier Moussafir (2000)
Mauricio Garay (2001)
Fabien Napolitano (2001)
Ricardo Uribe-Vargas (2001)
Mikhail B. Mishustin (2002)
Adriana Ortiz-Rodriguez (2002)
Gianmarco Capitanio (2004)
Oleg N. Karpenkov (2005)
Alexander M. Lukatsky (1975) (2006, DSci)

3. To whom it may concern, by Alexander
Givental

No est~ i Bo�i$i sud ...

M. �. Lermontov, \Smert~ Po�ta"5

Posthumous memoirs seem to have the unintended
effect of reducing the person’s life to a collection of
stories. For most of us it would probably be a just and
welcome outcome, but for Vladimir Arnold, I think,
it would not. He tried and manage to tell us many
different things about mathematics, education, and
beyond, and in many cases we’ve been rather slow
listening or thinking, so I believe, we will be returning
again and again not only to our memories of him, but
to his own words as well. What is found below is not a
memoir, but a recommendation letter, albeit a weak
one, for he did not get the prize, and yet hopefully useful
as an interim attempt to overview his mathematical
heritage.

January 25, 2005

Dear members of [the name of the committee],

You have requested my commentaries on the work of
Vladimir Arnold. Writing them is an honorable and
pleasurable task for me.

In the essence the task is easy:

5Yet, there is God’s Court, too ... , M.Yu. Lermontov,

“Death of Poet.”

At Dubna, 2006

Yes, Vladimir Arnold fully merits [the name of the
prize] since his achievements are of extraordinary depth
and influence.

His work indeed resolves fundamental problems, and
introduces unifying principles, and opens up major new
areas, and (at least in some of these areas) it introduces
powerful new techniques too.

On the other hand, writing this letter is not easy,
mainly because the ways Arnold’s work contributes
into our knowledge are numerous and go far beyond
my personal comprehension. As Arnold’s student, I
am familiar quite well with those aspects of his work
which inspired my own research. Outside these areas,
hopefully, I will be able to convey the conventional
wisdom about Arnold’s most famous achievements.
Yet this leaves out the ocean of numerous, possibly
less famous, but extremely influential contributions, of
which I have only partial knowledge and understanding.
So, I will have to be selective here and will mention just
a handful of examples which I am better familiar with,
and which for this reason may look chosen randomly.

Perhaps the most legendary, so to speak, of Arnold’s
contributions is his work on small denominators,6

followed by the discovery of Arnold’s diffusion,7 and

6Small denominators III. Problems of stability of motion
in classical and celestial mechanics, Uspekhi Mat. Nauk 18

(1963), no. 6, 91–192, following Small denominators I. Map-

pings of a circle onto itself, Izvestia AN SSSR, Ser. Mat. 25
(1961), 21–86, Small denominators II. Proof of a theorem
of A. N. Kolmogorov on the preservation of conditionally

periodic motions under a small perturbation of the Hamil-
tonian, Uspekhi Mat. Nauk 18 (1963), no. 5, 13–40, and a

series of announcements in DAN SSSR
7Instability of dynamical systems with many degrees of

freedom, DAN SSSR 156 (1964), 9–12.
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known now as part of the Kolmogorov – Arnold – Moser
theory. Among other things, this work contains an
explanation (or, depending on the attitude, a proof,
and a highly technical one) of stability of the Solar
planetary system. Even more importantly, the KAM
theory provides a very deep insight into the real-world
dynamics (perhaps one of the few such insights so far,
one more being stability of Anosov’s systems), and is
widely regarded as one of the major discoveries of the
20-th century mathematical physics.

Symplectic geometry has established itself as a
universal geometric language of Hamiltonian mechanics,
calculus of variations, quantization, representation
theory and microlocal analysis of differential equations.
One of the first mathematicians who understood the
unifying nature of symplectic geometry was Vladimir
Arnold, and his work played a key role in establishing
this status of symplectic geometry. In particular, his
monograph Mathematical Methods of Classical Mechan-
ics8 has become a standard textbook, but 30 years ago
it indicated a paradigm shift in a favorite subject of
physicists and engineers. The traditional “analytical”
or “theoretical” mechanics got suddenly transformed
into an active region of modern mathematics populated
with Riemannian metrics, Lie algebras, differential
forms, fundamental groups, and symplectic manifolds.

Just as much as symplectic geometry is merely a lan-
guage, is symplectic topology a profound problem.
Many of the best results of such powerful mathe-
maticians as Conley, Zehnder, Gromov, Floer, Hofer,
Eliashberg, Polterovich, McDuff, Salamon, Fukaya,
Seidel and many others belong to this area. It wouldn’t
be too much an overstatement to say that symplectic
topology has developed from attempts to solve a
single problem: to prove the Arnold conjecture about
Hamiltonian fixed points and Lagrangian intersections.9

While the conjecture has been essentially proved,10 and
many new problems and ramifications discovered, the
theory in a sense continues to explore various facets of
that same topological rigidity property of phase spaces
of Hamiltonian mechanics that goes back to Poincaré
and Birkhoff and whose symplectic nature was first
recognized by Arnold in his 1965 notes in Comptes
Rendus.

Almost as much a revolutionizing effect as Arnold’s
work on small denominators produced in classical

8Nauka, Moscow, 1974.
9first stated in Sur une propriété topologique des applica-
tiones globalement canonique de la mécnahique classique,

C.R. Acad. Sci. Paris 261 (1965), 3719–3722, and reit-
erated in a few places, including an appendix to Math

Methods....
10by Hofer (1986) for Lagrangian intersections, and by
Fukaya–Ono (1996) for Hamiltonian diffeomorphisms,

while “essentially” refers to the fact that the conjectures,
the way Arnold phrased them in terms of critical point of

functions rather than (co)homology, and especially in the

case of possibly degenerate fixed or intersection points, still
remain open (and correct just as likely as not, but with no

counter-examples in view).

Between the lectures at Arnold Fest, 1997

mechanics, his work in Riemannian geometry of infinite-
dimensional Lie groups did in hydrodynamics. In
particular, Arnold’s seminal paper in Annales de
L’Institut Fourier11 draws on his observation that flows
of incompressible fluids can be interpreted as geodesics
of right-invariant metrics on the groups of volume-
preserving diffeomorphisms. Technically speaking the
aim of the paper is to show that most of sectional
curvatures of the area-preserving diffeomorphism group
of the standard 2-torus are negative and thus the
geodesics on the group typically diverge exponentially.
From time to time this result makes the media news
as a “mathematical proof of impossibility of long-term
weather forecasts”. More importantly, the work had
set Euler’s equations on coadjoint orbits as a blueprint
and redirected the attention in many models of con-
tinuum mechanics toward symmetries, conservation
laws, relative equilibria, symplectic reduction, topologi-
cal methods (in works of Marsden, Ratiu, Weinstein,
Moffat, Freedman among many others).12

Due to the ideas of Thom and Pham and funda-
mental results of Mather and Malgrange, singularity
theory became one of the most active fields of the
70-ieth and 80-ieth, apparently with two leading centers:
Brieskorn’s seminar in Bonn and Arnold’s seminar
in Moscow. The theory of critical points of functions
and its applications to classification of singularities of
caustics, wave fronts and short-wave asymptotics in

11Sur la géométrie différentielle des groupes de Lie de di-
mension infinie et ses applications à l’hydrodynamique des
fluides parfaits. Ann, Inst. Fourier 16:1 (1966), 319–361,

based on a series of earlier announcements in C. R. Acad.
Sci. Paris.
12As summarized in the monograph Topological Methods
in Hydrodynamics, Springer-Verlag, 1998, by Arnold and

Khesin.
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geometrical optics as well as their relationship with the
ADE-classification are perhaps the most famous (among
uncountable other) results of Arnold in singularity
theory.13 Arnold’s role in this area went, however, far
beyond his own papers.

Imagine a seminar of about 30 participants: under-
graduates writing their first research papers, graduate
students working on their dissertation problems, post-
graduates employed elsewhere as software engineers
but unwilling to give up their dream of pursuing
mathematics even if only as a hobby, several experts —
Fuchs, Dolgachev, Gabrielov, Gusein-Zade, Khovansky,
Kushnirenko, Tyurin, Varchenko, Vassiliev, — and the
leader, Arnold, beginning each semester with formulat-
ing a bunch of new problems, giving talks or listening to
talks, generating and generously sharing new ideas and
conjectures, editing his student’s papers, and ultimately
remaining the only person in his seminar who would
keep in mind everyone else’s works-in-progress and
understand their relationships. Obviously, a lion’s share
of his student’s achievements (and among the quite
famous ones are the theory of Newton polyhedra by
Khovansky and Kushnirenko, or Varchenko’s results
on asymptotical mixed Hodge structures and semi-
continuity of Steenbrink spectra) is due to his help,
typically in the form of working conjectures but every
too often through his direct participation (for, with
the exception of surveys and obituaries, Arnold would
refuse to publish joint papers — we will learn later
why).

Moreover, under Arnold’s influence, the elite branch
of topology and algebraic geometry studying singular
real and complex hypersurfaces was transformed into
a powerful tool of applied mathematics dealing with
degenerations of all kinds of mathematical objects
(methamorphoses of wave fronts and caustics, evolutes,
evolvents and envelopes of plane curves, phase diagrams
in thermodynamics and convex hulls, accessibility
regions in control theory, differential forms and Pfaff
equations, symplectic and contact structures, solutions
of Hamilton-Jacobi equations, the Hamilton-Jacobi
equations themselves, the boundaries between various
domains in fuctional spaces of all such equations, etc.
etc.) and merging with the theory of bifurcations (of
equilibria, limit cycles, or more complicated attractors
in ODEs and dynamical systems). Arnold has developed
a unique intuition and expertise in the subject, so
that when physicists and engineers would come to him
asking what kind of catastrophes they should expect
in their favorite problems, he would be able to guess
the answers in small dimensions right on the spot. In
this regard, the situation would resemble experimental
physics or chemistry where personal expertise is often
more important than formally registered knowledge.

13Normal forms of functions near degenerate critical points,

the Weyl groups Ak, Dk, Ek and Lagrangian singularities,
Funct. Anal. Appl. 6, no. 4, (1972), 3–25; see also Arnold’s

inspiring paper in Proceedings of the ICM-74 Vancouver
and the textbooks Singularities of Differential Maps, v. I and

II, by Arnold, Gusein-Zade and Varchenko.

Having described several (frankly — quite obvious)
broad areas of mathematics reshaped by Arnold’s
seminal contributions, I’d like to turn now to some more
specific classical problems which have been attracting
his attention over a long time span.

The affirmative solution of the 13-th Hilbert
problem (understood as a question about superpo-
sitions of continuous functions) given by Arnold in
his early (essentially undergraduate) work14 was the
beginning of his interest in the “genuine” (and still open)
Hilbert’s problem: Can the root of the general degree 7
polynomial considered as an algebraic function of its
coefficients be written as a superposition of algebraic
functions of 2 variables? The negative15 solution to
the more general question about polynomials of degree
n was given by Arnold in 1970 for n = 2r.16 The
result was generalized by V. Lin. Furthermore, Arnold’s
approach, based on his previous study of cohomology
of braid groups later gave rise to Smale’s concept of
topological complexity of algorithms and Vassiliev’s
results on this subject. Even more importantly, Arnold’s
study of braid groups via topology of configuration
spaces 17 was generalized by Brieskorn to E. Artin’s
braid groups associated with reflection groups. The
latter inspired Orlik–Solomon’s theory of hyperplane
arrangements, K. Saito–Terao study of free divisors,
Gelfand’s approach to hyper-geometric functions, Ao-
moto’s work on Yang-Baxter equations, and Varchenko
– Schekhtman’s hypergeometric “Bethe ansatz” for
solutions of Knizhnik – Zamolodchikov equations in
Conformal Field Theory.

Arnold’s result18 on the 16-th Hilbert problem,
Part I, about disposition of ovals of real plane algebraic
curves was immediately improved by Rokhlin (who
applied Arnold’s method but used more powerful tools
from the topology of 4-manifolds), led Rokhlin to his
proof of a famous conjecture of Gudkov (who corrected
Hilbert’s expectations in the problem), inspired many
new developments (due to Viro and Kharlamov among
others), and is considered a crucial breakthrough in the
history of real algebraic geometry.

Among other things, the above paper of Arnold
outlines an explicit diffeomorphism between S4 and
the quotient of CP 2 by complex conjugation.19 The
fact was rediscovered by Kuiper in 1974 and is known

14On the representations of functions of several variables as
a superposition of functions of a smaller number of variables,
Mat. Prosveshchenie (1958), 41-46.
15i.e., positive in Hilbert’s sense
16Topological invariants of algebraic functions II, Funct.

Anal. Appl. 4 (1970), no. 2, 1–9.
17The cohomology ring of the group of dyed braids, Mat.

Zametki 5 (1969), 227–231.
18The situation of ovals of real algebraic plane curves, the
involutions of four-dimensional smooth manifolds, and the

arithmetic of integral quadratic forms. Func. Anal. Appl. 5
(1971) no. 3, 1–9.
19Details were published much later in The branched cov-
ering CP2 → S4, hyperbolicity and projective topology,

Sibirsk. Mat. Zh. 29 (1988), no. 5, 36–47.
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V. Arnold, 1968

as Kuiper’s theorem [31]. Arnold’s argument, based
on hyperbolicity of the discriminant in the space of
Hermitian forms, was recently revived in a far-reaching
paper by M. Atiyah – J. Berndt [19].

Another work of Arnold in the same field20 unified
the Petrovsky-Oleinik inequalities concerning topolo-
gy of real hypersurfaces (or their complements) and
brought mixed Hodge structures (just introduced by
Steenbrink into complex singularity theory) into real
algebraic geometry.

Arnold’s interest in the 16-th Hilbert problem,
Part II, on the number of limit cycles of polynomial
ODE systems on the plane has been an open-ended
search for simplifying formulations. One of such formu-
lations21 (about the maximal number of limit cycles
born under a non-conservative perturbation of a Hamil-
tonian system, and equivalent to the problem about the
number of zeroes of Abelian integrals over a family of
real algebraic ovals) generated extensive research. The
results here include the general deep finiteness theorems
of Khovansky and Varchenko, Arnold’s conjecture
about non-oscillatory behavior of the Abelian integrals,
his geometrization of higher-dimensional Sturm theory
of (non)oscillations in linear Hamiltonian systems22,
various attempts to prove this conjecture (including a
series of papers by Petrov-Tan’kin on Abelian integrals
over elliptic curves, my own application of Sturm’s
theory to non-oscillation of hyper-elliptic integrals, more
recent estimates of Grigoriev, Novikov–Yakovenko) and
further work by Horozov, Khovansky, Ilyashenko and
others. Yet another modification of the problem (a

20The index of a singular point of a vector field, the Petro-

vsky –Oleinik inequalities, and mixed Hodge structures.
Func. Anal. Appl. 12 (1978), no. 1, 1–14.
21V. I. Arnold, O.A. Oleinik, Topology of real algebraic
varieties. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1979,

no. 6, 7–17.
22Sturm theorems and symplectic geometry, Func. Anal.

Appl. 19 (1985), no. 4, 1–10.

V. Arnold and J. Moser at the Euler Institute,
St.Petersburg, 1991

discrete one-dimensional analogue) suggested by Arnold
led to a beautiful and non-trivial theorem of Yakobson
in the theory of dynamical systems [39].

The classical problem in the theory of Diophantine
approximations of inventing the higher-dimensional
analogue of continued fractions has been ap-
proached by many authors, with a paradoxical outcome:
there are many relatively straightforward and relatively
successful generalizations, but none as unique and
satisfactory as the elementary continued fraction theory.
Arnold’s approach to this problem23 is based on his
discovery of a relationship between graded algebras
and Klein’s sails (i.e. convex hulls of integer points
inside simplicial convex cones in Euclidean spaces).
Arnold’s problems and conjectures on the subject have
led to the results of E. Korkina and G. Lauchaud
generalizing Lagrange’s theorem (which identifies qua-
dratic irrationalities with eventually periodic continued
fractions) and to the work of Kontsevich–Sukhov
generalizing Gauss’ dynamical system and its ergodic
properties. Thus the Klein–Arnold generalization, while
not straightforward, appears to be just as unique and
satisfactory as its classical prototype.

The above examples show how Arnold’s interest in
specific problems helps to transform them into central
areas of modern research. There are other classical
results which, according to Arnold’s intuition, are
scheduled to generate such new areas, but — to my
understanding — have not yet achieved, in spite of
interesting work done by Arnold himself and some
others, the status of important mathematical theories.
But ... who knows? To mention one: the Four-Vertex
Theorem, according to Arnold, is the seed of a new (yet
unknown) branch of topology (in the same sense as
the Last Poincaré Theorem was the seed of symplectic
topology). Another example: a field-theoretic analogue
of Sturm theory, broadly understood as a study of
topology of zero levels (and their complements) of

23A-graded algebras and continued fractions, Commun.
Pure Appl. Math. 49 (1989), 993–1000; Higher-dimensional

continued fractions, Regul. Chaotic Dyn. 3 (1998), 10–17

and going back to Statistics of integral convex polyhedra,
Func. An. Appl. 14 (1980), no. 1, 1–3 and to the theory of

Newton polyhedra.
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eigen-functions of self-adjoint linear partial differential
operators.

Perhaps with the notable exceptions of KAM-theory
and singularity theory, where Arnold’s contributions
are marked not only with fresh ideas but also with
technical breakthroughs (e.g. a heavy-duty tool in
singularity theory — his spectral sequence24), a more
typical path for Arnold would be to invent a bold new
problem, attack its first non-trivial cases by bare hands,
and then leave developing an advanced machinery to
his followers. I’ve already mentioned how the theory of
hyperplane arrangements emerged in this fashion. Here
are some other examples of this sort where Arnold’s
work starts a new area.

In 1980 Arnold invented the concepts ofLagrangian
and Legendrian cobordisms and studied them for
curves using his theory of bifurcations of wave fronts and
caustics.25 The general homotopy theory formulation
was then given by Ya. Eliashberg, and the corresponding
“Thom rings” computed in an award-winning treatise by
M. Audin [20]. A geometric realization of Lagrange and
Legendre characteristic numbers as enumerative theory
of singularities of global caustics and wave fronts was
given by V. Vassiliev [38]. The method developed for
this task, namely associating a spectral sequence to a
stratification of functional spaces of maps according
to types of singularities, was later applied by Vassiliev
several more times, of which his work on Vassiliev
invariants of knots is the most famous one.

Arnold’s definition26 of the asymptotic Hopf
invariant as the average self-linking number of trajec-
tories of a volume-preserving flow on a simply-connected
3-fold and his “ergodic” theorem about coincidence of
the invariant with Moffatt’s helicity gave the start to
many improvements, generalizations and applications of
topological methods in hydro- and magneto- dynamics,

due to M.H. Freedman et al, É. Ghys, B. Khesin,
K. Moffatt and many others.27

As one can find out, say, on MathSciNet, Arnold is
one of the most prolific mathematicians of our time.
His high productivity is partly due to his fearless
curiosity and enormous appetite for new problems.28

Paired with his taste and intuition, these qualities often
bring unexpected fruit, sometimes — in the areas quite
remote from the domain of his direct expertise. Here
are some examples.

24A spectral sequence for the reduction of functions to

normal forms, Funct. Anal. Appl. 9 (1975), 81–82.
25Lagrange and Legendre cobordisms. I,II, Func. Anal.

Appl. 14 (1980), no. 3, 1–13, no. 4, 8–17.
26See The asymptotic Hopf invariant and its applications,

Selected translations. Selecta Math. Soviet. 5 (1986), no. 4,

327–345, which is the translation of a 1973 paper and one
of Arnold’s most frequently quoted works.
27See a review in Chapter III of V. I. Arnold, B. A. Khesin,
Topological methods in hydrodynamics, Applied Math.

Sciences, vol. 125, Springer-Verlag, NY, 1998.
28See the unusual book Arnold’s problems. Springer-Verlag,

Berlin, PHASIS, Moscow, 2004.

Lecturing at Toronto, 1997

Arnold’s observation29 on the pairs of triples of
numbers computed by I. Dolgachev and A. Gabrielov
and characterizing respectively uniformization and
monodromy of 14 exceptional unimodal singularities of
surfaces (in Arnold’s classification) is known now under
the name Arnold’s Strange Duality. In 1977, due
to Pinkham and Dolgachev–Nikulin, the phenomenon
received a beautiful explanation in terms of geometry
of K3-surfaces. As it became clear in the early 90-ieth,
Arnold’s Strange Duality was the first — and highly
non-trivial — manifestation of Mirror Symmetry:
a profound conjecture discovered by string theorists
and claiming a sort of equivalence between Symplec-
tic Topology and Complex Geometry (or Singularity
Theory).

Arnold’s work in pseudo-periodic geometry30 en-
couraged A. Zorich to begin a systematic study of
dynamics on Riemann surfaces defined by levels of
closed 1-forms, which led to a number of remarkable
results: of Kontsevich–Zorich and others [29] related
to ergodic theory on Teichmuller spaces and conformal
field theory, and of Eskin–Okounkov [24] in the Hurwitz
problem of counting ramified covers over elliptic curves.

Arnold seems to be the first who suggested31 to
realize monodromy (say, of Milnor fibers or of flag
varieties) by symplectomorphisms. The idea, picked
by M. Kontsevich and S. Donaldson, was upgraded
to the monodromy action on the Fukaya category
(consisting of all Lagrangian submanifolds in the fibers
and of their Floer complexes). This construction is
now an important ingredient of the Mirror Symmetry
philosophy and gave rise to the remarkable results of
M. Khovanov and P. Seidel about faithfulness of such
hamiltonian representations of braid groups [27].

29See Critical points of smooth functions. Proceedings of

the International Congress of Mathematicians (Vancouver,

B. C., 1974), Vol. 1, pp. 19–39.
30Topological and ergodic properties of closed 1-forms with

incommensurable periods. Func. Anal. Appl. 25 (1991), no.
2, 1–12.
31See Some remarks on symplectic monodromy of Mil-
nor fibrations, The Floer memorial volume, 99–103, Progr.

Math.
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The celebrated Witten’s conjecture proved by M.
Kontsevich in 1991 characterizes intersection theory on
Deligne–Mumford moduli spaces of Riemann surfaces
in terms of KdV-hierarchy of integrable systems. A
refreshingly new proof of this result was recently given
by Okounkov–Pandharipande. A key ingredient in their
argument is an elementary construction of Arnold from
his work on enumerative geometry of trigonometric
polynomials.32

Among many concepts owing Arnold their existence,
let me mention two, of general mathematical stature,
which do not carry his name.

One is the Maslov index, which proved to be
important in geometry, calculus of variations, num-
bers theory, representation theory, quantization, index
theory of differential operators, and whose topological
origin was explained by Arnold.33

The other one is the geometric notion of inte-
grability in Hamiltonian systems. There is a lot
of controversy on which of the known integrability
mechanisms is most fundamental, but there is a con-
sensus that integrability means a complete set of
Poisson-commuting first integrals. This definition and
“Liouville’s Theorem” on geometric consequences of the
integrability property (namely, foliation of the phase
space by Lagrangian tori) are in fact Arnold’s original
inventions.

Similarly to the case with integrable systems, there
are other examples of important developments which
have become so common knowledge that Arnold’s
seminal role eventually becomes invisible. Let me round
up these comments with a peculiar example of this sort.

The joint 1962 paper of Arnold and Sinai34 proves
structural stability of hyperbolic linear diffeomorphisms
of the 2-torus. Their idea, picked up by Anosov, was
extended to his famous general stability theory of
Anosov systems [2]. Yet, according to Arnold, the paper
is rarely quoted, for the proof contained a mistake
(somewhat along the line that the number of derivatives
assumed by one of the authors mismatched the order of
smoothness furnished by the other). By the way, Arnold
cites this episode as the reason for why he refrains from
writing joint research papers.

To reiterate what I said at the beginning, Vladimir
Arnold has made outstanding contributions to many ar-
eas of pure mathematics and its applications, including
those I described above and those I missed: classical
and celestial mechanics, cosmology and hydrodynamics,
dynamical systems and bifurcation theory, ordinary and
partial differential equations, algebraic and geometric

32Topological classification of complex trigonometric poly-

nomials and the combinatorics of graphs with an identical

number of vertices and edges. Func. Anal. Appl. 30 (1996),
no. 1, 1–17.
33In his paper On a characteristic class entering into
conditions of quantization, Func. Anal. i Appl. 1 1967 1–14.
34Arnold, V. I., Sinai, Ja. G. On small perturbations of
the automorphisms of a torus. Dokl. Akad. Nauk SSSR 144

(1962), 695–698.

Ya. Sinai and V. Arnold, photo by J. Moser, 1963

topology, number theory and combinatorics, real and
complex algebraic geometry, symplectic and contact
geometry and topology, and perhaps some others. I
can think of few mathematicians whose work and
personality would influence the scientific community
at a comparable scale. And beyond this community,
Arnold is a highly visible (and possibly controversial)
figure, the subject of several interviews, of a recent
documentary movie, and even of the night sky show,
where one can watch an asteroid, Vladarnolda, named
after him.

I am sure there are other mathematicians who also
deserve [the name of the prize], but awarding it to
Vladimir Arnold will hardly be perceived by anyone as
a mistake.

4. Remembering Vladimir Arnold: Early Years,
by Yakov Sinai

De mortuis veritas35

My grandparents and Arnold’s grandparents were
very close friends since the beginning of the 20th cen-
tury. Both families lived in Odessa, which was a big
city in the southern part of Russia and now is a part
of the Ukraine. At that time, Odessa was a center of
Jewish intellectual life, which produced many scientists,
musicians, writers, and other significant figures.

My maternal grandfather, V.F. Kagan was a well-
known geometer who worked on the foundations of
geometry. During World War I, he gave the very first
lecture course in Russia on the special relativity theory.
At various times his lectures were attended by the fu-
ture famous physicists L.I. Mandelshtam, I.E. Tamm,
and N.D. Papaleksi. In the 1920s all these people moved
to Moscow.

L.I. Mandelshtam was a brother of Arnold’s mater-
nal grandmother. He was the founder and the leader
of a major school of theoretical physics that includ-
ed A.A. Andronov, G.S. Landsberg, M.A. Leontovich,
among others. A.A. Andronov is known to the math-
ematical community for his famous paper “Robust
Systems,” coauthored with L.S. Pontryagin, which laid
the foundations of the theory of structural stability

35About those who have died, only the truth. (Latin)
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of dynamical systems. A.A. Andronov was the leader
of a group of physicists and mathematicians work-
ing in Nizhny Novgorod, former Gorky, on non-linear
oscillations. M.A. Leontovich was one of the leading
physicists in the Soviet Union. In the 1930s he coau-
thored with A.N. Kolmogorov the well-known paper
on the Wiener sausage. I.E. Tamm was a Nobel Prize
winner in physics in the fifties. N.D. Papaleksi was a
great expert on non-linear optics.

V.I. Arnold was born in Odessa, where his mother
came for a brief visit with her family. She returned to
Moscow soon after her son’s birth. When Arnold was
growing up, the news that his family had a young prodi-
gy soon became widely known. In those days, when we
were both in high school, we did not really know each
other. On one occasion, Arnold visited my grandfather
to borrow a mathematics book, but I was not there
at the time. We met for the first time when we were
both students at the Mathematics Department of the
Moscow State University — he was walking by with
Professor A.G. Vitushkin who ran a freshman seminar
on real analysis, and Arnold was one of the most active
participants. When Arnold was a third year undergrad-
uate student, he was inspired by A.N. Kolmogorov to
work on superposition of functions of several variables
and the related Hilbert’s thirteenth problem. Eventu-
ally this work became Arnold’s Ph.D. thesis. When I
visited the University of Cambridge recently, I was very
pleased to learn that one of the main lecture cours-
es there was dedicated to Arnold’s and Kolmogorov’s
work on Hilbert’s thirteenth problem.

Arnold had two younger siblings, a brother Dmitry
and a sister Katya, who was the youngest. The family
lived in a small apartment in the center of Moscow.
During one of my visits, I was shown a tent in the
backyard of the building where Arnold used to spend
his nights, even in cold weather. It seems likely that
Arnold’s excellent knowledge of history and geography
of Moscow, which many of his friends remember with
admiration, originated at that time.

Like myself, Arnold loved nature and the outdoors.
We did hiking and mountain climbing together. Since
I knew Arnold so closely, I often observed that his
ideas both in science and in life came to him as reve-
lations. I remember one particular occasion, when we
did climbing in the Caucasus Mountains and spent a
night with some shepherds in their tent. In the morning
we discovered that the shepherds were gone and left
us alone with their dogs. Caucasian dogs are very big,
strong, and dangerous, for they are bred and trained to
fight wolves. We were surrounded by fiercely barking
dogs, and we did not know what to do. Then, all of a
sudden, Arnold had an idea. He started shouting very
loudly at the dogs, using all the obscenities he could
think of. I never heard him use such language either
before or after this incident, nor did anybody else. It
was a brilliant idea, for it worked! The dogs did not
touch Arnold and barely touched me. The shepherds
returned shortly afterwards, and we were rescued.

A hiking expedition, 1960s

On another occasion, roughly at the same time, as
Anosov, Arnold, and I walked from the main Moscow
University building to a subway station, which usually
took about fifteen minutes, Arnold told us that he re-
cently came up with the Galois Theory entirely on his
own and explained his approach to us. The next day,
Arnold told us that he found a similar approach in the
book by Felix Klein on the mathematics of the 19th
century. Arnold was always very fond of this book, and
he often recommended it to his students.

Other examples of Arnold’s revelations include his
discovery of Arnold-Maslov cocycle in the theory of
semi-classical approximations and Arnold inequalities
for the number of ovals in real algebraic curves. Many
other people who knew Arnold personally could provide
more examples of this kind.

Arnold became a graduate student at the Moscow
State University in 1959. Naturally it was A.N. Kol-
mogorov who became his advisor. In 1957, Kolmogorov
gave his famous lecture course on dynamical systems,
which played a pivotal role in the subsequent develop-
ment of the theory. The course was given three years
after Kolmogorov’s famous talk at the Amsterdam
Congress of Mathematics.

Kolmogorov began his lectures with the exposition
of the von Neumann theory of dynamical systems with
discrete spectrum. Everything was done in a pure proba-
bilistic way. Later Kolmogorov found a similar approach
in the book by Fortet and Blank–Lapierre on random
processes, intended for engineers.

This part of Kolmogorov’s lectures had a profound
effect on researchers working on the measure-theoretic
isomorphism in dynamical systems, a long-standing
problem that goes back to von Neumann. It was shown
that when the spectrum is discrete, it is the only iso-
morphism invariant of a dynamical system and that
two systems with the same discrete spectrum are iso-
morphic. The excitement around these results was so
profound that people began to believe that the iso-
morphism theory of systems with continuous spectrum
would be just a straightforward generalization of the
theory of systems with discrete spectrum. However, this
was refuted by Kolmogorov himself. He proposed the
notion of entropy as a new isomorphism invariant for
systems with continuous spectrum. Since the entropy
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is zero for systems with discrete spectrum, it does not
distinguish between such systems, but systems with
continuous spectrum might have positive entropy that
must be preserved by isomorphisms. This was a path-
breaking discovery, which had a tremendous impact on
the subsequent development of the theory.

The second part of Kolmogorov’s lectures was cen-
tered around his papers on the preservation of invariant
tori in small perturbations of integrable Hamiltonian
systems, which were published in the Doklady of the
Soviet Academy of Sciences. Unfortunately there were
no written notes of these lectures. V M. Tikhomirov,
one of Kolmogorov’s students, hoped for many years to
locate such notes, but he did not succeed. Arnold used
to claim in his correspondence with many people that
good mathematics students of Moscow Univesity could
reconstruct Kolmogorov’s proof from the text of his pa-
pers in the Doklady. However, this was an exaggeration.
Recently two Italian mathematicians, A. Giorgilli and
L. Chierchia produced a proof of the Kolmogorov’s the-
orem, which was complete and close to Kolmogorov’s
original proof, as they claimed.

Apparently Kolmogorov himself never wrote a de-
tailed proof of his result. There might be several ex-
planations. At some point, he had plans to work on
applications of his technique to the famous three-body
problem. He gave a talk on this topic at a meeting of
the Moscow Mathematical Society. However, he did not
prepare a written version of his talk. Another reason
could be that Kolmogorov started to work on a dif-
ferent topic and did not want to be distracted. There
might be a third reason, although some people would
disagree with it. It is possible that Kolmogorov under-
estimated the significance of his papers. For example,
some graduate exams on classical mechanics included
the proof of Kolmogorov’s theorem, so it was easy to
assume that the proof was already known. The theory
of entropy, introduced by Kolmogorov roughly at the
same time, seemed a hotter and more exciting area. He
might have felt compelled to turn his mind to this new
topic.

Arnold immediately started to work on all the
problems raised in Kolmogorov’s lectures. In 1963
the Moscow Mathematical Society celebrated Kol-
mogorov’s 60th anniversary. The main meeting took

place in the Ceremony Hall of the Moscow State
University, with about one thousand people attending.
The opening lecture was given by Arnold on what
was later called KAM theory, where KAM stands
for Kolmogorov, Arnold, Moser. For that occasion,
Arnold prepared the first complete exposition of the
Kolmogorov theorem. I asked Arnold why he did
that, since Kolmogorov presented his proof in his
lectures. Arnold replied that the proof of the fact that
invariant tori constitute a set of positive measure was
not complete. When Arnold asked Kolmogorov about
some details of his proof, Kolmogorov replied that he
was too busy at that time with other problems and
that Arnold should provide the details by himself.
This was exactly what Arnold did. I believe that when
Kolmogorov prepared his papers for publication in the
Doklady, he did have complete proofs, but later he
might have forgotten some details. Perhaps it can be
expressed better by saying that it required from him
an effort that he was not prepared to make at that
time.

In the following years, Kolmogorov ran a seminar
on dynamical systems with the participation of many
mathematicians and physicists. At some point, two
leading physicists, L.A. Arzimovich and M.A. Leon-
tovich gave a talk at the seminar on the existence
of magnetic surfaces. Subsequently this problem was
completely solved by Arnold, who submitted his pa-
per to the main physics journal in the Soviet Union,
called JETP. After some time, the paper was rejected.
According to Arnold, the referee report said that the
referee did not understand anything in that paper and
hence nobody else would understand it. M.A. Leon-
tovich helped Arnold to rewrite his paper in the form
accessible to physicists, and it was published eventually.
According to Arnold, this turned out to be one of his
most quoted papers.

Arnold’s first paper related to the KAM theory was
about smooth diffeomorphisms of the circle that were
close to rotations. Using the methods of the KAM theo-
ry, Arnold proved that such diffeomorphisms can be re-
duced to rotations by applying smooth changes of vari-
ables. The problem in the general case was called the
Arnold problem. It was completely solved by M. Her-
man and J.-C. Yoccoz.

A.N. Kolmogorov proved his theorem in the KAM
theory for the so-called nondegenerate perturbations
of integrable Hamiltonian systems. Arnold extended
this theorem to degenerate perturbations, which arise
in many applications of the KAM theory.

Arnold proposed an example of the Hamiltonian sys-
tem, which exhibits a new kind of instability and which
was later called the Arnold diffusion. The Arnold diffu-
sion appears in many physical problems. New mathe-
matical results on the Arnold diffusion were recently
proved by J. Mather. V. Kaloshin found many appli-
cations of the Arnold diffusion to problems of celestial
mechanics.

In later years, Arnold returned to the theory of
dynamical system only occasionally. One can mention
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his results in fluid mechanics (see his joint book with
B. Khesin [16]) and a series of papers on singularities
in the distribution of masses in the universe, motivated
by Y.B. Zeldovich. But all this was done in later years.

5. Vladimir I. Arnold, by Steve Smale
My first meeting with V.I. Arnold took place in Moscow
in September 1961 (certainly I had been very aware of
him through Moser). After a conference in Kiev where
I had gotten to know Anosov, I visited Moscow where
Anosov introduced me to Arnold, Novikov and Sinai.
As I wrote later [35] I was extraordinarily impressed by
such a powerful group of four young mathematicians
and that there was nothing like that in the West. At
my next visit to Moscow for the world mathematics
congress in 1966, [36] I again saw much of Dima Arnold.
At that meeting he introduced me to Kolmogorov.

Perhaps the last time I met Dima was in June 2003
at the 100 year memorial conference for Kolmogorov,
again in Moscow. In the intervening years we saw each
other on a number of occasions in Moscow, the West
and even in Asia.

Arnold was visiting Hong Kong at the invitation of
Volodya Vladimirov for the duration of the fall semester
of 1995, while we had just moved to Hong Kong. Dima
and I often were together on the fantastic day hikes
of Hong Kong countryside parks. His physical stamina
was quite impressive. At that time we two were also the
focus of a well attended panel on contemporary issues
of mathematics at the Hong Kong University of Science
and Technology. Dima expressed himself in his usual
provocative way! I recall that we found ourselves on the
same side in most of the controversies, and catastrophe
theory in particular.

Dima Arnold was a great mathematician and here I
will just touch on his mathematical contributions that
affected me the most.

While I never worked directly in the area of KAM
nevertheless those results had a great impact in my sci-
entific work. For one thing they directed me away from
trying to analyze the global orbit structures of Hamil-
tonian ordinary differential equations, in contrast to
what I was doing for (unconstrained) equations. Thus
KAM contributed to my motivation to study mechanics
in 1970 from the point of view of topology, symmetry,
and relative equilibria rather than its dynamical prop-
erties. The work of Arnold had already affected those
subjects via his big paper on fluid mechanics and sym-
metry in 1966. See Jerry Marsdens account of how our
two works are related [32]. I note that Jerry died even
more recently than Dima.

KAM shattered the chain of hypotheses, ergodic,
quasi-ergodic, and metric transitivity going from Boltz-
mann to Birkhoff. That suggested to me some kind
of non-Hamiltonian substitute in these hypotheses in
order to obtain foundations for thermodynamics [37].

I read Arnolds paper on braids and the cohomolgy
of swallowtails. It was helpful in my work on topolo-
gy and algorithms which Victor Vassiliev drastically
sharpened.

Dima could express important ideas simply and in
such a way that these ideas could transcend a single
discipline. His work was instrumental in transforming
Kolmogorovs early sketches into a revolutionary recast-
ing of Hamiltonian Dynamics with sets of invariant
curves, tori of positive measure, and Arnold diffusion.

It was my good fortune to have been a part of Dima
Arnolds life and his mathematics.

6. Some recollections of Vladimir Igorevich, by
Mikhail Sevryuk

A very large part of my life is connected with Vladimir
Igorevich Arnold. I became his student in the beginning
of 1980, when I was still a freshman at the Department
of Mechanics and Mathematics of Moscow State Uni-
versity. Under his supervision, I wrote my term papers,
Masters thesis and Doctoral thesis. At the end of my
first year in graduate school, Arnold suggested that I
wrote a monograph on reversible dynamical systems
for Springer’s “Lecture Notes in Mathematics”, and
working on this book was one of the cornerstones of
my mathematical biography. For the last time, I met
Vladimir Igorevich (V.I., for short) on November 3,
2009, at his seminar at Moscow State.

If I had to name one characteristic feature of Arnold
as I remember him, I would choose his agility. He
walked fast at walkways of Moscow State (faster than
most of the students, not to mention the faculty), his
speech was fast and clear, his reaction to one’s remark
in a conversation was almost always instantaneous, and
often utterly unexpected. His fantastic scientific pro-
ductivity is well known, and so is his enthusiasm for
sports.
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V.I. always devoted surprisingly much time and ef-
fort to his students. From time to time, he had rather
weak students, but I do not recall a single case when he
rejected even a struggling student. In the 1980s, almost
every meeting of his famous seminar at Moscow State
he started with “harvesting”: collecting notes of his
students with sketches of their recent mathematical
achievements or drafts of their papers (and Arnold
returned the previously collected ones with his correc-
tions and suggestions). After a seminar or a lecture, he
often continued talking with participants for another
2–3 hours. Arnold’s generosity was abundant. Many
times, he gave long written mathematical consultations,
even to people unknown to him, or wrote paper reports
substantially exceeding the submitted papers. In the
recent years, he used all his energy to stop a rapid dete-
rioration of mathematical (and not only mathematical)
education in Russia.

I tried to describe my experience of being V.I.’s
student at Moscow State in [34]. I would like to em-
phasize here that Arnold did not follow any pattern
in supervising his students. In some cases he would
inform a student that there was a certain “uninhabit-
ed” corner in the vast mathematical land, and if the
student decided to “settle” at that corner, then it was
this student’s task to find the main literature on the
subject, to study it, to pose new problems, to find
methods of their solution, and to achieve all this practi-
cally singlehandedly. Of course, V.I. kept the progress
under control. (I recall that, as a senior, I failed to
submit my “harvest” for a long time, but finally made
a substantial progress. Arnold exclaimed: “Thank God,
I have started fearing that I would have to help you!”)
But in other situations, Arnold would actively discuss a
problem with his student and invite him to collaborate
– this is how our joint paper [13] came about. When
need be, V.I. could be rather harsh. Once I witnessed
him telling a student: “You are working too slowly. I

think, it will be good if you start giving me weekly
reports on your progress.” Arnold never tried to spare
one’s self-esteem.

V.I. had a surprising feeling of the unity of mathe-
matics, of natural sciences, and of all the nature. He
considered mathematics as being part of physics, and
his “economics” definition of mathematics as a part
of physics in which experiments are cheap, is often
quoted. (Let me add, in parentheses, that I would pre-
fer to characterize mathematics as the natural science
that studies the phenomenon of infinity – by analo-
gy with a little known but remarkable definition of
topology as the science that studies the phenomenon
of continuity.) However, Arnold noted other specific
features of mathematics: “It is a fair observation that
physicists refer to the first author, whereas mathemati-
cians – to the latest one.” (He considered adequate
references to be of paramount importance and paid
much attention to other priority questions; this was
a natural extension of his generosity, and he encour-
aged his students to “over-acknowledge,” rather than
to “under-acknowledge”.)

V.I. was an avid fighter against “Bourbakism”, a
suicidal tendency to present mathematics as a formal
derivation of consequences from unmotivated axioms.
According to Arnold, one needs mathematics to dis-
cover new laws of nature, as opposed to “rigorously”
justify obvious things. V.I. tried to teach his students
this perception of mathematics and natural sciences as
a unified tool for understanding the world. For a num-
ber of reasons, after having graduated from University,
I had to work partially as a chemist; and after Arnold’s
school, this caused me no psychological discomfort.

Fundamental mathematical achievements of Arnold,
as well as those of his teacher, A.N. Kolmogorov, cov-
er almost all mathematics. It well may be that V.I.
was the last universal mathematician. My mathemat-
ical specialization is the KAM theory. V.I. himself
described the contributions of the three founders, see,
e.g., [15, 17]. For this reason, I shall only briefly recall
Arnold’s role in the development of the KAM theory.

KAM theory is the theory of quasiperiodic motions
in nonintegrable dynamical systems. In 1954, Kol-
mogorov made one of the most astonishing discoveries
in mathematics of the last century. Consider a com-
pletely integrable Hamiltonian system with n degrees
of freedom, let (I, ϕ) be the corresponding action-angle
variables. The phase space of such a system is smoothly
foliated into invariant n-tori {I = const} carrying
conditionally periodic motions ϕ̇ = ω(I). Kolmogorov
showed that if det(∂ω/∂I) 6= 0 then (in spite of the
general opinion of the physical community of that
time) most of these tori (in the Lebesgue sense) are
not destroyed by a small Hamiltonian perturbation
but only slightly deformed in the phase space. To be
more precise, a torus {I = I0} persists under a per-
turbation whenever the frequencies ω1(I0), . . . , ωn(I0)
are Diophantine (strongly incommensurable). The
perturbed tori (later called Kolmogorov tori) carry
quasiperiodic motions with the same frequencies. To
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prove this fundamental theorem, Kolmogorov proposed
a new powerful method of constructing an infinite
sequence of canonical coordinate transformations with
accelerated (“quadratic”) convergence.

Arnold used Kolmogorov’s techniques to prove ana-
lyticity of the Denjoy homeomorphism conjugating an
analytic diffeomorphism of a circle with a rotation (un-
der the condition that this diffeomorphism is close to a
rotation and possesses a Diophantine rotation number).
His paper [4] with this result contained also the first
detailed exposition of Kolmogorov’s method. Then, in
a series of papers, Arnold generalized Kolmogorov’s
theorem to various systems with degeneracies. In fact,
he considered two types of degeneracies often encoun-
tered in mechanics and physics: the proper degeneracy
where some frequencies of the perturbed tori tend to
zero as the perturbation magnitude vanishes, and the
limit degeneracy where the unperturbed foliation into
invariant tori is singular and includes tori of smaller
dimensions. The latter degeneracy is modeled by a
one-degree-of-freedom Hamiltonian system having an
equilibrium point surrounded by invariant circles (the
energy levels). These studies culminated in Arnold’s
famous (and technically extremely hard) result [5] on
stability in planetary-like systems of celestial mechanics
where both the degeneracies combine.

Kolmogorov and Arnold dealt only with analytic
Hamiltonian systems. On the other hand, J.K. Moser
examined the finitely smooth case. The acronym
“KAM” was coined by physicists F.M. Izrailev and
B.V. Chirikov in 1968.

As his main achievement in the Hamiltonian per-
turbation theory, Arnold has always regarded his dis-
covery of the universal mechanism of instability of the
action variables in nearly integrable Hamiltonian sys-
tems with more than two degrees of freedom [6]. He
also constructed an explicit example where such insta-

bility occurs. Chaotic evolution of the actions along
resonances between the Kolmogorov tori was called
“Arnold’s diffusion” by Chirikov in 1969. In the case
of two degrees of freedom, the Kolmogorov 2-tori di-
vide a three-dimensional energy level which makes an
evolution of the action variables impossible.

All these works by Arnold pertained to 1958–1965.
At the beginning of the eighties, he returned to the
problem of quasiperiodic motions for a short time and
examined some interesting properties of the analogs
of Kolmogorov tori in reversible systems. That was
just the time when I started my diploma work. So V.I.
forced me to grow fond of reversible systems and KAM
theory—for which I’ll be grateful to him forever.

I would like to touch on yet one more side of
Arnold’s research. In spite of what is occasionally
claimed, Arnold did not hate computers: he considered
them as an absolutely necessary instrument of mathe-
matical modeling when indeed large computations were
involved. He initiated many computer experiment in
dynamical systems and number theory and sometimes
participated in them (see [17]). But of course he
strongly disapproved the aggressive penetration of
computer technologies into all pores of the society
and the tendency of a man to become a helpless and
mindless attachment to artificial intellect devices. One
should be able to divide 111 by 3 without a calculator
(and, better still, without scrap paper).

V.I. had a fine sense of humor. It is impossible to
forget his somewhat mischievous smile. In conclusion,
here are a couple of stories which might help to perceive
the unique charm of this person.

I remember how a speaker at Arnold’s seminar kept
repeating the words “one can lift” (a structure from
the base to the total space of a bundle). Arnold reacted:
“Looks like your talk is about results in weight-lifting”.

At another occasion, Arnold is lecturing, and the
proof of a theorem involves tedious computations: “Ev-
eryone must make these computations once – but only
once. I made them in the past, so I won’t repeat them
now, they are left to the audience!”

In the fall of 1987 the Gorbachev perestroika was
gaining steam. A speaker at the seminar was drawing a
series of pictures depicting the perestroika (surgery) of
a certain geometrical object as depending on a param-
eter. Arnold: “Something is not quite right here. Why
is your central stratum always the same? Perestroika
always starts at the center and then propagates to the
periphery.”

7. Arnold’s Seminar, First Years, by Askold
Khovanskii and Alexander Varchenko

In 1965-66, V.I. Arnold was a postdoc in Paris, lec-
turing on hydrodynamics and attending R. Thom’s
seminar on singularities. After returning to Moscow,
Vladimir Igorevich started his seminar, meeting on
Tuesdays from 4 to 6 P.M. It continued until his death
on June 3 of 2010. We became Arnold’s students
in 1966 and 1968, respectively. The seminar was an
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V. Arnold, Yu. Chekanov, V. Zakalyukin,
A. Khovanskii at Arnold Fest, Toronto 1997

essential part of our life. Among the first participants
were R. Bogdanov, N. Brushlinskaya, I. Dolgachev,
D. Fuchs, A. Gabrielov, S. Gusein-Zade, A. Kush-
nirenko, A. Leontovich, O. Lyashko, N. Nekhoroshev,
V. Palamodov, A. Tyurin, G. Tyurina, V. Zakalyukin,
and S. Zdravkovska.

V.I. Arnold had numerous interesting ideas, and to
realize his plans he needed enthusiastic colleagues and
collaborators. Every semester he started the seminar
with a new list of problems and comments. Everyone
wanted to be involved in this lively creative process.
Many problems were solved, new theories were devel-
oped, and new mathematicians were emerging.

Here we will briefly describe some of the topics of
the seminar in its first years, as well as the ski outings
which were an integral part of the seminar.

Hilbert’s 13th problem and arrangements of
hyperplanes. An algebraic function x = x(a1, . . . , ak)
is a multivalued function defined by an equation of the
form

xn + P1(a1, . . . , ak)xn−1 + · · ·+ Pn(a1, . . . , ak) = 0

where Pi’s are rational functions.
Hilbert’s 13th Problem: Show that the function

x(a, b, c), defined by the equation

x7 + x3 + ax2 + bx+ c = 0,

can not be represented by superpositions of continuous
functions in two variables.

A.N. Kolmogorov and V.I. Arnol’d proved that in
fact such a representation does exist [3], thus solving
the problem negatively. Despite this result it is still
believed that the representation is impossible if one
considers the superpositions of (branches of) algebraic
functions only.

Can an algebraic function be represented as a com-
position of radicals and arithmetic operations? Such
a representation does exist if and only if the Galois
group of the equation over the field of its coefficients
is solvable. Hence, the general algebraic function of
degree k ≥ 5, defined by the equation a0x

k + a1x
k−1 +

· · ·+ ak = 0, can not be represented by radicals.

In 1963 while teaching gifted high school students
at the Moscow boarding school No. 18, founded by Kol-
mogorov, V.I. Arnold discovered a topological proof
of the insolvability by radicals of the general algebraic
equation of degree ≥ 5, a proof which does not rely
on Galois theory. Arnold’s lectures at the school were
written down and published by V.B. Alekseev in [1].

V.I. Arnold often stressed that, when establishing
the insolvability of a mathematical problem, topolog-
ical methods are the most powerful, and those best
suited to the task. Using such topological methods,
V.I. Arnold proved the insolvability of a number of
classical problems, see [18, 14]. Inspired by that ap-
proach, a topological Galois theory was developed later,
see [28]. The topological Galois theory studies topo-
logical obstructions to the solvability of equations in
finite terms. For example, it describes obstructions to
the solvability of differential equations by quadratures.

The classical formula for the solution by radicals
of the degree four equation does not define the roots
of the equation only. It defines a 72-valued algebraic
function. V.I. Arnold introduced the notion of an exact
representation of an algebraic function by superposi-
tions of algebraic functions, in which all branches of
algebraic functions are taken into account. He proved
that the algebraic function of degree k = 2n, defined by
the equation xk + a1x

k−1 + · · ·+ ak = 0, does not have
an exact representation by superpositions of algebraic
functions in < k − 1 variables, see [8] and references
therein. The proof is again topological and based on
the characteristic classes of algebraic functions, intro-
duced for that purpose. The characteristic classes are
elements of the cohomology ring of the complement
to the discriminant of an algebraic function. To prove
that theorem V.I. Arnold calculated the cohomology
ring of the pure braid group.

Consider the complement in Ck to the union of the
diagonal hyperplanes,

U = { y ∈ Ck | yi 6= yj for all i 6= j}.

The cohomology ring H∗(U,Z) is the cohomology ring
of the pure braid group on k strings. The cohomology
ring H∗(U,Z) was described in [7]. Consider the ring
A of differential forms on U generated by the 1-forms
wij = 1

2πi
d log(yi − yj), 1 ≤ i, j ≤ k, i 6= j. Then the

relations wij = wji and

wij ∧ wjk + wjk ∧ wki + wki ∧ wij = 0

are the defining relations of A. Moreover, the map
A → H∗(U,Z), α 7→ [α], is an isomorphism.

This statement says that each cohomology class in
H∗(U,Z) can be represented as an exterior polynomial
in wij with integer coefficients and the class is zero
if and only if the polynomial is zero. As an applica-
tion, V.I. Arnold calculated the Poincaré polynomial
PD(t) =

∑k
i=0 rankHi(D) ti,

P∆(t) = (1 + t)(1 + 2t) . . . (1 + (n− 1)t).
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Harnack’s, Hilbert’s and Gudkov’s M-curves

Arnold’s paper [7] was the beginning of the modern
theory of arrangements of hyperplanes, see for example,
the book by P. Orlik and H. Terao.

Real algebraic geometry. By Harnack’s theorem,
a real algebraic curve of degree n in the real projec-
tive plane can consist of at most g + 1 ovals, where
g = (n − 1)(n − 2)/2 is the genus of the curve. The
M-curves are the curves for which this maximum is
attained. For example, an M-curve of degree 6 has 11
ovals. Harnack proved that the M-curves exist.

If the curve is of even degree n = 2k, then each
of its ovals has an interior (a disc) and an exterior (a
Mobius strip). An oval is said to be positive if it lies
inside an even number of other ovals, and is said to be
negative if it lies inside an odd number of other ovals.
The ordinary circle, x2 + y2 = 1, is an example of a
positive oval.

In his 16th problem, Hilbert asked how to describe
the relative positions of the ovals in the plane. In partic-
ular, Hilbert conjectured that 11 ovals on an M-curve
of degree 6 cannot lie external to one another. This
fact was proved by Petrovsky in 1938, [33].

The first M-curve of degree 6 was constructed by
Harnack, the second by Hilbert. It was believed for a
long time that there are no other M-curves of degree
6. Only in the 1960s did Gudkov construct a third
example and prove that there are only three types of
M-curves of degree 6, see [26].

Experimental data led Gudkov to the following con-
jecture: if p and m are the numbers of positive and
negative ovals of an M-curve of degree 2k, then p−m =
k2 mod 8.

V.I. Arnold was a member of Gudkov’s Doctor of
Science thesis defence committee and became interest-
ed in these problems. V.I. Arnold related Gudkov’s
conjecture and theorems of divisibility by 16 in the
topology of oriented closed four-dimensional manifolds
developed by V. Rokhlin and others. Starting with an
M-curve, V.I. Arnold constructed a four-dimensional
manifold with an involution, and using the divisibility
theorems proved that p−m = k2 mod 4, see [9]. Soon
after that, V.A. Rokhlin, using Arnold’s construction,
proved Gudkov’s conjecture in full generality.

This paper by V.I. Arnold began a revitalization of
real algebraic geometry.

Petrovsky–Oleinik inequalities. Petrovsky’s pa-
per [33] lead to discovery of remarkable estimates for
the Euler characteristics of real algebraic sets, called
Petrovsky-Oleinik inequalities. V.I. Arnold found in

[10] unexpected generalizations of these inequalities
and new proofs of the inequalities based on singularity
theory.

Consider in Rn+1 the differential one-form α =
P0dx0 + P1dx1 + · · ·+ Pndxn, whose components are
homogeneous polynomials of degree m. What are pos-
sible values of the index ind of the form α at the point
0 ∈ Rn+1?

Let us introduce Petrovsky’s number Π(n,m) as
the number of integral points in the intersection of
the cube 0 ≤ x0, . . . , xn ≤ m− 1 and the hyperplane
x0 + · · ·+ xn = (n+ 1)(m− 1)/2.

V.I. Arnold proved in [10], that

|ind| ≤ Π(n,m) and ind ≡ Π(n,m) mod 2.

His elegant proof of these relations is based on the
Levin-Eisenbud-Khimshiashvili formula for the index
of a singular point of a vector field.

Let P be a homogeneous polynomial of degree m+1
in homogeneous coordinates on RPn. Petrovsky-Oleinik
inequalities give upper bounds for the following quan-
tities

a) |χ(P = 0) − 1| for odd n, where χ(P = 0) is
the Euler characteristic of the hypersurface
P = 0 in RPn, and

b) |2χ(P ≤ 0)− 1| for even n and m+ 1, where
χ(P ≤ 0) is the Euler characteristic of the
subset P ≤ 0 in RPn.

V.I. Arnold noticed in [10], that in both cases, a)
and b), the estimated quantity equals the absolute val-
ue of the index at 0 ∈ Rn+1 of the gradient of P . Thus,
the Petrovsky-Oleinik inequalities are particular cases
of Arnold’s inequalities for α = dP .

Furthermore, Arnold’s inequalities are exact (un-
like the Petrovsky-Oleinik ones): for any integral val-
ue of ind with the properties |ind| ≤ Π(n,m) and
ind ≡ Π(n,m) mod 2 there exists a homogeneous 1-
form α (not necessarily exact) with this index (proved
by Khovasnkii).

Critical points of functions. Critical points of
functions was one of the main topics of the seminar in
its first years. V.I. Arnold classified simple singularities
of critical points in 1972, unimodal ones in 1973, and
bimodal ones in 1975. Simple critical points form series
An, Dn, E6, E7, E8 in Arnold’s classification. Already
in his first papers V.I. Arnold indicated (sometimes
without proofs) the connections of simple critical points
with simple Lie algebras of the corresponding series.
For example, the Dynkin diagram of the intersection
form on vanishing cohomology at a simple singularity
of an odd number of variables equals the Dynkin dia-
gram of the corresponding Lie algebra, the monodromy
group of the simple singularity equals the Weyl group
of the Lie algebra, and the singularity index of the
simple singularity equals 1/N , where N is the Coxeter
number of the Lie algebra.

One of the main problems of that time was to study
characteristics of critical points. The methods were
developed to calculate the intersection form on vanish-
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ing cohomology at a critical point (Gabrielov, Gusein-
Zade), monodromy groups (Gabrielov, Gusein-Zade,
Varchenko, Chmutov), and asymptotics of oscillato-
ry integrals (Varchenko). The mixed Hodge structure
on vanishing cohomology was introduced (Steenbrink,
Varchenko) and the Hodge numbers of the mixed Hodge
structure were calculated in terms of Newton poly-
gons (Danilov, Khovanskii), see [12, 22] and references
therein.

The emergence of extensive new experimental da-
ta led to new discoveries. For example, according to
Arnold’s classification, the unimodal singularities form
one infinite series Tp,q,r and 14 exceptional families.
Dolgachev discovered that the 14 exceptional unimodal
singularities can be obtained from automorphic forms
associated with the discrete groups of isometries of the
Lobachevsky plane generated by reflections at the sides
of some 14 triangles [23]. For the angles π/p, π/q, π/r of
such a triangle, the numbers p, q, r are integers, called
Dolgachev’s triple. According to Gabrielov [25], the
intersection form on vanishing cohomology at an ex-
ceptional unimodal singularity is described by another
triple of integers, called Gabrielov’s triple. V.I. Arnold
noticed that Gabrielov’s triple of an exceptional uni-
modal singularity equals Dolgachev’s triple of (in gen-
eral) another exceptional unimodal singularity, while
Gabrielov’s triple of that other singularity equals Dol-
gachev’s triple of the initial singularity. Thus, there is
an involution on the set of 14 exceptional unimodal sin-
gularities, called Arnold’s strange duality. Much later,
after discovery of the mirror symmetry phenomenon,
it was realized that Arnold’s strange duality is one of
its first examples.

Newton polygons. While classifying critical point
of functions, Arnold noticed that for all critical points
of his classification the Milnor number of the critical
point can be expressed in terms of the Newton polygon
of the Taylor series of that critical point. Moreover,
an essential part of Arnold’s classification was based
on the choice of the coordinate system simplifying the
Newton polygon of the corresponding Taylor series.
(According to Arnold, he used “Newton’s method of a
moving ruler (line, plane)”.) V.I. Arnold formulated a
general principle: in the family of all critical points with
the same Newton polygon, discrete characteristics of a
typical critical point (the Milnor number, singularity
index, Hodge numbers of vanishing cohomology, and so
on) can be described in terms of the Newton polygon.

That statement was the beginning of the theory of
Newton polygons. Newton polygons were one of the
permanent topics of the seminar. The first result, the
formula for the Milnor number in terms of the Newton
polygon, was obtained by Kouchnirenko in [30]. After
Kouchnirenko’s report at Arnold’s seminar, Lyashko
formulated a conjecture that a similar statement must
hold in the global situation: the number of solutions
of a generic system of polynomial equations in n vari-
ables with a given Newton polygon must be equal to the
volume of the Newton polygon multiplied by n!. Kouch-

Summer expedition, 1960s

nirenko himself proved this conjecture. David Bernstein
[21] generalized the statement of Kouchnirenko’s theo-
rem to the case of polynomial equations with different
Newton polygons and found a simple proof of his gen-
eralization. Khovanskii discovered the connection of
Newton polygons with the theory of toric varieties
and using this connection calculated numerous char-
acteristics of local and global complete intersections
in terms of Newton polygons, see [11] and references
therein. Varchenko calculated the zeta-function of the
monodromy and asymptotics of oscillatory integrals in
terms of Newton polygons, see [12].

Nowadays Newton polygons are a working tool in
many fields. Newton polygons appear in real and com-
plex analysis, representation theory, real algebraic ge-
ometry, and the Newton polygons provide examples of
mirror symmetry and so on.

Skiing and swimming. Every year at the end of
the winter Arnold’s seminar went to ski at the outskirts
of Moscow. This tradition started in 1973. While the
number of seminar participants was between 20 and
30 people, no more than 10 of the bravest participants
came out to ski. People prepared for this event the
whole winter. The meeting was at 8 A.M. at the rail-
way station in Kuntsevo, the western part of Moscow,
and skiing went on until after sunset, around 6 P.M.
The daily distance was about 50 km.

Usually Arnold ran in front of the chain of skiers,
dressed only in swimming trunks. He ran at a speed
a bit above the maximal possible speed of the slowest
of the participants. As a result the slowest participant
became exhausted after an hour of such an outing
and was sent back to Moscow on a bus at one of the
crossroads. Then the entire process was repeated again
and another participant was sent back to Moscow after
another hour. Those who were able to finish the skiing
were very proud of themselves.

Only one time was the skiing pattern different. In
that year we were joined by Dmitri Borisovich Fuchs,
a tall unflappable man, who was at one time a serious
mountain hiker. Early in the morning when Arnold
started running away from the station with us, Dmitri
Borisovich unhurriedly began to walk in the same di-
rection. Soon he completely disappeared from our view,
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and Arnold stopped and began waiting impatiently for
Fuchs to arrive. Arnold again rushed to run and Fuchs,
again unperturbed, unhurriedly followed the group. So
proceeded the entire day. That day none of participants
of the run were sent home in the middle of the day.

Several times we were joined by Olya Kravchenko
and Nadya Shirokova, and every time they kept up the
run, as well as the best.

All participants of the ski walk brought sandwiches
which they ate at a stop in the middle of the day. Before
sandwiches there was bathing. In Moscow suburbs you
will come across small rivers which are not frozen even
in winter. We would meet such a stream and bathe
- lying on the bottom of the streambed as the water
was usually only knee-deep. We certainly did not use
bathing suits, and there were no towels. The tradition
of bathing in any open water at any time of the year
Arnold had adopted from his teacher Kolmogorov. This
tradition was taken up by many participants of the
seminar.

Arnold thought that vigorous occupation with math-
ematics should be accompanied by vigorous physical
exercises. He skied regularly in the winter (about 100
km per week), and in summer rode a bicycle and took
long walks on foot.

There is a funny story connected to the tradition
of bathing in any available open water. In 1983 the
Moscow mathematicians were taken out to the Mathe-
matical Congress in Warsaw. This congress had been
boycotted by Western mathematicians. The numer-
ous Soviet delegation was supposed to compensate
for the small number of Western participants. A spe-
cial Moscow-Warsaw-Moscow train had been arranged
which delivered us to Poland with Arnold. Once walking
across Warsaw in the evening with Arnold, we arrived
at a bridge across the Vistula. While on the bridge we
decided to bathe, as required by tradition. We reached
the water in total darkness and swam for a few minutes.
In the morning we found, to our amazement, that we
were floating more in mud than water.

8. Memories of Vladimir Arnold, by Michael
Berry

My first interaction with Vladimir Arnold was receiv-
ing one of his notoriously caustic letters. In 1976 I had
sent him my paper (about caustics, indeed) applying
the classification of singularities of gradient maps to a
variety of phenomena in optics and quantum mechanics.
In my innocence, I had called the paper “Waves and
Thom’s theorem”. His reply began bluntly:

Thank you for your paper. Refer-
ences:...

There followed a long list of his papers he thought I
should have referred to. After declaring that in his view
René Thom (whom he admired) never proved or even
announced the theorems underlying his catastrophe
theory, he continued:

I can’t approve your system of refer-
ring to English translations where

Russian papers exist. This has led
to wrong attributions of results, the
difference of 1 year being important –
a translation delay is sometimes of 7
years...

and

...theorems and publications are very
important in our science (...at present
one considers as a publication rather
2-3 words at Bures or Fine Hall tea,
than a paper with proofs in a Russian
periodical)

and (in 1981)

I hope you’ll not attribute these result
[sic] to epigons.

He liked to quote Isaac Newton, often in scribbled
marginal afterthoughts in his letters:

A man must either resolve to put out
nothing new, or to become a slave to
defend it

and (probably referring to Hooke)

Mathematicians that find out, settle
and do all the business must content
themselves with being nothing but dry
calculators and drudges and another
that does nothing but pretend and
grasp at all things must carry away
all the invention as well of those that
were to follow him as of those that
went before.

(I would not accuse Vladimir Arnold of comparing him-
self with Newton, but was flattered to be associated
with Hooke, even by implication.)

I was not his only target. To my colleague John Nye,
who had politely written “I have much admired your
work...”, he responded:

I understand well your letter, your ad-
miration have not led neither to read
the [reference to a paper] nor to send
reprints...

This abrasive tone obviously reflected a tough and
uncompromising character, but I was never offended
by it. From the beginning, I recognized an underlying
warm and generous personality, and this was confirmed
when I finally met him in the late 1980s. His robust
correspondence arose from what he regarded as sys-
tematic neglect by western scientists of Russian papers
in which their results had been anticipated. In this
he was sometimes right and sometimes not. And he
was unconvinced by my response that scientific pa-
pers can legitimately be cited to direct readers to the
most accessible and readable source of a result rather
than to recognize priority with the hard-to-find original
publication.

He never lost his ironic edge. In Bristol, when asked
his opinion of perestroika, he declared: “Maybe the
fourth derivative is positive.” And at a meeting in
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A napkin with Arnold’s mathematical scribbling,
courtesy of E. Ferrand, circa 2005

Paris in 1992, when I found, in my conference mail-
box, a reprint on which he had written: “to Michael
Berry, admiringly”, I swelled with pride – until I no-
ticed, a moment later, that every other participant’s
mailbox contained the same reprint, with its analogous
dedication!

In 1999, when I wrote to him after his accident, he
replied (I preserve his inimitable style):

...from the POINCARÉ hospital...the
French doctors insisted that I shall re-
cover for the following arguments: 1)
Russians are 2 times stronger and any
French would already die. 2) This par-
ticular person has a special optimism
and 3) his humour sense is specially
a positive thing: even unable to rec-
ognize you, he is laughing.... I do not
believe this story, because it would im-
ply a slaughtering of her husband for
Elia, while I am still alive.

(Elia is Arnold’s widow.)
There are mathematicians whose work has greatly

influenced physics but whose writings are hard to under-
stand; for example, I find Hamilton’s papers unreadable.
Not so with Arnold’s: through his pellucid expositions,
several generations of physicists came to appreciate
the significance of pure mathematical notions that we
previously regarded as irrelevant. ‘Arnold’s cat’ made
us aware of the importance of mappings as models for
dynamical chaos. And the exceptional tori that do not
persist under perturbation (as Kolmogorov, Arnold and
Moser showed that most do) made us aware of diophan-
tine approximation in number theory: ‘resonant torus’
to a physicist = ‘rational number’ to a mathematician.

Most important, Arnold’s writings were one of the
two routes by which, in the 1970s, the notion of gener-
icity slipped quietly into physics (the other route was
critical phenomena in statistical mechanics, where it
was called universality). Genericity emphasizes phenom-
ena that are typical, rather the special cases (often with

high symmetry) corresponding to exact solutions of the
governing equations in terms of special functions. (And
I distinguish genericity from abstract generality, which
can often degenerate into what Michael Atiyah has
called ‘general nonsense’.) This resulted in a shift in our
thinking whose significance cannot be overemphasized.

It suddenly occurs to me that in at least four re-
spects Arnold was the mathematical counterpart of
Richard Feynman. Like Feynman, Arnold made mas-
sive original contributions in his field, with enormous
influence outside it; he was a master expositor, an in-
spiring teacher bringing new ideas to new and wide
audiences; he was uncompromisingly direct and utterly
honest; and he was a colourful character, bubbling with
mischief, endlessly surprising.

Acknowledgement. The photographs are courtesy
to Arnold family archive, F. Aicardi, Ya. Eliashberg,
E. Ferrand, B. and M. Khesins, J. Pöschel, M. Ratner,
S. Tretyakova, and I. Zakharevich.
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